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1. Introduction

The crossing number cr(G) of a graph G is the minimum number of cross-
ings among all drawings of the graph in the plane. All drawings considered
herein are good drawings, meaning that no edge crosses itself, no two edges
cross more than once, no two edges incident with the same vertex cross, no
more than two edges cross at a point of the plane, and no edge meets a ver-
tex, which is not its endpoint. It is easy to see that a drawing with minimum
number of crossings (an optimal drawing) is always a good drawing. Let D
be a good drawing of the graph G. We denote the number of crossings in D
by crD(G). Let Gi and Gj be edge-disjoint subgraphs of G. We denote by
crD(Gi, Gj) the number of crossings between edges of Gi and edges of Gj ,
and by crD(Gi) the number of crossings among edges of Gi in D.
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Let Cn be the cycle with n vertices. Determining the crossing numbers of
Cartesian products (for a definition of Cartesian product see [6]) of two cycles
or of cycles and small graphs have received a good deal of attention. Harary
at al. [7] conjectured that the crossing number of Cm ×Cn is (m− 2)n, for
all m,n satisfying 3 ≤ m ≤ n. This has been proved only for m,n satisfying
n ≥ m, m ≤ 6, [1, 3, 4, 14, 15, 17], and for the special case m = n = 7
[2]. Recently, Glebsky and Salazar [5] proved that this conjecture holds for
values of n sufficiently large compared to m (roughly, for n ≥ m2). The
general conjecture remains open.
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The crossing numbers of the Cartesian products of cycles and all graphs
of order four are determined in [3, 8]. It thus seems natural to inquire
about the crossing numbers of the products of 5-vertex graphs with cycles.
Except the above-mentioned result cr(C5 × Cn) = 3n, [14, 16], in [9] it is
shown that cr(K1,4 × C3) = 2, cr(K1,4 × C4) = 4, cr(K1,4 × C5) = 8, and
cr(K1,4 × Cn) = 2n for n ≥ 6. Let G be the 5-vertex graph obtained from
K5 by removing three edges incident with a common vertex. It is shown in
[10] that the crossing number of G × Cn is 3n for even n or 3n + 1 if n is
odd. In [12] the upper bound of 4n for the crossing number of K2,3×Cn for
any n ≥ 4 is given and it is proved that the crossing number of K2,3 × C3

is 9. The table shows the summary of known crossing numbers for Cartesian
products of cycles and connected graphs of order five. The results without
citation in the lower right corners of table entries are obtained by finding
a subgraph with the same crossing number as shown in the table and also
finding a suitable drawing of the graph with the same number of crossings
(G1, G4, G5 and G12). The graph G9 consists of two edge-disjoint subgraphs
C3×Cn with crossing number n, and therefore cr(G9×Cn) ≥ 2n for n ≥ 3.
As for n ≥ 3 there is a drawing of G9 × Cn with exactly 2n crossings,
cr(G9×Cn) = 2n. It is the purpose of this paper to give the exact values of
crossing numbers for graphs Gj×Cn for j = 3, 6, 7, 13 and 14. These results
are denoted by [?] in the lower right corners of the table entries.

2. The Graphs G3 and G7

It is not difficult to state exact values of crossing numbers for the graphs
G3×Cn for n = 3, 4, 5, and for the graph G7×Cn for n = 3. First we show
that cr(G7×C3) = 4. Figure 1 shows the drawing of the graph G7×C3 with

Figure 1
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four crossings. Thus, cr(G7×C3) ≤ 4. On the other hand, cr(G7×C3) ≥ 4,
because the graph G7×C3 contains the graph C4×C3 as a subgraph and its
crossing number is four. As the graph G7 ×Cn contains the graph C4 ×Cn

as a subgraph and cr(C4 × Cn) = 2n, the crossing number of the graph
G7 ×Cn is at least 2n. One can easily find the drawing of G7 ×Cn with 2n
crossings, hence cr(G7 × Cn) = 2n.

Figure 2 in the next section shows the graph G6 × Cn for n = 3, 4
and 5. For n = 3, 4 and 5, the graph G3 × Cn can be obtained by deleting
three, four and five edges, respectively, from the graph G6 × Cn. As, in
Figure 2, every of these considered edges is crossed exactly once, we have
cr(G3 × C3) ≤ 1, cr(G3 × C4) ≤ 2, and cr(G3 × C5) ≤ 4. On the other
hand, the graph G3 × Cn contains the graph K1,3 × Cn as a subgraph and
therefore, cr(G3 ×C3) ≥ 1, cr(G3 ×C4) ≥ 2, and cr(G3 ×C5) ≥ 4, because
cr(K1,3×C3) = 1, cr(K1,3×C4) = 2, and cr(K1,3×C5) = 4 (see [8]). Thus,
for n = 3, 4 and 5 the crossing number of the graph G3 × Cn is 1, 2 and 4,
respectively. We can generalize this idea for n ≥ 6 and, using the fact that
cr(K1,3 × Cn) = n, state that cr(G3 × Cn) = n.

3. The Graph G6

We assume n ≥ 3 and find it convenient to consider the graph G6 × Cn in
the following way. It has 5n vertices, which we denote xi for x = a, b, c, d, e
and i = 1, 2, . . . , n, and 10n edges that are the edges of the n copies Gi

6 and
the five cycles Cx

n . For i = 1, 2, . . . , n, let ai and bi be the vertices of Gi
6

of degree two, let ci be the vertex of degree four, and let di and ei be the
vertices of Gi

6 of degree one.

Figure 2



Some Crossing Numbers of Products of Cycles 201

In Figure 2 there is the drawing of the graph G6 × C3 and the dotted lines
show how to obtain drawings for n ≥ 4. It is not difficult to redraw Figure 2
in such a way that every copy of Gi

6 is crossed exactly two times and two
different Gi

6 and Gj
6 do not cross each other. This obviously generalizes to

show that the crossing number of G6×Cn is at most 2n. The graph G6×Cn

contains the graph K1,4 × Cn as a subgraph. As cr(K1,4 × Cn) = 2n for all
n ≥ 6 (see [9]), we have cr(G6 × Cn) = 2n for all n ≥ 6. Theorem 1 states
the crossing numbers for G6 × Cn for the remaining values of n.

In the proofs of the paper, we will often use the term “region” also in
nonplanar drawings. In this case, crossings are considered to be vertices of
the “map”.

Theorem 1. cr(G6 × C3) = 4, cr(G6 × C4) = 6 and cr(G6 × C5) = 9.

Proof. Consider the subgraph G′ of the graph G6 × Cn induced on the
vertices of three cycles Ca

n, Cb
n, and Cc

n. This subgraph G′ is isomorphic to
the graph C3 × Cn with crossing number n for all n ≥ 3 (see [17]). Let T x,
x ∈ {a, b, d, e}, denote the subgraph of G6 × Cn induced on the edges inci-
dent with the vertices of the cycle Cx

n . Thus, G6×Cn = G′∪T d∪T e. From
the Figure 2 (not regarding the dotted lines) it follows that cr(G6×C3) ≤ 4.
In the same figure, considering one copy of G6 with two crossings drawn by
dotted lines or both copies of G6 drawn by dotted lines, we can see that
cr(G6 × C4) ≤ 6 and cr(G6 × C5) ≤ 9, respectively. To prove Theorem 1,
it is necessary to show that cr(G6 × C3) ≥ 4, cr(G6 × C4) ≥ 6, and
cr(G6 × C5) ≥ 9.

Assume that there is a drawing of the graph G6 × C3 with less than
four crossings and let D be such a drawing. Then the subdrawing D′ of the
drawing D induced by the subgraph G′ isomorphic to C3×C3 contains three
crossings and, in D, there is no crossing on the edges of T d ∪ T e. As the
planar subdrawing D′′ of the graph T d∪T e is unique up to the isomorphism,
Figure 3(a) shows that in this case there is no region with all three vertices
of Cc

3 (the vertices of degree two in D′′) on the boundary of the same region.
Since, in D, the cycle Ca

3 does not cross the edges of D′′, one can easily see
that Ca

3 lies in one region of the planar subdrawing D′′. But in this case the
edges joining Ca

3 with the vertices of Cc
3 cross the edges of T d ∪ T e, which

contradicts our assumption that D has fewer than four crossings. Thus,
cr(G6 × C3) = 4.

Note that for n ≥ 4 there is no drawing of the subgraph T d ∪ T e with
one crossing. In fact, if any two edges not incident with the same vertex
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cross each other, then one can find in T d ∪ T e two vertex-disjoint cycles in
such a way that every of these cycles contains exactly one of the considered
edges. As two vertex disjoint cycles cannot cross each other exactly once,
in the drawing there is at least one additional crossing.

Figure 3

Assume now that there is a drawing of the graph G6×C4 with less than six
crossings and let D be such a drawing. As cr(C3×C4) = 4, there are at least
four crossings in the subdrawing D′ induced from D by the subgraph G′. In
this case, in D there is at most one crossing on the edges of T d ∪ T e. Since
there exists no drawing of T d∪T e with exactly one crossing, the subdrawing
D′′ of T d ∪ T e is planar and unique up to the isomorphism. It divides the
plane into six regions such that any of them has at most two vertices of Cc

4

on its boundary. The cycle Ca
4 cannot lie in D in more than one region in

the view of the subdrawing D′′, otherwise it crosses T d∪T e more than once.
In D′′ there are at most two vertices of Cc

4 on the boundary of one region
and therefore the edges of T a cross in D the edges of T d ∪ T e at least two
times, a contradiction.

For n = 5, assume that there is a drawing of the graph G6 × C5 with
less than nine crossings and let D be such a drawing. As cr(C3 × C5) = 5,
there are at least five crossings in the subdrawing D′ induced from D by
the subgraph G′. In this case, in D there are at most three crossings on
the edges of T d ∪ T e. The subdrawing D′′ induced from D by the subgraph
T d ∪ T e without crossings divides the plane into seven regions with at most
two vertices of Cc

5 on the boundary of a region. Then the cycle Ca
5 crosses in

D the edges of T d ∪T e more than once or the edges of T a cross the edges of
T d∪T e more than once if Ca

5 lies in one region in the view of D′′. The same
arguments hold for the subgraph T b; hence, D′′ has in D more than three
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crossings on its edges, a contradiction. As there is no drawing of T d ∪ T e

with exactly one crossing, assume that there is the subdrawing D′′ with two
or three crossings. In this case at least one of the subgraphs T a and T b

does not cross in D the edges of T d ∪ T e. Without loss of generality, let
crD(T a, T d ∪ T e) = 0. Then, regardless of whether or not the edges of T a

cross each other or the edges of T d cross each other, the subdrawing D′′′ of D
induced by T d∪T a divides the plane in such a way that on the boundary of a
region there are at most two vertices of Cc

5 and no two regions with common
boundary contain more than three vertices of Cc

5 on their boundaries, see
Figure 3(b). As crD(T a, T e) = 0, the edges of T e can cross in D only the
edges of T d. Since the subgraph T d ∪ T a is two connected, the vertices
of Ce

5 cannot lie in D in two non-neighbouring regions in the view of the
subdrawing D′′′, otherwise the edges of Ce

5 cross the edges of T d more than
three times. If Ce

5 lies in two neighbouring regions in the view of D′′′, then
crD(T e, T d) ≥ 2 and at least two vertices of Cc

5 are not on the boundaries
of these regions. Thus, T e crosses T d more than three times again. The
last possibility is that Ce

5 lies in one region of D′′′. If there are less than
two vertices of Cc

5 on the boundary of this region, then crD(T e, T d) ≥ 4, a
contradiction. If Ce

5 lies in the region α, see Figure 3(b), with two vertices of
Cc

5 on its boundary, then the vertex ci of Cc
5 is not on the boundary of any

region neighbouring with the region α. In this case the edge of T e joining Ce
5

with the vertex ci of Cc
5 crosses T d at least two times and other two edges

of T e joining Ce
5 with the vertices of Cc

5 that do not belong to the boundary
of the region α also cross T d. This contradiction completes the proof.

4. The Graph G13

We assume n ≥ 3 and find it convenient to consider the graph G13 × Cn

in the following way. It has 5n vertices denoted xi for x = a, b, c, p, q and
i = 1, 2, . . . , n, and 11n edges that are the edges in the n copies Gi

13 and
the five cycles Cx

n . For i = 1, 2, . . . , n, let ai and bi be two adjacent vertices
of Gi

13 of degree two, let pi and qi be the vertices of Gi
13 of degree three

adjacent with ai and bi, respectively, and let ci be the vertex of degree two
adjacent with pi and qi.

For n ≥ 3, it is not difficult to find a drawing of the graph G13 × Cn

with 3n crossings. Figure 4(a) shows the case when the n-cycles cross every
copy of Gi

13 exactly three times. Hence, cr(G13 × Cn) ≤ 3n. Figure 4(b)
shows that 3n is not the best upper bound for every n. For n = 3 we have
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the drawing of the considered graph with 7 crossings. For n ≥ 5, the graph
G13×Cn contains the graph C5×Cn as a subgraph. As cr(C5×Cn) = 3n, see
[14], we have cr(G13×Cn) ≥ 3n, and therefore, for n ≥ 5, cr(G13×Cn) = 3n.
Theorem 2 gives the crossing numbers of the graph G13 ×Cn for n = 3 and
n = 4.

Figure 4

Theorem 2. cr(G13 × C3) = 7 and cr(G13 × C4) = 12.

Proof. Denote by T c the subgraph of the graph G13 × Cn induced on
the edges incident with the vertices of the cycle Cc

n and by I the subgraph
consisting of the vertices of Cp

n and Cq
n and the edges joining the cycles Cp

n

and Cq
n. Thus, the subgraph T c ∪ I ∪ Cp

n ∪ Cq
n is isomorphic to C3 × Cn.

First we show that cr(G13 × C3) = 7. Since cr(G13 × C3) ≤ 7, see
Figure 4(b), assume that there is a drawing of the graph G13×C3 with less
than seven crossings and let D be such a drawing. By deleting the edges
of Ca

3 or the edges of Cb
3 from the graph G13 × C3 we obtain the subgraph

homeomorphic to the graph (K4 − e) × C3 with crossing number six, see
[11]. So, the cycles Ca

3 and Cb
3 are not crossed in D. Deleting the edges

of I from G13 × C3 results in the graph C5 × C3. Thus, in D there is at
most one crossing on the edges of I. As G13×C3 contains several subgraphs
isomorphic or homeomorphic to the graph C4 × C3 with crossing number
four, we have the next restrictions: in D there are at most two crossings on
the edges of T c, at most two crossings on the edges of Cp

3 ∪ I, and at most
two crossings on the edges of Cq

3 ∪ I.
Consider now the subdrawing D′ of the drawing D induced by the ver-

tices of Cp
3 and Cq

3 . By Lemma 2 in [12] (which states that if in a good
drawing of Cm × Cn two m-cycles (n-cycles) cross each other, then at least
one of them has at least three crossings on its edges), we have that the cycles
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Cp
3 and Cq

3 do not cross each other. As the subgraph T c ∪ I ∪ Cp
3 ∪ Cq

3 is
isomorphic to C3 × C3 and on the edges of T c there are at most two cross-
ings, there is at least one crossing in D′. Suppose that two edges of I, say
{pi, qi} and {pj , qj} cross each other. In this case in D — as there is no
other crossing on the edges of I — the 3-cycle piciqipi separates the vertices
pj and qj and the path piciqi is crossed by the paths pjcjqj and pjajbjqj . A
similar consideration shows that the path piaibiqi is crossed by both paths
pjcjqj and pjajbjqj . Thus, in this case the subgraphs Gi

13 and Gj
13 cross

each other at least five times and on the edges of T c there are at least three
crossings. Since this contradicts the restriction that the edges of T c are
crossed at most two times, two edges of I do not cross each other. So, the
only possibility for the subdrawing D′ is that one edge of I crosses one of
the cycles Cp

3 or Cq
3 . Such a subdrawing D′ with one crossing is unique up

to the isomorphism and divides the plane into six regions in such a way that
there are two vertices pi and qi which are not on the boundary of the same
region. But in this case, in D, one of the cycles Cp

3 and Cq
3 is crossed by

both paths piciqi and piaibiqi, which contradicts the restriction that none of
the subgraphs Cp

3 ∪ I and Cq
3 ∪ I has more than two crossings on its edges.

Hence, there is no drawing of G13 × C3 with less than seven crossings and
cr(G13 × C3) = 7.

Assume now that there is a drawing of the graph G13 × C4 with less
than twelve crossings and let D be such a drawing. In D there is at most
one crossing on the edges of I, otherwise deleting the edges of I results in
the graph C5 × C4 with less than ten crossings. For every i = 1, 2, 3, 4,
in D there are at most four crossings on the edges of Gi

13, otherwise, by
deleting the edges of Gi

13, we obtain the graph homeomorphic to G13 × C3

with less than seven crossings. Thus, two edges of I do not cross each other
in D, otherwise, as shown above, two different Gi

13 and Gj
13 cross each other

more than four times. As G13×C4 contains several subgraphs isomorphic or
homeomorphic to the graph C4×C4 with crossing number eight, we have the
next restrictions: in D there are at most three crossings on the edges of T c,
at most three crossings on the edges of Cp

4 ∪ I, and at most three crossings
on the edges of Cq

4 ∪ I. We show that in D the cycles Cp
4 and Cq

4 do not
cross each other. If the cycles Cp

4 and Cq
4 cross each other, then they cross at

least twice. Moreover, at least one of them, regardless of whether or not its
edges cross each other, separates two vertices of the other cycle, otherwise
the drawing is not good. Without loss of generality, let Cp

4 separates the
vertices qi and qj . Then the paths qicicjqj and qibibjqj cross the cycle Cp

4 ,
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and this contradicts the restriction that there are at most three crossings on
the edges of Cp

4 ∪ I.

Figure 5

Consider now the subdrawing D′ of the drawing D induced by the vertices of
Cp

4 and Cq
4 . As the subgraph T c∪I∪Cp

4∪Cq
4 is isomorphic to C4×C3 and T c

has at most three crossings on its edges, there is at least one crossing in D′.
Suppose that in D′ an edge of I is crossed. Since two different edges of I do
not cross mutually, the unique possibility of the subdrawing D′ is that one
edge of I cross one of the cycles Cp

4 or Cq
4 . Without loss of generality, let an

edge of I crosses an edge of Cp
4 . These two edges are in two vertex-disjoint

cycles in the subdrawing D′ and, since two cycles cannot cross once, there
is one more crossing in D′. By our restriction, this crossing can appear in
D′ only as crossing of Cp

4 or as crossing of Cq
4 . Since in a good drawing no

4-cycle can have more than one internal crossing, one can easily see that,
up to the isomorphism, there are only two possible drawings D′ shown in
Figure 5. If crD(Cp

4 ) = 0 (see Figure 5(a)), in D there is at most one another
crossing on the edges of Cq

4 and at most two other crossings on the edges
of Cp

4 . If crD(Cp
4 ) = 1 (see Figure 5(b)), in D there is at most one another

crossing on the edges of Cp
4 and at most two other crossings on the edges

of Cq
4 . In both cases, in D there are at most three another crossings on

the edges of the subdrawing D′. Since in D′ there are no more than five
vertices on the boundary of a region, the cycle Cc

4 crosses in D the edges of
D′ at least twice or, if it lies in one region in the view of the subdrawing
D′, the edges joining Cc

4 to Cq
4 and Cp

4 cross D′ at least three times. The
same arguments as for Cc

4 hold for the subgraph induced on the vertices of
Ca

4 and Cb
4 and, in D, the edges not belonging to D′ cross the edges of D′

more than three times. This contradicts with our assumptions. The similar
contradictions with the restrictions are obtained, when in D′ the edges of I
are not crossed. This completes the proof.
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5. The Graph G14

For n ≥ 3, one can obtain the graph G14 × Cn by adding the edges {ai, qi}
for i = 1, 2, . . . , n to the graph G13 × Cn. In Figure 4(a) this is possible to
do without crossings on the edges {ai, qi}, so cr(G14 × Cn) ≤ 3n. On the
other hand, G14×Cn contains G13×Cn as a subgraph and this implies that
cr(G14 ×Cn) ≥ cr(G13 ×Cn). Hence, for n ≥ 4, the crossing number of the
graph G14 × Cn is 3n.

Theorem 3. cr(G14 × C3) = 9.

Proof. Let us use the same notations as in the proof of Theorem 2 and
moreover, denote by T b the subgraph of G14 × Cn induced on the edges
incident with the vertices of the cycle Cb

3 and by J the subgraph consisting
of the vertices of Cq

3 and Ca
3 and the edges joining the cycles Cq

3 and Ca
3 . As

shown above, cr(G14 × C3) ≤ 9 and, to prove Theorem 3, it is necessary to
show that cr(G14 × C3) ≥ 9.

Assume that there is a drawing of the graph G14×C3 with less than nine
crossings and let D be such a drawing. In D there is at most one crossing on
the edges of I, because deleting the edges of I results in the graph G13×C3

with crossing number seven. The same argument gives that there is at most
one crossing on the edges of J . As G14 × C3 contains several subgraphs
isomorphic or homeomorphic to the graph (K4−e)×C3 with crossing number
six, we have the next restrictions: every of the subgraphs T b, T c, Cp

3 ∪I and
Ca

3 ∪J has in D at most two crossings on its edges. Moreover, since deleting
the edges of Cq

3 ∪ I ∪ J results in the graph homeomorphic to C4 ×C3 with
crossing number four, on the edges of Cq

3 ∪ I ∪ J there are at most four
crossings. Using the same arguments as in the proof of Theorem 2, one
can easily see that crD(I) = crD(J) = 0, otherwise T b or T c has it edges
crossed more than two times. The cycles Ca

3 and Cp
3 do not cross each other,

otherwise, as we noted in the proof of Theorem 2, at least one of them is
crossed more than two times.

We show that crD(Cp
3 , Cq

3) = crD(Ca
3 , Cq

3) = 0. Without loss of gen-
erality, let the cycles Cp

3 and Cq
3 cross each other. In the good drawing

D, at least one of the considered cycles separates the vertices of the other.
Since the edges of Cp

3 are crossed at most two times, Cp
3 cannot separate

two vertices of Cq
3 . Thus, the cycle Cq

3 separates two vertices, say pi and
pj , of the cycle Cp

3 . In this case, both paths picicjpj and piaiajpj cross
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Cq
3 , and Cq

3 has at least four crossings. Thus, crD(Ca
3 , Cq

3) = 0. The sub-
graph induced on the vertices of Ca

3 , Cq
3 and Cb

3 is isomorphic to the graph
C3 × C3 with crossing number three. As T b has in D at most two cross-
ings, crD(Ca

3 ∪ J ∪ Cq
3) ≥ 1. But in this case, since crD(Ca

3 , Cq
3) = 0,

an edge of J crosses an edge of Ca
3 ∪ Cq

3 . This contradiction with the
property that on the edges of Cq

3 ∪ I ∪ J there are at most four cross-
ings implies that crD(Cp

3 , Cq
3) = 0 and, by the symmetrie of the graph G14,

crD(Ca
3 , Cq

3) = 0 also.

Figure 6

Consider now the subdrawing D′ of the drawing D induced by the subgraph
Cp

3 ∪ I ∪Cq
3 ∪J ∪Ca

3 . As shown above, crD(Ca
3 ∪J ∪Cq

3) ≥ 1 and an edge of
J crosses an edge of Ca

3 ∪ Cq
3 . Using the same arguments for the subgraph

induced on the vertices of Cp
3 , Cq

3 and Cc
3, we have that an edge of I crosses

an edge of Cp
3 ∪ Cq

3 . Thus, in D′ there are exactly two crossings. Suppose
that both crossings appear on the edges of Cq

3 . Then deleting the edges of Cq
3

from D′ results in the subdrawing without crossings as shown in Figure 3(a),
and one can easy to verify that the edges of Cq

3 cannot cross the edges of
I ∪J two times. In D′ the cycle Cq

3 does not separate Cp
3 and Ca

3 , otherwise
T c crosses Cq

3 more than two times. Hence, in D′ the cycle Cq
3 crosses I and

Ca
3 crosses J or Cq

3 crosses J and Cp
3 crosses I. There is no other crossing

in D′. Without loss of generality, assume the first situation. The unique
drawing up to the isomorphism is shown in Figure 6. As in D the cycle Cc

3

cannot cross an edge of the subdrawing D′, it lies in D in one of regions in
the view of the subdrawing D′. If Cc

3 lies in a region with less than four
vertices of Cp

3 ∪Cq
3 on its boundary, then T c crosses D′ more than two times,

a contradiction. If Cc
3 lies in the unique region of D′ with more than three

vertices of Cp
3 ∪ Cq

3 on its boundary — the unbounded region in Figure 6
— the edge {ci, qi} crosses the cycle Cp

3 at least two times or it crosses the
cycle Ca

3 at least two times. This contradiction with the restriction that
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every of Cp
3 ∪ I and Ca

3 ∪J has at most two crossings on its edges completes
the proof.
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[12] M. Klešč, The crossing number of K2,3 × C3, Discrete Math. 251 (2002)
109–117.
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