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Abstract

Families of all sets of independent vertices in graphs are investi-
gated. The problem how to characterize those infinite graphs which
have arithmetically maximal independent sets is posed. A positive
answer is given to the following classes of infinite graphs: bipartite
graphs, line graphs and graphs having locally infinite clique-cover of
vertices. Some counter examples are presented.
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1. Introduction and Preliminaries

For a set X, the cardinality of X and the family of all subsets of X are
denoted by | X| and 2%, respectively. For a family F of sets, let S C |J.F be
aset. S is called scattered (or strong independent) for F if no two elements in
S belong to the same set from F. In the literature, see [3], ”independent” for
hypergraphs is considered with respect to the property ”"there is no F' € F
such that F' C S”. We have

ISNF| <1 forevery FeF.

S is a covering of F if every set in F has an element in S, i.e., for every
F € F we have
|ISNF|>1.
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We say that S is a Kdonig set of F if S is scattered for F and there exists a
choice function f, i.e., f: S — F such that v € f(v) for every v € S and

U flv) = U]:.

vES
Here and subsequently, we use the following notation:

e sF is the family of all scattered sets for F.
e kF is the family of all Konig sets of F.

Let G = (V, E) be a finite or infinite graph with vertices V' and edges E.
Let us remark that F C 2" is a 2-element family of vertex sets of G.

A graph is said to be countable if its set of vertices is countable. The
complementary graph of G will be denoted by G = (V, E), where

E={{u,v} €2V | {u,v} € E}.

A set W C V is a clique of G if the induced subgraph G[W] is a complete
graph. A set W C V is an independent set (or a set of independent vertices)
in G if G[W] has no edges. We will denote

e ¢(G for the family of all cliques of G,
e (G for the family of all independent sets in G.

Both those families of sets are hereditary with respect to the inclusion. The
family of Konig sets of G is defined by the requirement that it be kcG.

A set F C ¢G is a clique — cover of edges (of vertices) of G if for every
e € E (v e V) there exists W € F such that e C W (v € W). Of course,
both families E' and cG are clique — covers of edges of G. We have

iG = sk = sF for every clique — cover F of edges of G.

For a family F of sets, we define the star of an element v € |JF as the
subfamily of all sets of F having v as an element, with the notation:

Str(v) ={F € F |veF} and Stg(F)=|J{Str(v)|veF}.

The star of a vertex v € V in G is defined as the star v in the set of edges
of G. The neighbours of a vertex v € V in G is the set of all vertices of G
adjacent to v, with the notation:

Stg(v) = Stp(v) and Nbg(v) ={u eV |{u,v} € E}
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and
Nbg(W) ={ue V\W |{u,v} € E for some v e W}.

We assume, without lost of generality, that considered graphs are connected.

2. Arithmetically Maximal Sets

The paper deals with a special kind of maximality which we call arithmetical
maximality. For a family of sets F C 2% which consists of finite sets only, a
set A € F of maximal cardinality is called an arithmetically maximal set in
the family. This notion is generalized on arbitrary families.

Definition 2.1. Let F be a family of sets. A set A € F is an arithmetically
mazximal set (a.m.s. for short) in F if the following implication holds:

if € Fand A\ F is finite, then |A\ F| > |F \ A|.

In other words, see Komar and Los [5], A € F is am.s. in F iff for every
finite set B included in A and every set C satisfying CNA = (), the following
implication holds:

(1) if (A\ B)UC € F, then |B| > |C].

Of course, such A is maximal in F (with respect to the inclusion). We
denote:

e mJF is the family of all maximal sets in F,

e amF is the family of all a.m.s. in F.

Hence we have
amF C mF

and
(2) kF C amsF.

We will consider the behavior of the family of all independent sets in a graph.
An a.m.s. in the family ¢G is said to be arithmetically maximal independent
set (a.m.i.s.) in G. The structures of a.m.i. sets in finite graphs where
studied in [9] and [4]. It is worth to mention, that the family of all finite
graphs having a Konig set (defined as {G | kcG # 0}) is not hereditary with
respect to induced subgraphs.
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Example 2.1. Let us denote by

-1 —1
In:{n(z)—{—l,,n(né)‘}'n}y forn:1,2,...

and

E,={{i,j}|i,j €L, i #jtU{{max[,, max I, +1}}, forn=1,2,...

Define G = (V, E), where V is the set of all positive integers and
E=FUEyU....

Every set S = {i1,i2,...} such that i, € I,, and i,+1 # i, + 1 for every
n=1,2,...1is both Kbnig and a.m.i.s. in G. Observe that S € kcG but for
the family E we have kE = (.

It is easy to check that for the complement of G there is no arithmetically
maximal independent set, i.e., amiG = 0.

3. Independent Sets of n-partite and Matrix
Graphs

We say a graph G = (V, E) is n-partite if G admits a partition V =V} U
... UV, of its vertex set, such that Vi € iG for every k =1,... n.
A matching in G = (V, E) is a set M C E satisfying:

e1Ney =0 for all ey,es € M, such that e; # es.

The line graph L(G) of a graph G has vertices corresponding to the edges of
G such that two vertices of L(G) are adjacent if and only if the corresponding
edges in G are adjacent. G is a line graph if it is isomorphic to L(H) of a
graph H.

It is easy to see that for line graphs we have

cL(G) = {Sta(v) |ve V)

and
M is a matching in G if and only if M € iL(G).

A graph is a matriz graph if it is isomorphic to the line graph of a bipartite
graph.
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Theorem 3.1 (Kénig duality theorem, 1936). For any finite bipartite graph
G = (V, E) there exists a pair (C, M) (called Kénig covering of G) such that
C is a covering of E, M is a matching in G, and C consists of exactly one
vertex from every edge of M.

For every graph G, if C' is a covering of F and M is a matching in G, then
|IC| > |M].

Clearly if (C, M) is a Konig covering of G, then |C| = |M| and M € iL(G).
Additionally,
f(e) = Sta(enC) for ee M

is the suitable choice function f : M — cL(G). Therefore, M is a Konig set
of L(G). Therefore by (2), we obtain the following:

Corollary 3.2. For any finite bipartite graph G = (V, E), if a pair (C, M)
is a Konig covering of G, then V' \ C' is an a.m.i.s. in G (in other words,
a.m.s. in iG) and M is an a.m.s. in iL(G).

For infinite graphs we can find in [5], the following statement:
(3) keG = amiG for every countable matrix graph G.

Therefore, for countable matrix graphs, the existence of an a.m.i.s. is equiv-
alent to the existence of a Konig covering.

Podewski and Steffens [7, 8] showed that every countable infinite bipar-
tite graph has a Konig covering. Aharoni [1] showed that every uncountable
bipartite graph has a Konig covering.

Theorem 3.3. Let G be a graph.

(i) If G is a matrixz graph, then G has an arithmetically mazimal indepen-
dent set;

(i) If G is a bipartite graph, then G has an a.m.i.s. (i.e., amiG # ().
Proof. We refer to the Podewski-Steffens theorem (respectively Aharoni’s
theorem) as the Konig duality theorem for countable (respectively uncount-

able) bipartite graphs.

By the same arguments as for Corollary 3.2, from (3) follows (i).
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Let (C, M) be a Koénig covering of G = (V, E) and we set S =V \ C. Then
S € iG and every edge of G has a vertex in C. From (2) follows that S is
a.m.s. in iG. [ |

Problem. Two questions with respect to possible generalizations of Theo-
rem 3.3 are natural. Is there an a.m.i.s. in any n-partite graph as well as in
any line graph?

The first question has a negative answer for 3-partite countable graphs,
because of the following example:

Example 3.4. Let G = (V, E), where V is the sum of three disjoint sets,
V =AUBUC, with

A= {(Il,ag, .. .}, B = {bl,bg, .. .}, C= {01,62, . . .},

and F = E1 U Ey U E3, where
By = {{ai, b} | j = 2},
Ey ={{bi,¢;} | j = 2i},
B3 = {{ci,a;} | j = 2i}.

Observation 1. Assume S € iG (i.e., S is an independent set of vertices

in G).

1. If |[SN A| = oo then SN B is a finite set and SN C = (.

2. If |[SN B| = oo then SN C is a finite set and SN A = 0.
3. If |[SN C| = oo then SN A is a finite set and SN B = .

Observation 2. All sets A, B, C as well as the sets
B — {bl,...,bn,anTﬂ,anTﬂ+1,...} for odd n,
{bl,...,bn,a%+1,a%+2,...} for even n,

o {cl,...,cn,bnTH,bnTHH,...} for odd n,
=
{cl,...,cn,b%+1,b%+2,...} for even n,

4 {ai,... Oy Cntd, Cotl gy, .} for odd n,
"=
{a1,...,an, Cny1,Coia,.. .} for even n

are independent sets of vertices in G for n = 1,2, .... Additionally, A,, By, C,
with odd n are maximal in ¢G.
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From Observations 1 and 2 we conclude:

Observation 3. Assume S € iG be infinite. There exists an odd n such
that S € A, or S C B, or S C C,,. In each case, S is not arithmetically
maximal because (1) and

Bojt1 = Bar—1 \ {ar} U {bag, bag11},

Cory1 = Cop—1 \ {bx} U {cor, cont1}
and
Agpy1 = Agg—1 \ {ex} U {agk, agpt1}

for every k=1,2,....

Finally observe that amiG = 0.

4. Independent Sets in Line Graphs

A family F is called a reverse n-regular family if for any v we have |Stz(v)| =
n. Let I C F be families of sets. We say that F' is a representation of K in
Fif F € sK and Stx(F) = K. We call a subfamily representable if it has a
representation. A family K is a maximal representable subfamily of F if it
has a representation and for any K’ # K such that X c K’ C F there is no
representation.

Theorem 4.1. Let F be a countable reverse 2-regular family. If S € sF
and Stz (S) is a mazimal representable subfamily of F, then S is a.m.s. in
the family of scattered sets for F, i.e., S € amsF.

Proof. Let S satisfies the assumption and K = Stz(S). The family sF is
hereditary and S € msF. Suppose to the contrary that S ¢ amsF. From
(1), there exist two finite sets A C S and B € sF such that

BNS=0,|B|>|A| and (S\A)UB € sF.
The bipartite graph G = (AU B, E) with

(4) E={{a,b} |ac A, be B and Stz(a)NStr(b) # 0}
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satisfies
|Stp(v)] <2 for every v e AUB

and
|Stg(v)| > 1 for every v € B.

Because |B| > |A|, there exists a connected component of G which is a
simple path

P = (bl,al, .. .,bnfl,anfl,bn) Wlth |StE(b1)’ = |StE(bn)’ =1

and
a; € A, b; € B for each 1.

Let A = {ay,...,an_1} and B = {b;,...,b,}. Denote Stx(a;) = {X;,Y;}.
From the construction (4) and revers 2-regularity of F, we have

Str(b;) = {Yi—1,X;} fori=2,...,n.
Additionally,
Str(by) ={Yo, X1} with Yp € K and X,, & K.
Therefore, we have
(5) Str(B) = Str(A) U{Yy, X,,} with KN {Yp, X,,} = 0.
The set 3 3
F=(S\AUB

is scattered for F and
Str(F) = (Stz(S)\ Stz(A)) U Stx(B).

From (5), we have
Str(F) = KU {Yo, X}

which is not possible because K is a maximal representable subfamily of F.
|

Remark 4.2. Theorem 4.1 fails to be true without the assumption of reverse

2-regularity. We can not replace it neither by the assumption |Stz(v)| < 2
nor by the assumption that F is a reverse n-regular family for any n > 2.
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Below we indicate how the considered notions may be used to graphs with
possible multiple edges. By a multigraph we mean a triple H = (V, E, 1) —
two arbitrary sets (of vertices V' and of edges ) and a function 7 from E to
the family of all 2-element subsets of V. We have 7(e) = {u, v} iff u and v are
the ends of e. Let us notice, that every line graph of a multigraph without
loops has a revers 2-regular clique-cover of edges. The existence of such
clique-cover is sufficient for the graph to be the line-graph of a multigraph
(see Bermond and Meyer [2] for finite graphs).

Theorem 4.3. Every countable line-graph (of a multigraph) has an arith-
metically maximal independent set.

Proof. Let H = (V,E,7) be a countable multigraph and G = L(H) =
(E,E), where & = {{e1,ea}|r(e1) N 7(e2) # 0}. We can assume that H
is connected multigraph (otherwise we can deal with every component of
H separately) with [V| > 2. If |V| = 2 then G is a complete graph and
amiG # (). In natural way, we extend the definition of the operator Stg on
multigraphs:

Stp(v) ={ec E|ver(e)}.

The family
F={Stg(v) |veV}

is a clique-cover of edges of G. It is reverse 2-regular and sF = iG.

From Steffens existence theorem [8] (which is evidently true also for
multigraphs), there exists a matching S C E such that S is a complete
matching of H[V*] and V* is a maximal (with respect to the inclusion)
matchable subset of V. Therefore,

K={Stg(v) |veV*}
is a maximal representable subfamily of F. It follows that S € amsF. m

Remark 4.4. We have proved Theorem 4.3 for all line-graphs of countable
multigraphs. The assumption on countability is used only in the proof of
existence of a maximal matchable subset of vertices (Steffens [8]). Therefore,
Theorem 4.3 may be generalized to all line graphs of multigraphs which
possess maximal matchable subsets of vertices — for example, the line graphs
of multigraphs without infinite paths. On the other hand, the property of
having a maximal matchable subset of vertices is not necessary in general



176 S. ByLKA

as the next example shows. The graph G = L(Ky,x,) (the line graph of
the complete bipartite graph with bipartition: a countable set and a set of
size R;) as a matrix graph has an a.m.i.s. though Ky, x, has no maximal
matchable subset of vertices.

5. Arithmetically Maximal Independent Sets of
Cc-locally
Finite Graphs

We shall need the following properties of arithmetically maximal indepen-
dent sets.

Lemma 5.1. If a graph G has no infinite independent set, then either
amiG # 0 or there exists an infinite sequence {Sp}22 1 of pair-wise disjoint
independent sets such that |Sy| < |Sp41| for everyn =1,2,....

Proof. Since iG is a family of finite sets, then the existence of the sequence
{Sp}52, in 4G implies amiG = 0. If amiG = (), then there exists an
infinite sequence {4, }5°; such that A4, € iG and |4, | < |A,+1]| for every
n=1,2,.... As its subsequence {S,}52; can be constructed. |

Lemma 5.2. IfG = (V, E) is a graph and S € amiG, then for every W C V
the set W NS is an a.m.i.s. in the graph G[W \ Nbg(S\ W)]. Additionally,
for every X € amiG[W \ Nbg(S\W)] the set X U(S\W) is an a.m.i.s. in G.

Proof. On the contrary, suppose that

W NS &amiGIW \ Nbg(S\ W)).
From (1), there exist two finite sets

ACWnS and B € iG[W \ Nbg(S\ W)]

such that
BN(WnS)=0,|B|>|A] and (WNS)\A)UB € iG[W\ Nbg(S\W)].
It is evident that

BnS=0, and (S\A)UB €iG

in spite of the assumption. The last statement follows immediately from the
definition of a.m.s. n
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Lemma 5.3. Let G = (V, E) be a graph and V =V, UV, U... be a partition
of V.. The following conditions are equivalent:

(i) S € amiG.
(ii) S € miG and for every finite set X C S we have
X € amiG[X U (Nbg(X) \ Nbg(S \ X))].
(iii) S € miG and for every n the set

Sp=5nN O Vi € amz‘G[LnJ Vi\ Nba(S\ Spn)].

i=1 =1

Proof. (i) = (iii). It follows easily from Lemma 5.2.

(iii) = (ii). Assume (ii) to be false. Then there exists a finite set X C S
such that

X € amiG[X U (Nbg(X) \ Nbg(S \ X))].
It follows that there exist two finite sets

AC X and B C Nbg(X)\ Nbog(S\ X)

such that
(X\A)UB€iG and |A| < |B].

There exists n such that
XUAUBC Lnj V.
i=1
In addition, we have
AC Sy, BNS,=0 and BC CJVi\Nbg(S\Sn).
i=1
Therefore, (S, \ A) U B € iG which contradicts (iii).

(ii) = (i). If S € amiG, then there exist two finite sets X C S and Y C
V \ Nbg(S \ X) such that

(S\X)UY €iG and by (ii)) |X|<|Y|.
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Since S € miG, we have
Y C Nbg(X) and X € amiG[X U (Nbg(X) \ Nbog(S\ X))],
which contradicts (ii) with respect to X. |

Definition 5.1. A graph G is called a cc-locally finite graph if for every
clique K of G the induced subgraph G[Nbg(K)] has a finite clique-cover of
vertices.

Theorem 5.4. Let G be a cc-locally finite graph such that there is no infinite
sequence {K,}52, of infinite cliques of G with Nbg(K;) N Nbg(K;) = 0
for all i # j. Then there exists an a.m.i.s. in G.

Proof. We can assume that G = (V, E) is a connected graph (otherwise
we can deal with every component of G separately). Note that if the graph
has a finite clique-cover of vertices, then it has finite a.m.i.s.

Assume G has no finite clique-cover of vertices. Let K be a clique of G.
We define the sequence of the orbits of K as follows:

n—1

Vo =K and Vn:Nbg<UVi>75® for every n > 1.
i=0

It is easy to see that

V:UVi and V, NV, =0 for every n # m.
i=0

We shall denote

f/n:UV; forn=0,1,....
i=0

Claim 1. For every n > 0 the graph G[V,] has a finite a.m.i.s. and there
exists Ny such that V}, is a finite set for every n > Nj.

Since G is a cc-locally finite graph, we can deduce by induction that G[V},]
has a finite clique-cover of vertices for every n > 0. Therefore, G[V,] has a
finite a.m.s. of its independent vertices. For any two cliques K; C V,,, and

Ko C V,, such that [ny — na| > 2 we have

NbG(Kl) N NbG(KQ) = 0.
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By the assumption on cliques of G there exists a number Ny such that in
G[V,] there is no infinite clique for every n > Ny. Since for every n > Ny
the graph G[V,,] has a finite clique-cover of the vertices and its cliques are
finite sets, V,, ought to be finite.

Claim 2. Let Ny be as in Claim 1. Then there exists
Sk € amiG[Viy41] for every k>1,

such that the sequence {S;}5° is hereditary, i.e.:
If Sk N VNg+n = Sz N Vnytn for some n < k' < k, then

S N VNO =Sy N VNO and Sk N Vyy+i = Sk N Vny4i foreach 1 <1< n.

Let {T}}$° be a sequence such that Ty, € amiG[Vy, |- For every k consider
the partition of T} = T(),k @) Tl,k: U...u Tk,kz

where Ty = VNO N1y and T, = VNg4n N1} for n > 0.
By Lemma 5.2,
(6) Tt € amiG[Vygin \ Nbg(Thi1r)] for every 0 <n < k.

Let us denote for n =1,2,...

Wi ={Top | k=nn+1,...} and W= []J W,.

n=1

Define two functions [ and « from W to the set of positive integers and to
the family of independent sets of G, respectively. We set for X € W,

(7) (X)=min{k>n | X =Ty} and a(X) =T, x)-

It is obvious that every family a(W,) = {a(X)|X € W, } is finite and
a(Wy) CiG[Vy,] and a(W,) C W,_1 for every n > 1.

Additionally, by (6), for each X € W,

(8) a(X) € amiG[Vy, \ Nbog(X)] and a(T11) UT11 € amiG[Vi,11]-
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Let us denote

a"(X) = a(a" HX)), o (X) = a(X) and A(X) = LnJ o?(X) for X € W,.
j=1
Let us prove, by induction on n, the following generalization of the formula
(8): For every n > 1
(9) A(Tpp) UTnn € amiG[Vyy+n] and
A(X) € amiG[Viyin-1 \ Nbg(X)] for each X € W,.
We first observe that for n = 1 it is exactly Formula (8).

Let X € Wyi1 n > 1. By (7), a(X) = T, yx) and X = T,,1 4 x).- We
have

n—1 I(X)
U Thux) € amiG lVNom—l \N bG( U TjJ(X)ﬂ
j=0 J=n

= amiG[VNytn—1\ Nbg(a(X))],

because

Tixy = U Thuxy € amiGVigux))

and Lemma 5.2.
On the other hand, from induction hypothesis we obtain

A(a(X)) € amiG[Viysn—1 \ Nbg(a(X))].
Therefore, by Lemma 5.2
1(X)
(10) Ma()Ua(x)U U T € amiGliigsice)
and, additionally,
Aa(X)) U a(X) € amiG[Vxyn \ Nb(X)].

This clearly forces the second part of (9). If X = T},11 5,41 then [(X) =n+1
and (10) becomes the first part of (9).
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Define ~
Sk = ATy r) UTk € amiG[Vyy 4k for every k> 1.

The sequence {Si}{° is hereditary, because
Sk N VNO—l-n = (A(Tn,n) U Tn,n) N VN0+n = Tn,n
independently on k, which completes the proof of Claim 2.

We take a hereditary sequence {5, }7° as in Claim 2 to define a special graph
I'=(V,€), such that V =Vy UV, U. .., where

VOZ{VNOﬁSk|k2n} and V, = {VNy4n NSk | kK >n} forn > 1.
and

E={{X,Y} | X€VN, NSk Y EVN1NSk and k >0}
U{{X,Y} ’ XGVNO+nmSk, YGVNO+n+1mSk and k>n21}

It is worth to notice that for every n > 0 the set V,, is non-empty and finite.
It contains the set V,4n, N Sy, with a possibility, that () € V.

The graph I is an infinite forest. It has only a finite number of connected
components (trees). Additionally, it is a locally finite graph (i.e., every
vertex of ' has a finite number of neighbours). Koénigs Lemma states that
locally finite infinite tree has an infinite path, see [6]. Then it follows the
existence of an infinite path P = (Py, P;, P»,...) in I". To prove the theorem,
it remains to notice that, by Lemma 5.3 (iii) the set S = Uy, P, is an
a.m.i.s. in the graph G. [

The next example shows that the assumption on infinite cliques in Theo-
rem 5.4 is essential.

Example 5.5. Let V = ;2 V},, where V;, = {vp1,vn2,.. .} forn=1,2,...
are infinite mutually disjoint sets of vertices and

o0

E={{z,y}CV,|n=12..}U < U G{{Un77;,’l)n+1’j} | j Zz})

n=1i=1

The graph G = (V, E) is a cc-locally finite graph but has no a.m.i.s..
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