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Abstract

Given a graph H and an integer r ≥ 2, let G → (H, r) denote the
Ramsey property of a graph G, that is, every r-coloring of the edges
of G results in a monochromatic copy of H. Further, let m(G) =
maxF⊆G |E(F )|/|V (F )| and define the Ramsey density minf (H, r) as
the infimum of m(G) over all graphs G such that G → (H, r).

In the first part of this paper we show that when H is a complete
graph Kk on k vertices, then minf (H, r) = (R − 1)/2, where R =
R(k; r) is the classical Ramsey number. As a corollary we derive a new
proof of the result credited to Chvatál that the size Ramsey number
for Kk equals

(
R
2

)
.

We also study an on-line version of the size Ramsey number, related
to the following two-person game: Painter colors on-line the edges
provided by Builder, and Painter’s goal is to avoid a monochromatic
copy of Kk. The on-line Ramsey number R(k; r) is the smallest number
of moves (edges) in which Builder can force Painter to lose if r colors
are available. We show that R(3; 2) = 8 and R(k; 2) ≤ 2k

(
2k−2
k−1

)
, but

leave unanswered the question if R(k; 2) = o(R2(k; 2)).
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1. Introduction

For integers k ≥ 2 and r ≥ 2, let R(k; r) be the Ramsey number, that is the
smallest integer n such that every r-coloring of the edges of the complete
graph Kn results in a monochromatic copy of Kk. The existence of R(k; r)
was proved in a seminal paper of Ramsey [21]. For n < R(k; r), any coloring
of the edges of Kn without a monochromatic copy of Kk will be called proper.
For instance, R(3; 2) = 6, and any proper coloring of K5 consists of a Red
C5 and a Blue C5. For more on Ramsey theory see [11] and for a dynamic
update of the state-of-art of the Ramsey numbers see [20].

A related notion of size Ramsey number was introduced by Erdős, Fau-
dree, Rousseau and Schelp in [5]. Given a graph H and an integer r ≥ 2,
let G → (H, r) denote the Ramsey property of a graph G, that is, every
r-coloring of the edges of G results in a monochromatic copy of H. We
then call G a Ramsey graph (with respect to H and r). The size Ramsey
number of H (given r) is the smallest number of edges in a Ramsey graph
G. It is shown in [5], with a proof attributed to V. Chvatál, that if H = Kk

then the size Ramsey number equals
(
R
2

)
, and, moreover, every connected

Ramsey graph G with at most
(
R
2

)
edges must be isomorphic to KR, where

R = R(k; r).
In this paper we investigate yet another question in this direction, where

instead of asking for the smallest number of vertices or edges in a Ramsey
graph, we are interested in the smallest density, by which we mean the ratio
of the number of edges to the number of vertices, or half of the average
degree. This notion of graph density appears naturally, e.g., in the theory
of random graphs (cf. [12]), or, in a modified form, in the Nash-Williams
arboricity theorem (cf. [4], Theorem 3.5.4).

Similar to other applications, also in the context of Ramsey graphs, the
notion of density has to be refined to yield a meaningful problem. Indeed,
by adding sufficiently many isolated vertices to a Ramsey graph we obtain
another Ramsey graph with density arbitrarily close to zero. To avoid this
triviality, for a graph G we define its density as

m(G) = max
F⊆G

|E(F )|/|V (F )|

and, for a graph H and an integer r ≥ 2, define the Ramsey density as

minf (H, r) = inf{m(G) : G → (H)r}.
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In particular, it is easy to verify that for the k-armed star Sk

minf (Sk, r) =
r(k − 1) + 1
r(k − 1) + 2

and, using a nontrivial result on star-arboricity from [1] and [14], that
minf (P3, 2) = 1, where P3 is a path of length three (on four vertices).

In [16] an analogous parameter was studied in the case of vertex coloring
(see also [18, 23, 24]. Except for stars, edge coloring seems to be harder.
Some initial, general bounds were obtained in [22] in the context of Ramsey
properties of random graphs. In this paper we make a next step and prove
a surprising result that for H = Kk the sparsest in the above sense Ramsey
graph is the complete graph with R = R(k; r) vertices. For example, it
follows that no graph G with density m(G) < 2.5 can be Ramsey with
respect to H = K3 and r = 2. From our result we can quickly derive the
above mentioned fact that the size Ramsey number for H = Kk equals

(
R
2

)
.

All of this is presented in Section 2.
In Section 3 we study an on-line version of the size Ramsey number,

related to a two-person, avoidance type game.

2. Ramsey Density for Complete Graphs

The result presented in this section has first appeared in [15].

Theorem 1. For all k ≥ 3 and r ≥ 2,

minf (Kk, r) =
R(k; r)− 1

2
.

Proof. Set R = R(k; r) and note that m(KR) = (R − 1)/2. Thus, it
remains to prove that

(1) m(G) < (R− 1)/2 =⇒ G 6→ (Kk)r.

The proof of (1) consists of two claims. Let χ(G) be the chromatic number
of a graph G.

Claim 1. If χ(G) ≤ R− 1, then G 6→ (Kk)r.

Indeed, partition V (G) into R − 1 independent sets V1, . . . , VR−1 and color
all edges between Vi and Vj by the color used to color the edge ij in a proper
r-coloring of KR−1.
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Claim 2. If m(G) < (n− 1)/2, then χ(G) ≤ n− 1.

Indeed, if m(G) < (n− 1)/2, then every subgraph F of G contains a vertex
of degree at most n−2. Hence, the so called coloring number (see, e.g., [4]),
which is an upper bound for the chromatic number, is at most n− 1.

It is straightforward to deduce Chvatál’s result from Theorem 1.

Corollary 1 [5]. Fix k ≥ 3 and r ≥ 2 and set R = R(k; r). The size
Ramsey number of the complete graph Kk with respect to r colors equals(
R
2

)
. Moreover, if a Ramsey graph has

(
R
2

)
edges, then it consists of a copy

of KR and, possibly, a number of isolated vertices.

Proof. The only way a graph G satisfies both |E(G)| ≤ (
R
2

)
and m(G) ≥

(R− 1)/2 is when it contains a subgraph isomorphic to KR.

Another simple consequence of Theorem 1 is the following property of Ram-
sey graphs. Let ∆(G) stand for the maximum degree in a graph G.

Corollary 2. If G → (Kk)r then ∆(G) ≥ R− 1.

Theorem 1 serves as a lemma in the proof of a sharp threshold for Ramsey
properties of random graphs in [6], while Corollary 2 has been utilized in
[8].

Remark 1. For a graph G, let us set d(G) = |E(G)|/|V (G)| and call G
balanced if m(G) = d(G). As proved in [10], and independently in [19],
for every graph G there exists a balanced supergraph F ⊇ G with d(F ) =
m(G). Hence, in the infimum defining minf (H, r) one can restrict oneself to
balanced graphs only. Then, in the case of H = Kk, Theorem 1 says that no
balanced graph with n vertices and less than (R− 1)n/2 edges is Ramsey.

Remark 2. All the above results can be routinely generalized to the off-
diagonal case, when, given integers k1, . . . , kr ≥ 2, one requires a copy of
Kki in the ith color, for some i ∈ {1, 2, . . . , r}.



Two Variants of the Size Ramsey Number 145

3. A Ramsey Game

In this section we present yet another variant of the size Ramsey number,
related to the following two-person, avoidance game G, introduced by Beck
in [3]. Let integers k, r ≥ 2 be given. There are two players, Builder and
Painter, who move on the originally empty graph with an unbounded number
of vertices. In each move, Builder draws a new edge which is immediately
colored by Painter. The goal of Builder is to force Painter to complete a
monochromatic copy of Kk; the goal of Painter is opposite: to avoid it. The
payoff to Painter is the number of edges colored until this happens. The
higher the payoff, the better for Painter.

The on-line Ramsey number R(k; r) is the smallest payoff over all possi-
ble strategies of Builder, assuming Painter uses an optimal strategy. In the
game theoretic terms, R(k; r) is the value of G, that is the saddle point of the
payoff matrix achieved at its equilibrium pair. As this is a full information,
zero-sum game, an equilibrium pair does exists. Equivalently, R(k; r) is the
smallest t for which Builder has a winning strategy in the related game Gt,
which is won by Builder if the payoff to Painter in G is at most t and lost
otherwise. Again, Gt is a two-person, full information game with no ties, so
one of the players must have a winning strategy. For basic notions of the
Game Theory cf. [17].

Similar to the classical Ramsey numbers, it is hard to compute exact val-
ues of R(k; r). Besides the trivial R(2; 2) = 1, we have determined only one
more instance, R(3; 2), for which an obvious upper bound is

(
R(3;2)

2

)
= 15.

Proposition 1. R(3; 2) = 8.

Proof. By mimicking the proof of the bound R(3; 2) ≤ 6, in five moves
Builder can force Painter to color by the same color three edges with the
same endpoint. Then the next three edges force Painter to complete a
monochromatic triangle.

Now we turn to the proof of the lower bound. We will describe a strategy
of Painter to be followed for the first six moves which guarantees that the
seventh edge is safe. Note that Painter is forced to complete a monochro-
matic triangle if and only if the current edge to be colored is a diagonal
of a cycle C4 whose two consecutive edges are Blue and the other two are
Red, and each of these two pairs of monochromatic edges forms a triangle
with this diagonal. Such colored copy of C4 will be called fatal. An uncolored
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edge is called dangerous if it belongs to a copy of C4 whose two consecutive
edges are of the same color and the remaining edge is of the other color. For
as long as she can, Painter will try to avoid creating a fatal C4 as well as a
vertex incident to three edges of the same color.

As long as at most five vertices are introduced to the game by Builder
(that is, at most five vertices have positive degree in the current graph), the
strategy of Painter is to follow a fixed proper coloring of K5, which is a union
of two pentagons, one Red, the other Blue. (Note that such a union does not
contain a fatal C4.) Otherwise, if the current edge e is not dangerous, then
color it Red unless this would raise the maximum degree in Red to three or
complete a Red triangle, in which cases color e Blue. If e is dangerous, then
color it so as to avoid a fatal C4, unless this would create a monochromatic
triangle.

Now, let us see that this is indeed a successful strategy. If after six moves
only at most five vertices are introduced then, clearly, the seventh edge is
safe, no matter where it is. On the other hand, six edges cannot create two
copies of C4 on more than five vertices. Thus, it remains to consider the
case when the graph has six edges, at least six (non-isolated) vertices and
at most one copy of C4. We claim that Painter can avoid making this C4

fatal.
Suppose to the contrary, and consider the very moment when the fourth

edge of the 4-cycle, call it e = uv, was chosen by Builder. Let us denote
the other two vertices of that C4 by w, z and assume that the edges uz and
zw are of the same color, while vw is of the other color. According to her
strategy, Painter colors e by the majority color, i.e., the color of uz and
zw. It remains to explain that this move does not create a monochromatic
triangle.

Indeed, e cannot form a triangle with a vertex other than w or z, because
then we would have six edges on five vertices — a contradiction with our
assumption. So, the only other possibility is the triangle uvz (uvw cannot
be monochromatic), but only if all three edges zu, zv and zw are of the
same color. According to the chosen strategy of Painter, this is impossible
in Red before a first dangerous edge is colored.

Hence, suppose that all three, zu, zv and zw, are Blue, and denote by
f this one of them which was colored last. How come f has been colored
Blue? Only if coloring it Red would create a Red triangle or if vertex z had
already degree two in Red. But either option yields seven edges altogether
— a contradiction.



Two Variants of the Size Ramsey Number 147

So, unlike the size Ramsey number, its on-line counterpart, R(k; r), can be
smaller than the obvious

(
R(k;r)

2

)
. An interesting open question, suggested

by V. Rödl, is the following. For clarity, let us restrict to just two colors.

Question. Is it true that R(k; 2) = o(R2(k; 2)) as k →∞ ?

At the moment we are unable to answer this question. Instead, we only give
some weaker bounds and answer in positive the same question for the off-
diagonal on-line Ramsey numbers with one parameter fixed and the other
growing to ∞. Let R(k, l) and R(k, l) be defined as R(k; 2) and R(k; 2), but
with the objective of either a Red copy of Kk or a Blue copy of Kl. (Note
that, unless k = 2, R(k; 2) = R(k, k) is not the same as R(k, 2).)

Proposition 2. For all integers k, l ≥ 2 we have

R(k, l) ≤ (k + l)
(

k + l − 2
l − 1

)
.

In particular, (i) R(k, k) ≤ 2k
(
2k−2
k−1

)
and (ii) R(k, l) = o(R2(k, l)) as k →∞

while l ≥ 3 is fixed.

Proof. We use induction on k + l. Note that R(k, 2) =
(
k
2

) ≤ (k + 2)k
and suppose the inequality is true for all k′ and l′ such that k′ + l′ < k + l.
Consider the following strategy of Builder: first draw

(
k + l − 2

l − 1

)
− 1 =

(
k + l − 3

l − 1

)
+

(
k + l − 3

l − 2

)
− 1

edges from one vertex v; then stick to the Red color if Red was used by
Painter on at least

(
k+l−3

l−1

)
of these edges, and stick to Blue otherwise. Re-

peat with the respective parameter, k or l, decreased by 1, on the subgraph
induced by the endpoints of the edges with the selected color incident to v.
This strategy yields a recursive estimate

R(k, l) ≤
(

k + l − 2
l − 1

)
+ max{R(k − 1, l), R(k, l − 1)}

≤
(

k + l − 2
l − 1

)
+ R(k − 1, l) + R(k, l − 1),

which, by the induction assumption, completes the proof. Part (ii) follows,
since R(k, l) ≥ c(k/logk)(l+1)/2 for some positive constant c (cf. [13]).
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Note that the obtained bound is almost the same as the bound on the Ram-
sey number R(k, l) rising from the inductive proof of the Ramsey theorem.
For k = l, this seemingly good upper bound on R(k; 2) does not answer the
Question, because of a large gap between this upper bound and the best
known lower bound on R(k; 2). (Speaking of lower bounds, Beck [3] showed
that R(k; 2) ≥ R(k; 2)/2 and no better lower bound is known.)

Note also that we can repeat the above proof mutatis mutandis for an
arbitrary number of colors r, obtaining the bound

R(k1, . . . , kr) ≤
(

r∑

i=1

ki

)( ∑r
i=1 ki − r

k1 − 1, . . . , kr − 1

)
.

Alon and Rödl [2] have proved that R(k, 3, 3) = Ω(k3/ logc n) for some c > 0,
which, combined with the above, yields R(k, 3, 3) = o(R2(k, 3, 3)).

Remark 3. A randomized version of G, where Builder generates the edges
randomly, was studied in [7]. For a (deterministic) generalization, in which
the Builder is restricted to build a graph belonging to a specific family of
graphs, see [9].
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