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Abstract

Families of all sets of independent vertices in graphs are investi-
gated. The problem how to characterize those infinite graphs which
have arithmetically maximal independent sets is posed. A positive
answer is given to the following classes of infinite graphs: bipartite
graphs, line graphs and graphs having locally infinite clique-cover of
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1. Introduction and Preliminaries

For a set X, the cardinality of X and the family of all subsets of X are
denoted by |X| and 2X , respectively. For a family F of sets, let S ⊂ ⋃F be
a set. S is called scattered (or strong independent) for F if no two elements in
S belong to the same set from F . In the literature, see [3], ”independent” for
hypergraphs is considered with respect to the property ”there is no F ∈ F
such that F ⊂ S”. We have

|S ∩ F | ≤ 1 for every F ∈ F .

S is a covering of F if every set in F has an element in S, i.e., for every
F ∈ F we have

|S ∩ F | ≥ 1.
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We say that S is a König set of F if S is scattered for F and there exists a
choice function f, i.e., f : S → F such that v ∈ f(v) for every v ∈ S and

⋃

v∈S

f(v) =
⋃
F .

Here and subsequently, we use the following notation:

• sF is the family of all scattered sets for F .

• kF is the family of all König sets of F .

Let G = (V, E) be a finite or infinite graph with vertices V and edges E.
Let us remark that E ⊂ 2V is a 2-element family of vertex sets of G.

A graph is said to be countable if its set of vertices is countable. The
complementary graph of G will be denoted by Ḡ = (V, Ē), where

Ē = {{u, v} ∈ 2V | {u, v} 6∈ E}.
A set W ⊂ V is a clique of G if the induced subgraph G[W ] is a complete
graph. A set W ⊂ V is an independent set (or a set of independent vertices)
in G if G[W ] has no edges. We will denote

• cG for the family of all cliques of G,
• iG for the family of all independent sets in G.

Both those families of sets are hereditary with respect to the inclusion. The
family of König sets of G is defined by the requirement that it be kcG.

A set F ⊂ cG is a clique — cover of edges (of vertices) of G if for every
e ∈ E (v ∈ V ) there exists W ∈ F such that e ⊂ W (v ∈ W ). Of course,
both families E and cG are clique — covers of edges of G. We have

iG = sE = sF for every clique — cover F of edges of G.

For a family F of sets, we define the star of an element v ∈ ⋃F as the
subfamily of all sets of F having v as an element, with the notation:

StF (v) = {F ∈ F | v ∈ F} and StF (F ) =
⋃
{StF (v) | v ∈ F}.

The star of a vertex v ∈ V in G is defined as the star v in the set of edges
of G. The neighbours of a vertex v ∈ V in G is the set of all vertices of G
adjacent to v, with the notation:

StG(v) = StE(v) and NbG(v) = {u ∈ V | {u, v} ∈ E}
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and
NbG(W ) = {u ∈ V \W | {u, v} ∈ E for some v ∈ W}.

We assume, without lost of generality, that considered graphs are connected.

2. Arithmetically Maximal Sets

The paper deals with a special kind of maximality which we call arithmetical
maximality. For a family of sets F ⊂ 2X which consists of finite sets only, a
set A ∈ F of maximal cardinality is called an arithmetically maximal set in
the family. This notion is generalized on arbitrary families.

Definition 2.1. Let F be a family of sets. A set A ∈ F is an arithmetically
maximal set (a.m.s. for short) in F if the following implication holds:

if F ∈ F and A \ F is finite, then |A \ F | ≥ |F \A|.
In other words, see Komar and ÃLos̀ [5], A ∈ F is a.m.s. in F iff for every
finite set B included in A and every set C satisfying C∩A = ∅, the following
implication holds:

if (A \B) ∪ C ∈ F , then |B| ≥ |C|.(1)

Of course, such A is maximal in F (with respect to the inclusion). We
denote:

• mF is the family of all maximal sets in F ,

• amF is the family of all a.m.s. in F .

Hence we have
amF ⊂ mF

and
kF ⊂ amsF .(2)

We will consider the behavior of the family of all independent sets in a graph.
An a.m.s. in the family iG is said to be arithmetically maximal independent
set (a.m.i.s.) in G. The structures of a.m.i. sets in finite graphs where
studied in [9] and [4]. It is worth to mention, that the family of all finite
graphs having a König set (defined as {G | kcG 6= ∅}) is not hereditary with
respect to induced subgraphs.
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Example 2.1. Let us denote by

In =

{
n(n− 1)

2
+ 1, . . . ,

n(n− 1)
2

+ n

}
, for n = 1, 2, . . .

and

En = {{i, j} | i, j ∈ In, i 6= j} ∪ {{max In, max In + 1}}, for n = 1, 2, . . ..

Define G = (V, E), where V is the set of all positive integers and

E = E1 ∪ E2 ∪ . . . .

Every set S = {i1, i2, . . .} such that in ∈ In and in+1 6= in + 1 for every
n = 1, 2, . . . is both König and a.m.i.s. in G. Observe that S ∈ kcG but for
the family E we have kE = ∅.

It is easy to check that for the complement of G there is no arithmetically
maximal independent set, i.e., amiG̃ = ∅.

3. Independent Sets of n-partite and Matrix
Graphs

We say a graph G = (V,E) is n-partite if G admits a partition V = V1 ∪
. . . ∪ Vn of its vertex set, such that Vk ∈ iG for every k = 1, . . . , n.

A matching in G = (V, E) is a set M ⊂ E satisfying:

e1 ∩ e2 = ∅ for all e1, e2 ∈ M , such that e1 6= e2.

The line graph L(G) of a graph G has vertices corresponding to the edges of
G such that two vertices of L(G) are adjacent if and only if the corresponding
edges in G are adjacent. G is a line graph if it is isomorphic to L(H) of a
graph H.

It is easy to see that for line graphs we have

cL(G) = {StG(v) | v ∈ V }
and

M is a matching in G if and only if M ∈ iL(G).

A graph is a matrix graph if it is isomorphic to the line graph of a bipartite
graph.
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Theorem 3.1 (König duality theorem, 1936). For any finite bipartite graph
G = (V, E) there exists a pair (C, M) (called König covering of G) such that
C is a covering of E, M is a matching in G, and C consists of exactly one
vertex from every edge of M.

For every graph G, if C is a covering of E and M is a matching in G, then

|C| ≥ |M |.

Clearly if (C, M) is a König covering of G, then |C| = |M | and M ∈ iL(G).
Additionally,

f(e) = StG(e ∩ C) for e ∈ M

is the suitable choice function f : M → cL(G). Therefore, M is a König set
of L(G). Therefore by (2), we obtain the following:

Corollary 3.2. For any finite bipartite graph G = (V, E), if a pair (C, M)
is a König covering of G, then V \ C is an a.m.i.s. in G (in other words,
a.m.s. in iG) and M is an a.m.s. in iL(G).

For infinite graphs we can find in [5], the following statement:

kcG = amiG for every countable matrix graph G.(3)

Therefore, for countable matrix graphs, the existence of an a.m.i.s. is equiv-
alent to the existence of a König covering.

Podewski and Steffens [7, 8] showed that every countable infinite bipar-
tite graph has a König covering. Aharoni [1] showed that every uncountable
bipartite graph has a König covering.

Theorem 3.3. Let G be a graph.
(i) If G is a matrix graph, then G has an arithmetically maximal indepen-

dent set;
(ii) If G is a bipartite graph, then G has an a.m.i.s. (i.e., amiG 6= ∅).

Proof. We refer to the Podewski-Steffens theorem (respectively Aharoni’s
theorem) as the König duality theorem for countable (respectively uncount-
able) bipartite graphs.

By the same arguments as for Corollary 3.2, from (3) follows (i).
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Let (C,M) be a König covering of G = (V, E) and we set S = V \C. Then
S ∈ iG and every edge of G has a vertex in C. From (2) follows that S is
a.m.s. in iG.

Problem. Two questions with respect to possible generalizations of Theo-
rem 3.3 are natural. Is there an a.m.i.s. in any n-partite graph as well as in
any line graph?

The first question has a negative answer for 3-partite countable graphs,
because of the following example:

Example 3.4. Let G = (V,E), where V is the sum of three disjoint sets,
V = A ∪B ∪ C, with

A = {a1, a2, . . .}, B = {b1, b2, . . .}, C = {c1, c2, . . .},
and E = E1 ∪ E2 ∪ E3, where

E1 = {{ai, bj} | j ≥ 2i},
E2 = {{bi, cj} | j ≥ 2i},
E3 = {{ci, aj} | j ≥ 2i}.

Observation 1. Assume S ∈ iG (i.e., S is an independent set of vertices
in G).

1. If |S ∩A| = ∞ then S ∩B is a finite set and S ∩ C = ∅.
2. If |S ∩B| = ∞ then S ∩ C is a finite set and S ∩A = ∅.
3. If |S ∩ C| = ∞ then S ∩A is a finite set and S ∩B = ∅.

Observation 2. All sets A, B, C as well as the sets

Bn =

{ {b1, . . . , bn, an+1
2

, an+1
2

+1, . . .} for odd n,
{b1, . . . , bn, an

2
+1, an

2
+2, . . .} for even n,

Cn =

{ {c1, . . . , cn, bn+1
2

, bn+1
2

+1, . . .} for odd n,
{c1, . . . , cn, bn

2
+1, bn

2
+2, . . .} for even n,

An =

{ {a1, . . . , an, cn+1
2

, cn+1
2

+1, . . .} for odd n,
{a1, . . . , an, cn

2
+1, cn

2
+2, . . .} for even n

are independent sets of vertices in G for n = 1, 2, . . .. Additionally, An, Bn, Cn

with odd n are maximal in iG.
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From Observations 1 and 2 we conclude:

Observation 3. Assume S ∈ iG be infinite. There exists an odd n such
that S ⊂ An or S ⊂ Bn or S ⊂ Cn. In each case, S is not arithmetically
maximal because (1) and

B2k+1 = B2k−1 \ {ak} ∪ {b2k, b2k+1},

C2k+1 = C2k−1 \ {bk} ∪ {c2k, c2k+1}
and

A2k+1 = A2k−1 \ {ck} ∪ {a2k, a2k+1}
for every k = 1, 2, . . ..

Finally observe that amiG = ∅.

4. Independent Sets in Line Graphs

A family F is called a reverse n-regular family if for any v we have |StF (v)| =
n. Let K ⊂ F be families of sets. We say that F is a representation of K in
F if F ∈ sK and StF (F ) = K. We call a subfamily representable if it has a
representation. A family K is a maximal representable subfamily of F if it
has a representation and for any K′ 6= K such that K ⊂ K′ ⊂ F there is no
representation.

Theorem 4.1. Let F be a countable reverse 2-regular family. If S ∈ sF
and StF (S) is a maximal representable subfamily of F , then S is a.m.s. in
the family of scattered sets for F , i.e., S ∈ amsF .

Proof. Let S satisfies the assumption and K = StF (S). The family sF is
hereditary and S ∈ msF . Suppose to the contrary that S 6∈ amsF . From
(1), there exist two finite sets A ⊂ S and B ∈ sF such that

B ∩ S = ∅, | B | > | A | and (S \A) ∪B ∈ sF .

The bipartite graph G = (A ∪B, E) with

E = {{a, b} | a ∈ A, b ∈ B and StF (a) ∩ StF (b) 6= ∅}(4)



174 S. Bylka

satisfies
|StE(v)| ≤ 2 for every v ∈ A ∪B

and
|StE(v)| ≥ 1 for every v ∈ B.

Because |B| > |A|, there exists a connected component of G which is a
simple path

P = (b1, a1, . . . , bn−1, an−1, bn) with |StE(b1)| = |StE(bn)| = 1

and
ai ∈ A, bi ∈ B for each i.

Let Ã = {a1, . . . , an−1} and B̃ = {b1, . . . , bn}. Denote StF (ai) = {Xi, Yi}.
From the construction (4) and revers 2-regularity of F , we have

StF (bi) = {Yi−1, Xi} for i = 2, . . . , n.

Additionally,

StF (b1) = {Y0, X1} with Y0 6∈ K and Xn 6∈ K.

Therefore, we have

StF (B̃) = StF (Ã) ∪ {Y0, Xn} with K ∩ {Y0, Xn} = ∅.(5)

The set
F = (S \ Ã) ∪ B̃

is scattered for F and

StF (F ) = (StF (S) \ StF (Ã)) ∪ StF (B̃).

From (5), we have
StF (F ) = K ∪ {Y0, Xn}

which is not possible because K is a maximal representable subfamily of F .

Remark 4.2. Theorem 4.1 fails to be true without the assumption of reverse
2-regularity. We can not replace it neither by the assumption |StF (v)| ≤ 2
nor by the assumption that F is a reverse n-regular family for any n > 2.
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Below we indicate how the considered notions may be used to graphs with
possible multiple edges. By a multigraph we mean a triple H = (V, E, τ) —
two arbitrary sets (of vertices V and of edges E) and a function τ from E to
the family of all 2-element subsets of V. We have τ(e) = {u, v} iff u and v are
the ends of e. Let us notice, that every line graph of a multigraph without
loops has a revers 2-regular clique-cover of edges. The existence of such
clique-cover is sufficient for the graph to be the line-graph of a multigraph
(see Bermond and Meyer [2] for finite graphs).

Theorem 4.3. Every countable line-graph (of a multigraph) has an arith-
metically maximal independent set.

Proof. Let H = (V,E, τ) be a countable multigraph and G = L(H) =
(E, E), where E = {{e1, e2}|τ(e1) ∩ τ(e2) 6= ∅}. We can assume that H
is connected multigraph (otherwise we can deal with every component of
H separately) with |V | > 2. If |V | = 2 then G is a complete graph and
amiG 6= ∅. In natural way, we extend the definition of the operator StG on
multigraphs:

StH(v) = {e ∈ E | v ∈ τ(e)}.
The family

F = {StH(v) | v ∈ V }

is a clique-cover of edges of G. It is reverse 2-regular and sF = iG.
From Steffens existence theorem [8] (which is evidently true also for

multigraphs), there exists a matching S ⊂ E such that S is a complete
matching of H[V ∗] and V ∗ is a maximal (with respect to the inclusion)
matchable subset of V. Therefore,

K = {StH(v) | v ∈ V ∗}

is a maximal representable subfamily of F . It follows that S ∈ amsF .

Remark 4.4. We have proved Theorem 4.3 for all line-graphs of countable
multigraphs. The assumption on countability is used only in the proof of
existence of a maximal matchable subset of vertices (Steffens [8]). Therefore,
Theorem 4.3 may be generalized to all line graphs of multigraphs which
possess maximal matchable subsets of vertices – for example, the line graphs
of multigraphs without infinite paths. On the other hand, the property of
having a maximal matchable subset of vertices is not necessary in general
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as the next example shows. The graph G = L(Kℵ0,ℵ1) (the line graph of
the complete bipartite graph with bipartition: a countable set and a set of
size ℵ1) as a matrix graph has an a.m.i.s. though Kℵ0,ℵ1 has no maximal
matchable subset of vertices.

5. Arithmetically Maximal Independent Sets of
Cc-locally

Finite Graphs

We shall need the following properties of arithmetically maximal indepen-
dent sets.

Lemma 5.1. If a graph G has no infinite independent set, then either
amiG 6= ∅ or there exists an infinite sequence {Sn}∞n=1 of pair-wise disjoint
independent sets such that |Sn| < |Sn+1| for every n = 1, 2, . . ..

Proof. Since iG is a family of finite sets, then the existence of the sequence
{Sn}∞n=1 in iG implies amiG = ∅. If amiG = ∅, then there exists an
infinite sequence {An}∞n=1 such that An ∈ iG and |An| < |An+1| for every
n = 1, 2, . . .. As its subsequence {Sn}∞n=1 can be constructed.

Lemma 5.2. If G = (V,E) is a graph and S ∈ amiG, then for every W ⊂ V
the set W ∩S is an a.m.i.s. in the graph G[W \NbG(S \W )]. Additionally,
for every X ∈ amiG[W \NbG(S\W )] the set X∪(S\W ) is an a.m.i.s. in G.

Proof. On the contrary, suppose that

W ∩ S 6∈ amiG[W \NbG(S \W )].

From (1), there exist two finite sets

A ⊂ W ∩ S and B ∈ iG[W \NbG(S \W )]

such that

B∩(W ∩S) = ∅, | B | > | A | and ((W ∩S)\A)∪B ∈ iG[W \NbG(S\W )].

It is evident that

B ∩ S = ∅, and (S \A) ∪B ∈ iG

in spite of the assumption. The last statement follows immediately from the
definition of a.m.s.
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Lemma 5.3. Let G = (V, E) be a graph and V = V1∪V2∪ . . . be a partition
of V . The following conditions are equivalent:

(i) S ∈ amiG.
(ii) S ∈ miG and for every finite set X ⊂ S we have

X ∈ amiG[X ∪ (NbG(X) \NbG(S \X))].

(iii) S ∈ miG and for every n the set

Sn = S ∩
n⋃

i=1

Vi ∈ amiG[
n⋃

i=1

Vi \NbG(S \ Sn)].

Proof. (i) ⇒ (iii). It follows easily from Lemma 5.2.

(iii) ⇒ (ii). Assume (ii) to be false. Then there exists a finite set X ⊂ S
such that

X 6∈ amiG[X ∪ (NbG(X) \NbG(S \X))].

It follows that there exist two finite sets

A ⊂ X and B ⊂ NbG(X) \NbG(S \X)

such that
(X \A) ∪B ∈ iG and |A| < |B|.

There exists n such that

X ∪A ∪B ⊂
n⋃

i=1

Vi.

In addition, we have

A ⊂ Sn, B ∩ Sn = ∅ and B ⊂
n⋃

i=1

Vi \NbG(S \ Sn).

Therefore, (Sn \A) ∪B ∈ iG which contradicts (iii).

(ii) ⇒ (i). If S 6∈ amiG, then there exist two finite sets X ⊂ S and Y ⊂
V \NbG(S \X) such that

(S \X) ∪ Y ∈ iG and by (ii) |X| < |Y |.
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Since S ∈ miG, we have

Y ⊂ NbG(X) and X ∈ amiG[X ∪ (NbG(X) \NbG(S \X))],

which contradicts (ii) with respect to X.

Definition 5.1. A graph G is called a cc-locally finite graph if for every
clique K of G the induced subgraph G[NbG(K)] has a finite clique-cover of
vertices.

Theorem 5.4. Let G be a cc-locally finite graph such that there is no infinite
sequence {Kn}∞n=1 of infinite cliques of G with NbG(Ki) ∩ NbG(Kj) = ∅
for all i 6= j. Then there exists an a.m.i.s. in G.

Proof. We can assume that G = (V, E) is a connected graph (otherwise
we can deal with every component of G separately). Note that if the graph
has a finite clique-cover of vertices, then it has finite a.m.i.s.

Assume G has no finite clique-cover of vertices. Let K be a clique of G.
We define the sequence of the orbits of K as follows:

V0 = K and Vn = NbG

(
n−1⋃

i=0

Vi

)
6= ∅ for every n ≥ 1.

It is easy to see that

V =
∞⋃

i=0

Vi and Vn ∩ Vm = ∅ for every n 6= m.

We shall denote

Ṽn =
n⋃

i=0

Vi for n = 0, 1, . . . .

Claim 1. For every n ≥ 0 the graph G[Ṽn] has a finite a.m.i.s. and there
exists N0 such that Vn is a finite set for every n ≥ N0.

Since G is a cc-locally finite graph, we can deduce by induction that G[Ṽn]
has a finite clique-cover of vertices for every n ≥ 0. Therefore, G[Ṽn] has a
finite a.m.s. of its independent vertices. For any two cliques K1 ⊂ Vn1 and
K2 ⊂ Vn2 such that |n1 − n2| > 2 we have

NbG(K1) ∩NbG(K2) = ∅.



Arithmetically Maximal Independent ... 179

By the assumption on cliques of G there exists a number N0 such that in
G[Vn] there is no infinite clique for every n ≥ N0. Since for every n ≥ N0

the graph G[Vn] has a finite clique-cover of the vertices and its cliques are
finite sets, Vn ought to be finite.

Claim 2. Let N0 be as in Claim 1. Then there exists

Sk ∈ amiG[ṼN0+k] for every k ≥ 1,

such that the sequence {Sk}∞1 is hereditary, i.e.:
If Sk ∩ VN0+n = Sk′ ∩ VN0+n for some n < k′ < k, then

Sk ∩ ṼN0 = Sk′ ∩ ṼN0 and Sk ∩ VN0+i = Sk′ ∩ VN0+i for each 1 ≤ i < n.

Let {Tk}∞1 be a sequence such that Tk ∈ amiG[ṼN0+k]. For every k consider
the partition of Tk = T0,k ∪ T1,k ∪ . . . ∪ Tk,k

where T0,k = ṼN0 ∩ Tk and Tn,k = VN0+n ∩ Tk for n > 0.

By Lemma 5.2,

Tn,k ∈ amiG[ṼN0+n \NbG(Tn+1,k)] for every 0 ≤ n < k.(6)

Let us denote for n = 1, 2, . . .

Wn = {Tn,k | k = n, n + 1, . . .} and W =
∞⋃

n=1

Wn.

Define two functions l and α from W to the set of positive integers and to
the family of independent sets of G, respectively. We set for X ∈ Wn

l(X) = min{k ≥ n | X = Tn,k} and α(X) = Tn−1,l(X).(7)

It is obvious that every family α(Wn) = {α(X)|X ∈ Wn} is finite and

α(W1) ⊂ iG[ṼN0 ] and α(Wn) ⊂ Wn−1 for every n > 1.

Additionally, by (6), for each X ∈ W1

α(X) ∈ amiG[ṼN0 \NbG(X)] and α(T1,1) ∪ T1,1 ∈ amiG[ṼN0+1].(8)
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Let us denote

αn(X) = α(αn−1(X)), α1(X) = α(X) and Λ(X) =
n⋃

j=1

αj(X) for X ∈ Wn.

Let us prove, by induction on n, the following generalization of the formula
(8): For every n ≥ 1

Λ(Tn,n) ∪ Tn,n ∈ amiG[ṼN0+n] and(9)

Λ(X) ∈ amiG[ṼN0+n−1 \NbG(X)] for each X ∈ Wn.

We first observe that for n = 1 it is exactly Formula (8).
Let X ∈ Wn+1 n ≥ 1. By (7), α(X) = Tn,l(X) and X = Tn+1,l(X). We

have
n−1⋃

j=0

Tj,l(X) ∈ amiG

[
ṼN0+n−1 \NbG

( l(X)⋃

j=n

Tj,l(X)

)]

= amiG[ṼN0+n−1 \NbG(α(X))],

because

Tl(X) =
l(X)⋃

j=0

Tj,l(X) ∈ amiG[ṼN0+l(X)]

and Lemma 5.2.
On the other hand, from induction hypothesis we obtain

Λ(α(X)) ∈ amiG[ṼN0+n−1 \NbG(α(X))].

Therefore, by Lemma 5.2

Λ(α(X)) ∪ α(X) ∪
l(X)⋃

j=n+1

Tj,l(X) ∈ amiG[ṼN0+l(X)](10)

and, additionally,

Λ(α(X)) ∪ α(X) ∈ amiG[ṼN0+n \NbG(X)].

This clearly forces the second part of (9). If X = Tn+1,n+1 then l(X) = n+1
and (10) becomes the first part of (9).
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Define
Sk = Λ(Tk,k) ∪ Tk,k ∈ amiG[ṼN0+k] for every k ≥ 1.

The sequence {Sk}∞1 is hereditary, because

Sk ∩ VN0+n = (Λ(Tn,n) ∪ Tn,n) ∩ VN0+n = Tn,n

independently on k, which completes the proof of Claim 2.

We take a hereditary sequence {Sn}∞1 as in Claim 2 to define a special graph
Γ = (V, E), such that V = V0 ∪ V1 ∪ . . . , where

V0 = {ṼN0 ∩ Sk | k ≥ n} and Vn = {VN0+n ∩ Sk | k ≥ n} for n ≥ 1.

and

E = {{X, Y } | X ∈ ṼN0 ∩ Sk, Y ∈ VN0+1 ∩ Sk and k ≥ 0}
∪ {{X, Y } | X ∈ VN0+n ∩ Sk, Y ∈ VN0+n+1 ∩ Sk and k > n ≥ 1}.

It is worth to notice that for every n ≥ 0 the set Vn is non-empty and finite.
It contains the set VN0+n ∩ Sn with a possibility, that ∅ ∈ Vn.

The graph Γ is an infinite forest. It has only a finite number of connected
components (trees). Additionally, it is a locally finite graph (i.e., every
vertex of Γ has a finite number of neighbours). Königs Lemma states that
locally finite infinite tree has an infinite path, see [6]. Then it follows the
existence of an infinite path P = (P0, P1, P2, . . .) in Γ. To prove the theorem,
it remains to notice that, by Lemma 5.3 (iii) the set S =

⋃∞
n=0 Pn is an

a.m.i.s. in the graph G.

The next example shows that the assumption on infinite cliques in Theo-
rem 5.4 is essential.

Example 5.5. Let V =
⋃∞

n=1 Vn, where Vn = {vn,1, vn,2, . . .} for n = 1, 2, . . .
are infinite mutually disjoint sets of vertices and

E = {{x, y} ⊂ Vn | n = 1, 2, . . .} ∪
( ∞⋃

n=1

∞⋃

i=1

{{vn,i, vn+1,j} | j ≥ i}
)

.

The graph G = (V, E) is a cc-locally finite graph but has no a.m.i.s..
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