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Abstract

Median graphs are characterized among direct products of graphs
on at least three vertices. Beside some trivial cases, it is shown that
one component of G × P3 is median if and only if G is a tree in that
the distance between any two vertices of degree at least 3 is even. In
addition, some partial results considering median graphs of the form
G ×K2 are proved, and it is shown that the only nonbipartite quasi-
median direct product is K3 ×K3.

Keywords: median graph, direct product, quasi-median graph, iso-
metric embeddings, convexity.
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1. Introduction

Graph products and metric graph theory have developed in the last few
decades, and a rich theory involving the structure and recognition of classes
of graphs related to these fields has emerged, cf. the books [7, 11]. Among
the most studied classes of these graphs are hypercubes (Cartesian products
of K2’s) and median graphs. They are closely connected since hypercubes
are median graphs and median graphs are precisely retracts of hypercubes
[2]. For additional information on median graphs see [2, 5, 16, 18] as well as
the survey [14] and references therein.

The distance function of the Cartesian product is the sum of the dis-
tance functions of the factors. Hence it is no surprise that this product of
graphs behaves hereditarily with respect to being median. More precisely,
the Cartesian product of median graphs is again median, and, given a me-
dian graph G, every retract of G is a median graph as well. Nevertheless, one
can still ask some interesting questions in this respect, for instance which
median graphs are Cartesian products of trees, or Cartesian products of
paths. These two questions were solved by Bandelt, Burosch and Laborde
[3] in terms of forbidden convex subgraphs. For the first case K2,3 − e is
the only forbidden convex subgraph, while for the second one the forbidden
convex subgraphs are K2,3− e and K1,3. Another related question was con-
sidered in [15] where median subgraphs of Cartesian products of two paths
are characterized in several different ways.

Since the strong product and the lexicographic product of factors with
at least one edge both contain K4, no such product is a median graph.
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The fourth standard product of graphs, the direct product (also known
as cardinal product [10], Kronecker product [12], etc.), is more interesting
with respect to median graphs. It is well known, cf. [11] that the direct
product is bipartite if and only if one of the factors is bipartite and that the
direct product of two connected bipartite graphs consists of two connected
components.

In this paper we characterize direct products of graphs that are median
graphs for the case when all factor graphs have at least three vertices. First,
there are two simple cases: if both factors are paths then both components
of their direct product are median; and if both factors are stars then one
component of the product is also a star, and hence a median graph. But
there is a more interesting instance of median graphs. If one factor is the
path P3 on three vertices, then one component of G × P3 is median if and
only if G is a tree in which the distance between any two vertices of degree
at least 3 is even. The case where one factor is K2 turns out to be most
difficult and we obtain two partial results. First we show that if G×K2 is
a median graph then exactly one of the irreducible components of G with
respect to so-called K2-amalgamation is nonbipartite. On the other hand,
for a median graph M , the direct product (M¤K4)×K2 is isomorphic to the
Cartesian product M¤Q3, which gives a (large) family of such irreducible
nonbipartite graphs. We also show that the only nonbipartite quasi-median
direct product is K3 ×K3.

In the rest of this section we fix the notation and state preliminary
results. Section 2 considers the case when both factors have at least three
vertices, and Section 3 the case when one factor is K2. In the last section
nonbipartite quasi-median direct products are characterized.

Let G = (V (G), E(G)) be a connected graph. The distance in G between
vertices u, v is denoted dG(u, v) (or shortly d(u, v)) and is defined as the
number of edges on a shortest u, v-path. We call a tree T an even tree, if
the distance between any two vertices of T of degree at least 3 is even.

A subgraph H of a graph G is called isometric if dH(u, v) = dG(u, v)
for all u, v ∈ V (H). The set I(u, v) of all vertices in G which lie on shortest
paths between vertices u, v ∈ V (G) is called an interval. A graph G is a
median graph if for every triple of vertices u, v, w ∈ V (G) there exists a
unique vertex in I(u, v)∩ I(u,w)∩ I(v, w). This vertex is called the median
of u, v, w.

A set A in V (G) is called convex if I(u, v) ⊆ A for all u, v ∈ A and
a subgraph H in G is convex if its vertex set is convex. It is well known
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that the intersection of convex subgraphs is convex, so we may speak of
the smallest convex subgraph which includes a given subgraph H of G, and
we call it the convex closure of H in G. The following characterization
of median graphs due to Bandelt, cf. [14] will be frequently used in our
arguments.

Theorem 1.1. A connected graph G is a median graph if and only if the
convex closure of any isometric cycle in G is a hypercube.

The Cartesian product G¤H of graphs G and H is the graph with vertex
set V (G) × V (H) where vertex (a, x) is adjacent to vertex (b, y) whenever
ab ∈ E(G) and x = y, or a = b and xy ∈ E(H). The Cartesian product
of k copies of K2 is a hypercube or a k-cube Qk. Isometric subgraphs of
hypercubes are called partial cubes. It is well-known that partial cubes
contain no K2,3 as an induced subgraph.

The direct product G×H is the graph with V (G×H) = V (G)× V (H)
and E(G×H) = {(a, x)(b, y) | ab ∈ E(G), xy ∈ E(H)}. The direct product
of connected factors is connected if and only if at least one of the factors is
not bipartite [19]. We will also need the following result.

Lemma 1.2. Let G and H be graphs and let (a, x), (b, y) be vertices of G×H.
Then dG×H((a, x), (b, y)) is the smallest d such that there is an a, b-walk of
length d in G and an x, y-walk of length d in H. In particular, if such walks
do not exist, then (a, x) and (b, y) are in different connected components of
G×H.

Lemma 1.2 was in a different form first established by Kim in [13]. How-
ever, the above (more useful) formulation is due to Abay-Asmerom and
Hammack [1].

Note that if G and H are bipartite graphs, and (a, x) and (b, y) belong
to the same connected component of G×H, then Lemma 1.2 implies that

dG×H((a, x), (b, y)) = max{dG(a, b), dH(x, y)} .

Finally, a clique is a maximal complete subgraph. A cutset C ⊂ V (G) is
a set of vertices for which V (G) \ C induces a disconnected graph. If in G
there are no cutsets on at most k vertices then G is called k-connected. By
∆(G) we denote the largest vertex degree in a graph G.
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2. Connected Factors with at Least Two Edges

In this section we prove the following (our main) result.

Theorem 2.1. Let G and H be connected graphs with at least two edges.
Then G×H contains (as a connected component) a median graph precisely
in the following cases:
(i) G and H are paths; then both components of G×H are median graphs.
(ii) G = K1,m and H = K1,n; then the component K1,mn is a median graph.
(iii) G is an even tree and H = P3; then one component is a median graph.

Suppose first that ∆(G) = ∆(H) = 2. Then the factors are paths and
cycles. If both factors are paths, then the connected components of G×H
are grid graphs, that is, induced subgraphs of the Cartesian product of a
path by a path. It is easy to see that then both components are median
graphs. (Alternatively, one may invoke a result from [15] which asserts that
a grid graph is a median graph if and only if it contains no isometric cycle
of length at least 6.) The subcase when at least one of the factors is a cycle
is covered by the next lemma.

Lemma 2.2. For any m,n ≥ 3, the components of Cm × Pn and Cm × Cn

are not median graphs.

Proof. Let x, y be adjacent vertices of the second factor graph (Pn or Cn)
which we denote by An to simplify the notation. We claim that V (Cm) ×
{x, y} induces in Cm ×An either an isometric cycle C2m when m is odd, or
two disjoint isometric cycles Cm when m is even.

To see that the cycle (resp. cycles) is (are) isometric consider first two
vertices a, b of Cm such that (a, x) and (b, y) are in the same component
of Cm × An. By Lemma 1.2 we get dCm×An((a, x), (b, y)) = dCm(a, b) by
which we infer that a shortest path between (a, x) and (b, y) is realized on
V (Cm) × {x, y}. Using an analogous distance argument in the case of two
vertices a and b such that (a, x) and (b, x) are in the same component of
Cm×An we deduce that the cycle (resp. cycles) is (are) isometric in Cm×An.

We easily see that unless m = 4 the convex closure of the cycle (resp.
cycles) induced by V (Cm)×{x, y} cannot be a hypercube which by Theorem
1.1 implies that Cm × An is not a median graph. Finally, if m = 4, then
every component of C4 ×An contains a K2,3.
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In fact, invoking Lemma 1.2 one can show that the Djoković-Winkler relation
Θ [8, 20] is not transitive in the graphs of Lemma 2.2, thus they are not
even partial cubes.

Assume now that ∆(G) ≥ 3 and suppose that G or H is not bipartite.
Then G ×H is connected. Let u be a vertex of G of degree at least 3 and
let u1, u2, u3 be three neighbors of u. Let x, y, z be vertices of H such that
y is adjacent to x and z (such vertices exist because H is connected and has
at least two edges). Now (x, u), (y, u1), (y, u2), (y, u3), (z, u) induce a K2,3,
thus G×H is not a median graph. In the rest we may thus assume that G
and H are bipartite.

Assume that P4 ⊆ H and let x, y, z, w induce a P4 in H. Then, as above,
(x, u), (y, u1), (y, u2), (y, u3), and (z, u) induce a K2,3. In addition, (y, u),
(z, u1), (z, u2), (z, u3), and (w, u) induce another K2,3 of G × H. From
Lemma 1.2 we infer that (u, x) and (u, y) belong to different connected
components of G ×H and so each of the two components contains a K2,3.
Thus, if a component of G×H is supposed to be a median graph, the only
possibility left is that G is bipartite with ∆(G) ≥ 3, and that H = K1,n.

Assume first n ≥ 3. Then if P4 ⊆ G then we conclude as above (reversing
the roles of G and H) that no component of G×H is a median graph. Thus,
in this case we only need to consider the product K1,m ×K1,n. Note that
the components of G×H are K1,mn and Km,n, thus the first one is a median
graph, the other is not.

Suppose now n = 2, in other words we consider the product G × P3,
where G is a bipartite graph with ∆(G) ≥ 3. This last case is settled by the
following lemma. Recall that a tree is an even tree, if the distance between
any two vertices of degree at least 3 is even.

Lemma 2.3. Let G be a bipartite graph with ∆(G) ≥ 3. Then the compo-
nents of G × P3 are not median graphs except if G is an even tree, when
exactly one component is a median graph.

Proof. Let C be a shortest (even) cycle of G. If C = C4 then every
component of G × P3 contains a K2,3. Assume thus C = C2k, k ≥ 3.
Since C is a shortest cycle, it must also be isometric. Thus, using Lemma
1.2, we observe that both components of G×P3 contain C2k as an isometric
subgraph. But we see just as in the proof of Lemma 2.2 that the components
of G× P3 are not median graphs (in fact, not even partial cubes).

Suppose next that G is a tree and that u and v are its vertices of degree
at least 3 where d(u, v) is odd. Let x, y, z be vertices of P3 with y adjacent to
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x and z, let u1, u2, u3 be neighbors of u and v1, v2, v3 neighbors of v. Now,
(u, x), (u1, y), (u2, y), (u3, y), (u, z) as well as (v, x), (v1, y), (v2, y), (v3, y),
(v, z) induce K2,3. Moreover, by Lemma 1.2 we infer that (u, x) and (v, x)
belong to different components of G× P3. Thus no component of G× P3 is
a median graph.

Assume finally that G is an even tree. We wish to show that exactly
one component of G× P3 is a median graph. We are going to show this by
induction on the number of vertices of G. Note that the smallest even tree
with ∆ ≥ 3 is K1,3, and that one component of K1,3 ×P3 is a star K1,6 and
the other is K2,3, which proves the induction basis. Now, let G be an even
tree on more than 4 vertices. Let u be an arbitrary vertex of G of degree
at least 3. We claim that the component K containing (u, y) is a median
graph. (That the other component is not median we easily see noting again
that we have a K2,3 in it.) Let v be an arbitrary vertex of G. By Lemma
1.2 we see that (v, y) ∈ K if d(u, v) is even, while (v, x) ∈ K and (v, z) ∈ K
if d(u, v) is odd. Let w be an arbitrary vertex of G of degree one and let w′

be its neighbor. Clearly, G′ = G − w is an even tree and by induction the
component K ′ of G′ × P3 containing (u, y) is a median graph. Let d(u,w)
be odd. Then d(u,w′) is even, thus (w′, y) ∈ K ′. But then K is obtained
from K ′ by adding two vertices of degree one (w, x) and (w, z), thus K is
median since K ′ is median. Let d(u,w) be even. Then d(u,w′) is odd, and
thus in this case (w′, x) and (w′, z) belong to K ′. Since d(u,w′) is odd, w′

has exactly one neighbor w′′ in G with w′′ 6= w. Thus the vertices (w′, x)
and (w′, z) are vertices of degree one of K ′ and it follows easily that K is
median graph.

By Lemma 2.3 the proof of Theorem 2.1 is complete. We are thus left with
the case when one factor is K2.

3. Median Graphs G×K2

The first immediate observation in this case is the following. If a graph
G is bipartite, then G × K2 consists of two connected components both
isomorphic to G. Therefore in this case G×K2 has two median components
if and only if G is a median graph.

Let us now focus to the nontrivial case when G is nonbipartite. We
need some further definitions to be used only in this section. We say that
G can be obtained from graphs G1 and G2 by a K2-amalgam (over an edge
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uv) if there exist induced subgraphs G′
1 ' G1 and G′

2 ' G2 of G, such that
V (G′

1) ∩ V (G′
2) = {u, v} and G′

1 ∪ G′
2 = G. (Note that this in particular

implies that there are no edges between G1\{u, v} and G2\{u, v}.) A graph
G is called K2-irreducible if it cannot be obtained from two subgraphs on
at least three vertices by a K2-amalgam. Furthermore, in this section we
will simplify the notation of vertices (x, i) ∈ G×K2 by setting xi := (x, i),
where i ∈ {0, 1}.

In determining the conditions for factor G so that G×K2 is a median
graph, we first show the meaning of K2-amalgams in median graphs.

Lemma 3.1. A graph G is a median graph if and only if it can be obtained
from K2-irreducible median graphs by a sequence of K2-amalgams.

Proof. Suppose that a median graph G can be obtained from two graphs
G1 and G2 by a K2-amalgam over an edge uv. Since G1 and G2 are convex
subgraphs of G, they are obviously median graphs.

On the other hand, in the case when G1 and G2 are median graphs, we
have to consider the following two cases:

Case A. Suppose that x, y, z are vertices of the same subgraph G1 or
G2. As G1 and G2 are convex, median subgraphs, the vertices x, y, z possess
a unique median in G.

Case B. Suppose that x, y, z are not vertices of the same subgraph G1

or G2. Without loss of generality we may assume that x, y ∈ G1 and z ∈ G2.
As G2 is median, it is bipartite and therefore d(z, u) = d(z, v)± 1. We may
assume that d(z, u) = d(z, v) − 1. Obviously, I(u, x) = I(z, x) ∩ V (G1),
and I(u, y) = I(z, y)∩V (G1), therefore the unique median m(x, y, u) of the
vertices x, y, u is also a median of the vertices x, y, z. Since G1 is convex,
I(x, y) ⊆ G1, hence the median m(x, y, z) must be in G1, and m(x, y, u) is
also unique for the vertices x, y, z.

Lemma 3.2. Let G×K2 be a median graph. If K3 ⊆ G, then K4 ⊆ G.

Proof. Let u, v, w be the vertices of a K3 ⊆ G. Then u0, v0, w0, u1, v1, w1

induce an isometric cycle C6 in G×K2, whose convex closure is Q3. There-
fore there exists a vertex z0 ∈ G×K2, adjacent to vertices u1, v1, w1. Hence
u, v, w, z induce a K4 in G.

The following lemma will lead to a (partial) characterization of median
graphs of the form G×K2.
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Lemma 3.3. Let G×K2 be a median graph. Then G can be obtained from a
nonbipartite K2-irreducible graph and a set of bipartite graphs by a sequence
of K2-amalgams.

Proof. Suppose that G can be obtained from two nonbipartite graphs G1

and G2 by a K2-amalgam over an edge uv. We need to show that this is not
possible. For this sake we first claim that G×K2 contains an even isometric
cycle Ĉ which intersects both connected components of (G \ {u, v})×K2.

Let d1 and d2 be the distance functions in G1 × K2 and G2 × K2,
respectively. Let D = {u0, u1, v0, v1} and let w and z be nonadjacent vertices
from D that minimize d1(w, z) + d2(w, z) over all such pairs. Let P1 be a
shortest path from w to z in G1×K2 and let P2 be a shortest path between
w and z in G2 × K2. Since G1 and G2 are nonbipartite graphs, G1 × K2

and G2×K2 are connected and so P1 and P2 exist. We now define Ĉ as the
cycle induced by the vertices of P1 ∪ P2.

Clearly, Ĉ intersects both connected components of (G \ {u, v}) ×K2,
so we need to show that Ĉ is isometric. For this it suffices to show that for
a vertex x ∈ P1 and a vertex y ∈ P2 the distance between them on Ĉ is the
same as the distance in G×K2. Let R be an arbitrary x, y-shortest path in
G×K2. If R contains w or z we are done because Ĉ contains w and z. Note
that R contains at least one vertex from D. So suppose that R contains w
adjacent to one of w or z, say z. Let k = d(x, z) and ` = d(z, y), which are
the distances on Ĉ as well. Because the subpath of R from x to w and the
subpath of Ĉ from x to z are shortest paths and z and w are adjacent, we
have k − 1 ≤ d(x,w) ≤ k + 1. As the lengths of all paths between a pair
of vertices of G × K2 have the same parity by the definition of the direct
product, the distance d(x,w) is either k − 1 or k + 1. Analogously, the
distance d(w, y) is either `− 1 or ` + 1.

Note that d(x,w) = k + 1 and d(w, y) = ` + 1 cannot happen since in
that case R would not be a shortest x, y-path. Also, there is nothing to
show if d(x, y) = d(x,w) + d(w, y) = k + `. So it remains to consider the
case d(x,w) = k − 1 and d(w, y) = `− 1. Then

d1(w, z) + d2(w, z) = d(w, x) + d(x, z) + d(z, y) + d(y, w) =

= d(w, x) + k + ` + d(y, w)

= d(w, x) + d(x,w) + 1 + d(w, y) + 1 + d(y, w)

= d1(w,w) + d2(w,w) + 2 .
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This contradicts the way we have selected w and z and so we have proved
our claim that G ×K2 contains an even isometric cycle Ĉ which intersects
both connected components of (G \ {u, v})×K2.

Since G×K2 is median, the convex closure of the isometric cycle Ĉ of
length 2k is a k-cube Q. As D is a cutset of G×K2, we infer that X = D∩Q
is also a cutset of Q. Any Qk, k ≥ 5, is 5-connected, but X has at most four
vertices, so k must be less than five. As Q4 is 4-connected, and any cutset
consisting of four vertices is independent, we conclude that k < 4, because
D is not independent.

Consider now the case k = 3. Since cutsets of Q3 of size 3 are indepen-
dent and no subset of D on three vertices is such, all the vertices of D lie in
Q. Since the distance between any two vertices of Q is at most 3, there exist
vertices x0 ∈ G1 ×K2 and y0 ∈ G2 ×K2 both adjacent to u1 and v1 (thus
x1 and y1 are both adjacent to u0 and v0). The vertices x, u, v and y, u, v
induce subgraphs isomorphic to K3, which are, by Lemma 3.2, subgraphs in
K4. Therefore there exist vertices x′ ∈ G1 and y′ ∈ G2, both adjacent to u
and v. Vertices x′1, x1, y

′
1, y1, u0, v0 induce a subgraph K2,3 in G×K2, which

contradicts the fact that G×K2 is a median graph. Hence k < 3.
If k = 2, there exist vertices x ∈ G1 and y ∈ G2 both adjacent to u and

v, which leads to the former case and the proof is complete.

Combining Lemma 3.1 with Lemma 3.3 we get

Theorem 3.4. A graph G ×K2 is a median graph if and only if G can be
obtained from a nonbipartite K2-irreducible graph H such that H ×K2 is a
median graph and a set of median graphs by a sequence of K2-amalgams.

Hence by Corollary 3.4, the problem of characterizing graphs G such that
G × K2 is a median graph, reduces to the case when G is K2-irreducible
nonbipartite graph. In the following result we present a large family of
such graphs. More precisely, we show that graphs of the form G = K4¤M
where M is an arbitrary median graph yield median graphs, that is G ×
K2 = M¤Q3. Unfortunately, this family does not characterize graphs for
which G × K2 is a median graph. Consider for instance the Greenwood-
Gleason graph G which can be described as the graph obtained from Q5 by
identifying all its antipodal vertices. Then G has 16 vertices and cannot be
represented as a Cartesian product with K4, but G×K2 is isomorphic to the
hypercube Q5.
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Proposition 3.5. Let M be an arbitrary median graph. Then (M¤K4)×K2

is isomorphic to the median graph M¤Q3.

Proof. Set G = M¤K4. Note that K4 × K2 is isomorphic to Q3. Let
e = uv be an arbitrary edge of a median graph M , and let Ku,Kv be the
corresponding copies of K4 in G. Then one can readily check that edges
between Ku ×K2 and Kv ×K2 in G×K2 form a matching which induces
an isomorphism between the 3-cubes. Moreover, if u′ ∈ Ku and v′ ∈ Kv are
two adjacent vertices in M¤K4, then u′0 (resp. u′1) is adjacent to v′1 (resp.
v′0) in G×K2. Since M is bipartite, we easily derive that (M¤K4)×K2 is
isomorphic to M¤Q3.

Let us conclude this section with the following open problem.

Problem 3.6. Characterize nonbipartite K2-irreducible graphs G such that
G×K2 is a median graph.

4. Quasi-Median Direct Products

Quasi-median graphs were introduced by Mulder [17] as a nonbipartite gen-
eralization of median graphs — bipartite quasi-median graphs are precisely
median graphs. It turns out that most of the rich structure theory on me-
dian graphs (retractions, expansions, amalgamations, etc.) can be extended
in a natural way to quasi-median graphs [4, 17]. For recent results on quasi-
median graphs see [6], cf. also references therein.

As the original definition of quasi-median graphs is somewhat involved,
we shall introduce them through the following result due to Bandelt, Mulder
and Wilkeit.

Theorem 4.1 [4]. A graph G is a quasi-median graph if and only if every
clique in G is gated and all the sets Uab are convex.

For the definition of quasi-median graphs as well as the definition of sets
Uab and gatedness we refer to [4]. With the intention to give more insight
into quasi-median graphs, the graphs in which every clique is gated were
studied in [9], and we will make use of a characterization of these graphs.
A graph G is called clique-gated if every clique in G is gated, that is, if for
every vertex u ∈ V (G) and every clique C in G there exists a vertex x in C
such that d(u, x) = d(u, y)− 1 for all y ∈ C − x. It is obvious that if such a
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vertex exists, it must be unique. By Theorem 4.1 every quasi-median graph
is clique-gated.

The triangle property in the theorem below is defined as follows. For
every edge ab ∈ E(G) and every vertex u ∈ V (G) such that d(u, a) =
d(u, b) = k ≥ 2 there exists a vertex w ∈ V (G) which is adjacent to a and
to b, so that d(u,w) = k − 1.

Theorem 4.2 [9]. A connected graph G is clique-gated if and only if G
does not contain K4 − e as an induced subgraph and G satisfies the triangle
property.

Next we shall characterize direct product graphs that are clique-gated. First
we need the following easy result.

Lemma 4.3. A triangle-free graph is clique-gated if and only if it is bipar-
tite.

So by Lemma 4.3 we are left with the case when G×H has a triangle. Using
the definition of the direct product we immediately derive that G×H has a
triangle if and only if both G and H have a triangle. Let a, b, c (respectively
x, y, z) be vertices that induce a triangle in G (respectively H). If G = K3

and H = K3, then G×H is clique-gated, since

K3 ×K3 = K3¤K3

holds. We will show that this is the only nonbipartite case of a clique-gated
graph obtainable as a direct product.

Theorem 4.4. The direct product G ×H of connected graphs G and H is
clique-gated if and only if
(i) one of the factors is bipartite, or
(ii) G = H = K3.

Proof. Let G×H be a clique-gated graph, and let us suppose that besides
the triangle with vertices a, b, c we have another vertex u in G. Since G and
H are connected graphs, we may assume without loss of generality that u
is adjacent to c. We distinguish three cases.

Case A. First, let u be adjacent also to a and to b, so that we have K4

in G. Then (a, x), (b, y), (c, z) and (u, x) form an induced subgraph K4 − e
in G×H. By Theorem 4.2 it follows that G×H is not clique-gated.
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Case B. The second possibility is that u is adjacent just to one of the
vertices a or b. Since both cases are essentially the same (we get an induced
K4− e in G), we choose u to be adjacent to b. Again, the same four vertices
as in the former case form an induced K4 − e in G×H.

Case C. The remaining case is that u is adjacent only with c. Then, the
vertices (a, x) and (b, z) are adjacent in G×H and

d((u, y), (a, x)) = d((u, y), (b, z)) = 2.

We now apply the triangle property from Theorem 4.2 for the edge (a, x)(b, z)
and a vertex (u, y), and deduce that there must be another vertex in G×H
which is adjacent to (u, y), (a, x) and (b, z). Such a vertex does not exist in
the part of the graph that we have constructed so far, therefore we must
have another vertex in G×H which obeys this property. By the definition
of direct product this is only possible when in H there is another vertex
which is adjacent with x, y and z. We then use Case A and conclude that
G×H is not clique-gated.

By combining the above theorem and the results considering median graphs
we obtain the following characterization.

Theorem 4.5. Let G and H be connected graphs on at least three vertices.
Then G×H contains (as a connected component) a median graph precisely
in the following cases:
(i) G and H are paths; then both components of G×H are median graphs.
(ii) G = K1,m and H = K1,n; then the component K1,mn is a median graph.
(iii) G is an even tree and H = P3; then one component is a median graph.

Furthermore, G × H is a nonbipartite quasi-median graph only if G =
H = K3.
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