THE CYCLE-COMPLETE GRAPH RAMSEY NUMBER $R\left(C_{5}, K_{7}\right)$

Ingo Schiermeyer
Institut für Diskrete Mathematik und Algebra
Technische Universität Bergakademie Freiberg
09596 Freiberg, Germany
e-mail: schierme@tu-freiberg.de

Abstract

The cycle-complete graph Ramsey number $r\left(C_{m}, K_{n}\right)$ is the smallest integer N such that every graph G of order N contains a cycle C_{m} on m vertices or has independence number $\alpha(G) \geq n$. It has been conjectured by Erdős, Faudree, Rousseau and Schelp that $r\left(C_{m}, K_{n}\right)=$ $(m-1)(n-1)+1$ for all $m \geq n \geq 3$ (except $\left.r\left(C_{3}, K_{3}\right)=6\right)$. This conjecture holds for $3 \leq n \leq 6$. In this paper we will present a proof for $r\left(C_{5}, K_{7}\right)=25$.

Keywords: Ramsey numbers, extremal graphs.
2000 Mathematics Subject Classification: 05C55, 05C35.

1. Introduction

We use [3] for terminology and notation not defined here and consider finite and simple graphs only.

For two graphs G and H, the Ramsey number $r(G, H)$ is the smallest integer N such that every 2-colouring of the edges of the complete graph K_{N} contains a subgraph isomorphic to G in the first colour or a subgraph isomorphic to H in the second colour.

A cycle on m vertices will be denoted by C_{m} and the independence number of a graph by $\alpha(G)$. The cycle-complete graph Ramsey number $r\left(C_{m}, K_{n}\right)$ is the smallest integer N such that for every graph G of order
$N, C_{m} \subset G$ or $\alpha(G) \geq n$. The graph $(n-1) K_{m-1}$ shows that $r\left(C_{m}, K_{n}\right) \geq$ $(m-1)(n-1)+1$ for all $m \geq n \geq 3$.

Question 1 [5]. With n given, what is the smallest value of m such that

$$
\begin{equation*}
r\left(C_{m}, K_{n}\right)=(m-1)(n-1)+1 ? \tag{1}
\end{equation*}
$$

Conjecture 1 [5]. With the only exception of $r\left(C_{3}, K_{3}\right)=6$, formula (1) holds for all $m \geq n \geq 3$.

2. Results

The following observation is easily verified.
Observation 1. Formula (1) also holds for $n=1,2$ and all $m \geq 3$.
Conjecture 1 was confirmed for $n=3$ in early work on Ramsey theory ([6], [12]), and it has been proved recently for $n=4$ [14], $n=5$ [2] and $n=6$ [13].

Table 1. Exact Values of $r\left(C_{m}, K_{n}\right)$.

$m \backslash n$	3	4	5	6	7	8	9
3	6	9	14	18	23	28	36
4	7	10	14	18	22	26	
5	9	13	17	21	25		
≥ 6	$2 m-1$	$3 m-2$	$4 m-3$	$5 m-4$			

Bondy and Erdős [1] have proved that formula (1) holds if $m \geq n^{2}-2$. This was improved by Thomason [15] to $m \geq n^{2}-n-1$ for all $n \geq 4$ and further to $m \geq n^{2}-2 n$ for all $n \geq 5$ in [13]. Recently, Nikiforov succeeded to show a lower bound which is linear in n.

Theorem 1 [9]. $r\left(C_{m}, K_{n}\right)=(m-1)(n-1)+1$ for all $m \geq 4 n+2$ and all $n \geq 4$.

Nikiforov has also posed the following challenging conjecture.
Conjecture 2. For every k there exists $n_{0}=n_{0}(k)$ such that for $n>n_{0}$ and $m>n^{1 / k}$,

$$
r\left(C_{m}, K_{n}\right)=(m-1)(n-1)+1 .
$$

The known numbers for small values of m and n do not contradict this conjecture.

In [8] it has been proved that $r\left(C_{5}, K_{6}\right)=21$. In this paper we will compute $r\left(C_{5}, K_{7}\right)$.

Theorem 2. $r\left(C_{5}, K_{7}\right)=25$.
Moreover, the fact that $r\left(C_{5}, K_{6}\right)=21$ and $r\left(C_{5}, K_{7}\right)=25$, justifies the following question.

Question 2. Does Formula (1) hold for all $m \geq 5$?

3. Preliminary Results

For a vertex $u \in V(G)$ let $N_{i}(u)=\{v \in V(G) \mid d(u, v)=i\}$ and $N_{i}^{*}(u)=$ $\{v \in V(G) \mid d(u, v) \geq i\}$. For given $N_{i}(u)$ and $N_{i}^{*}(u)$ let $G_{i}=G\left[N_{i}(u)\right]$ and $G_{i}^{*}=G\left[N_{i}^{*}(u)\right]$.

Lemma 1. Let G be a C_{5}-free graph. Then the graphs G_{1} and G_{2} are P_{4}-free for every vertex $u \in V(G)$.

Proof. If $G_{1}=G\left[N_{1}(u)\right]$ contains a P_{4}, then u is contained in a C_{5}, a contradiction. Hence, G_{1} is P_{4}-free.

Suppose now that G_{2} contains a P_{4} with vertices labeled $w_{1} w_{2} w_{3} w_{4}$. If $N(u) \cap N\left(w_{1}\right) \cap N\left(w_{4}\right) \neq \emptyset$, then there is a C_{5}, a contradiction. Hence we may assume that there are two vertices $u_{1}, u_{2} \in V\left(G_{1}\right)$ such that $u_{1} w_{1}, u_{2} w_{4} \in$ $E(G)$. Now consider the vertex w_{2}. If $w_{2} v \in E(G)$ for a vertex $v \in V\left(G_{1}\right)-$ $\left\{u_{1}\right\}$, then there is a C_{5}, a contradiction. Hence we may assume that $w_{2} u_{1} \in$ $E(G)$. Now consider the vertex w_{3}. Then w_{3} is always contained in a C_{5}, a contradiction. Hence, G_{2} is P_{4}-free.

The following lemma is an immediate consequence of Lemma 1.
Lemma 2. Let G be a C_{5}-free graph and $u \in V(G)$. Then the components of G_{1} and G_{2} are of the form K_{1}, K_{2}, K_{3} or $K_{1, r}$ for $r \geq 2$.

Using Lemma 2 we obtain the following lemma.
Lemma 3. Let G be a C_{5}-free graph with $\alpha(G) \leq 6$. Then
(a) $\alpha\left(G_{2}\right) \leq 5$ and $\left|V\left(G_{2}\right)\right| \leq 15$,
(b) $\alpha\left(G_{3}^{*}\right) \leq 6-\alpha\left(G_{1}\right)$ and $\left|V\left(G_{3}^{*}\right)\right| \leq 24-4 \alpha\left(G_{1}\right)$,
(c) If $W \subset V\left(G_{2}\right)$, then $\alpha\left(G_{2}[W]\right) \geq\left\lceil\frac{|W|}{3}\right\rceil$.

Using the assumption that G is C_{5}-free we obtain the following lemmas.
Lemma 4. Let G be a C_{5}-free graph and $F \subset G$ with $F \cong K_{4}$. Then $d_{F}(v) \leq 1$ for all $v \in V(G)-V(F)$.

Lemma 5. Let G be a C_{5}-free graph with $|V(G)|=25$ and $\alpha(G) \leq 6$. If $I \subset V(G)$ is independent with $|I|=k, 1 \leq k \leq 5$, then $|N(I)| \geq 3 k+1$.

Proof. Suppose there is an independent set $I \subset V(G)$ with $|I|=k, 1 \leq$ $k \leq 5$, and $|N(I)| \leq 3 k$. Let $G^{\prime}=G-(I \cup N(I))$. Then $\left|V\left(G^{\prime}\right)\right| \geq 25-4 k=$ $4(7-k)-3$. Since G is C_{5}-free, we conclude by Table 1 and Observation 1 that $\alpha\left(G^{\prime}\right) \geq 7-k$. Let J be an independent set of size $\alpha\left(G^{\prime}\right) \geq 7-k$ in G^{\prime}. Then $I \cup J$ is an independent set of size at least 7 in G, a contradiction.
The following two lemmas are easily verified using the fact that G is C_{5}-free.
Lemma 6. If F_{i} is a component of G_{2} with $\left|V\left(F_{i}\right)\right| \geq 2$, then $\mid N\left(F_{i}\right) \cap$ $N(u) \mid=1$.

Lemma 7. Let F_{1}, F_{2} be two components of G_{1}. If $\left|V\left(F_{2}\right)\right| \geq 2$, then $N\left(F_{1}\right) \cap$ $N\left(F_{2}\right) \cap V\left(G_{2}\right)=\emptyset$.

Lemma 8. Let $F \cong K_{2}$ be a component of G_{2} with $V(F)=\left\{w_{1}, w_{2}\right\}$ and $J=N\left(w_{1}\right) \cap N\left(w_{2}\right) \cap V\left(G_{3}\right)$. Then J is independent.

Proof. Suppose J is not independent. Then there is an edge in $G_{3}[J]$, say $x y$. By lemma 6 there is a vertex $v \in N\left(w_{1}\right) \cap N\left(w_{2}\right) \cap N(u)$. But then $C_{5} \subseteq G\left[\left\{v, w_{1}, w_{2}, x, y\right\}\right]$, a contradiction.
Jayawardene and Rousseau have determined all C_{5}-free graphs G with $\alpha(G)=3$ and order 11 and 12 .

Lemma 9 [8]. Let G be a graph with $C_{5} \not \subset G$ and $\alpha(G)=3$.
(a) If $|V(G)|=12$, then $3 K_{4} \subset G$.
(b) If $|V(G)|=11$, then $2 K_{4} \cup K_{3} \subset G$.

For a vertex $u \in V(G)$, an independent set $I \subset V(G)$ of type $\left(n_{0}, n_{1}, \ldots\right.$, $\left.n_{k-1}, n_{k}^{*}\right)$ is an independent set of size $\sum_{i=0}^{k} n_{i}$, which contains n_{i} vertices from $G_{i}, 1 \leq i \leq k-1$, and n_{k}^{*} vertices from G_{k}^{*}. Furthermore, $n_{0}=1$ (0), if u is (not) contained in I.

Lemma 10. Let G be a graph with $C_{5} \not \subset G$. Suppose G_{2} has five components $F_{1}, F_{2}, \ldots, F_{5}$ with $\left|V\left(F_{i}\right)\right|=1,1 \leq i \leq p,\left|V\left(F_{i}\right)\right|=2, p+1 \leq i \leq q$, $\left|V\left(F_{i}\right)\right|=3, q+1 \leq i \leq 5$. Further there are vertices $u_{i} \in V\left(G_{1}\right)$ such that $G_{2}\left[N\left(u_{i}\right)\right]=F_{i}$ for $p+1 \leq i \leq q$ and $u_{u} u_{j} \in E(G)$ for $p+1 \leq i \leq q$. Suppose $q>p$ and $\left|V\left(G_{3}^{*}\right)-\left(\cup_{i=1}^{p} N\left(F_{i}\right)\right)\right| \geq q-p+1$. Then there exists an independent set of type $(1,0,5,1)$ or $(1,0,4,2)$.

Proof. Suppose there is no independent set of type $(1,0,5,1)$. Since $\left|V\left(G_{3}^{*}\right)-\left(\cup_{i=1}^{p} N\left(F_{i}\right)\right)\right| \geq q-p+1$ there exists i with $p+1 \leq i \leq q$, say $i=p+1$, and two vertices $v_{1}, v_{2} \in V\left(G_{3}\right)$ with $v_{1} w_{i}, v_{2} w_{i} \in E(G)$ for $i=1,2$, where $V\left(F_{p+1}\right)=\left\{w_{1}, w_{2}\right\}$. By Lemma $8, v_{1} v_{2} \notin E(G)$. Since $G_{1}\left[\left\{u_{p+1}, \ldots, u_{q}\right\}\right]$ is complete and G is C_{5}-free, we have $N\left(v_{i}\right) \cap V\left(F_{j}\right)=\emptyset$ for $i=1,2$ and $p+2 \leq j \leq q$. But then v_{1}, v_{2} are contained in an independent set I containing F_{i} for $1 \leq i \leq p$ and a vertex from each F_{i} for $p+2 \leq i \leq 5$. Hence I is an independent set of type $(1,0,4,2)$, a contradiction.

Lemma 11 [8]. Let G be a graph with $\delta(G) \geq 4$ and $C_{5} \not \subset G$. Then $\alpha(G) \geq$ $\Delta(G)$.

4. Proof of Theorem 2

Let $|V(G)|=25$. By Lemma 5 and Lemma 11 we may assume that $4 \leq$ $\delta(G) \leq \Delta(G) \leq 6$. We distinguish these three cases.

1. $\Delta(G)=4$

Then G is 4-regular. Moreover, by Lemma 5 , if $d(u, v)=2$ for two vertices $u, v \in V(G)$, then

$$
\begin{equation*}
|N(u) \cap N(v)|=1 \tag{2}
\end{equation*}
$$

Hence G contains no induced $K_{4}-e$ and no induced C_{4}. For the neighbourhood of a vertex u we distinguish the following cases.

Case 1. $\alpha\left(G_{1}\right)=4$
By (2) we conclude that $\left|V\left(G_{2}\right)\right|=3 \cdot 4=12$. Since $\alpha\left(G_{2}\right) \leq 6, F_{i}=$ $G\left[N_{G_{2}}\left(u_{i}\right)\right] \cong K_{3}$ for some i with $1 \leq i \leq 4$. But then $\alpha\left(G\left[N_{G_{3}}\left(F_{i}\right)\right]\right)=3$. Hence there are three independent vertices in $N_{G_{3}}\left(F_{i}\right)$ which are contained together with $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ in an independent set of type ($0,4,0,3$), a contradiction.

Case 2. $\alpha\left(G_{1}\right)=3$
Let $E\left(G_{1}\right)=\left\{u_{1} u_{2}\right\}$ and $F_{i}=G\left[N_{G_{2}}\left(u_{i}\right)\right]$ with $V\left(F_{i}\right)=\left\{w_{i 1}, w_{i 2}\right\}$ for $i=1,2$. Suppose $F_{i}=G\left[N_{G_{2}}\left(u_{i}\right)\right] \cong K_{3}$ for some i with $3 \leq i \leq 4$, say $i=3$. Then $\left|N_{G_{3}}\left(F_{3}\right)\right|=3$ and $\alpha\left(G\left[N_{G_{3}}\left(F_{3}\right)\right]\right)=3$. By (2) $d_{F_{1} \cup F_{2}}(v) \leq 1$ for all vertices $v \in N_{G_{3}}\left(F_{3}\right)$. Hence we may assume that $N_{G_{3}}\left(w_{11}\right) \cap N_{G_{3}}\left(F_{3}\right)=\emptyset$. But then $\left\{u_{2}, u_{3}, u_{4}, w_{11}\right\} \cup N_{G_{3}}\left(F_{3}\right)$ is an independent set of type $(0,3,1,3)$, a contradiction.

Suppose now $\alpha\left(G\left[N_{G_{2}}\left(u_{i}\right)\right]\right) \geq 2$ for $3 \leq i \leq 4$. Since $\alpha\left(G_{2}\right) \leq 6$, we conclude $w_{11} w_{12}, w_{21} w_{22} \in E(G)$. Let $N_{G_{3}}\left(w_{i j}\right)=\left\{x_{i j 1} x_{i j 2}\right\}$ for $1 \leq i, j \leq 2$. Then there are three independent vertices in $N_{G_{3}}\left(w_{i j}\right)$ for $i j=12,21,22$. These three vertices are contained together with w_{11} and u_{2}, u_{3}, u_{4} in an independent set of type $(0,3,1,3)$, a contradiction.

For the remaining part we may assume that $|E(G[N(v)])| \geq 2$ for every vertex $v \in V(G)$.

Case 3. $\alpha\left(G_{1}\right)=2$
Let $E\left(G_{1}\right)=\left\{u_{1} u_{2}, u_{3} u_{4}\right\}$. Then $N_{G_{2}}\left(u_{i}\right)=V\left(F_{i}\right)=\left\{w_{i 1}, w_{i 2}\right\}$ with $w_{i 1} w_{i 2} \in E(G)$ for $1 \leq i \leq 4$. As above we conclude that there are three independent vertices in $N_{G_{3}}\left(w_{i j}\right)$ for $i j=32,41,42$ which are contained together with u_{2}, u_{4}, w_{11} and w_{31} in an independent set of type ($0,2,2,3$), a contradiction.

Case 4. $\alpha\left(G_{1}\right)=2$
Let $E\left(G_{1}\right)=\left\{u_{1} u_{2}, u_{1} u_{3}, u_{2} u_{3}\right\}$. We may assume that $G[N(v)] \cong K_{3} \cup K_{1}$ for every vertex $v \in V(G)$. Choose an edge $u w$ with $N(u)=\left\{w, u_{1}, u_{2}, u_{3}\right\}$ and $N(w)=\left\{u, w_{1}, w_{2}, w_{3}\right\}$ such that $G\left[\left\{u_{1}, u_{2}, u_{3}\right\}\right] \cong K_{3} \cong G\left[\left\{w_{1}, w_{2}, w_{3}\right\}\right]$. Then there exist vertices x_{i} and y_{i} for $1 \leq i \leq 3$ such that $u_{i} x_{i}, w_{i} y_{i} \in E(G)$. Let $V\left(G_{1}\right)=\left\{u_{1}, u_{2}, u_{3}, w_{1}, w_{2}, w_{3}\right\}$ and $V\left(G_{2}\right)=\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right\}$. Hence $\alpha\left(G_{2}\right) \leq 5$. If $\alpha\left(G_{2}\right)=5$, then there is an independent set of type $(1,1,5)$, a contradiction. Hence we may assume $\alpha\left(G_{2}\right) \leq 4$. Since $E\left(\left\{x_{1}, x_{2}, x_{3}\right\},\left\{y_{1}, y_{2}, y_{3}\right\}\right)$ contains only independent edges, we may assume that $\left|E\left(\left\{x_{1}, x_{2}, x_{3}\right\},\left\{y_{1}, y_{2}, y_{3}\right\}\right)\right|=2$ (else consider u_{1}, x_{1} instead of $\left.u, w\right)$.

We may assume that x_{2}, y_{2} and x_{3}, y_{3} are contained in a K_{4}. Hence $\left|V\left(G_{3}\right)\right|=$ $2 \cdot 2+2 \cdot 3=10$. Therefore, $V\left(G_{4}^{*}\right) \neq \emptyset$ and so there is an independent set of type $(1,1,4,0,1)$ (with respect to the edge $u w$), a contradiction.
2. $\Delta(G)=5$

Case 1. $\alpha\left(G_{1}\right)=5$
Since $\alpha\left(G_{1}\right)=5$ we conclude that $\alpha\left(G_{3}^{*}\right) \leq 1$ and thus $\left|V\left(G_{2}\right)\right| \geq 25-(1+$ $5+4)=15$. By Lemma 3 we have $\left|V\left(G_{2}\right)\right| \leq 15$. Therefore, $G_{2} \cong 5 K_{3}$ and $G_{3} \cong K_{4}$. Hence by Lemma 4 every vertex of G_{3} is contained in an independent set of type ($1,0,5,1$), a contradiction.

Case 2. $\alpha\left(G_{1}\right)=4$
Then $\left|V\left(G_{3}^{*}\right)\right| \leq 8$ by Lemma 3 and thus $\left|V\left(G_{2}\right)\right| \geq 11$.
Case 2.1. $E\left(G_{1}\right)=\left\{u_{1} u_{2}\right\}$
Let $U_{1}=\left\{u_{1}, u_{2}\right\}$ and $U_{2}=\left\{u_{3}, u_{4}, u_{5}\right\}$. By Lemma 5 we conclude that $\left|N_{G_{2}}\left(U_{2}\right)\right| \geq 9$. Since $\alpha\left(G_{2}\left[N\left(U_{1}\right)\right]\right) \geq 2$, we get $\alpha\left(G_{2}\left[N\left(U_{1}\right)\right]\right)=2$ and $\alpha\left(G_{2}\left[N\left(U_{2}\right)\right]\right)=3$ by Lemma 3 and Lemma 7. Moreover, $G_{2}\left[N\left(U_{2}\right)\right] \cong 3 K_{3}$ by Lemma 6 .

Let $J=\left\{u_{3}, u_{4}, u_{5}\right\}$ and $G^{\prime}=G-(J \cup N(J))$. Then $\left|V\left(G^{\prime}\right)\right|=12$ and $\alpha\left(G^{\prime}\right) \geq 3$ by Table 1. Since $I \cup J$ is an independent set in G with $|I \cup J| \leq \alpha(G) \leq 6$ for every independent set I of G^{\prime}, we conclude $\alpha\left(G^{\prime}\right)=3$. Hence $3 K_{4} \subset G^{\prime}$ by Lemma 9 . Therefore, $G_{2}\left[N\left(u_{1}\right)\right]=\left\{F_{1}, F_{2}\right\} \cong\left\{K_{3}, K_{3}\right\}$ and we follow the arguments of Case 1 above.

Case 2.2. $E\left(G_{1}\right)=\left\{u_{1} u_{2}, u_{1} u_{3}\right\}$
Let $U_{1}=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $U_{2}=\left\{u_{4}, u_{5}\right\}$. Similarily as in the previous case we conclude that $\alpha\left(G_{2}\left[N\left(U_{1}\right)\right]\right)=3, \alpha\left(G_{2}\left[N\left(U_{2}\right)\right]\right)=2$ and $G_{2}\left[N\left(U_{2}\right)\right] \cong 2 K_{3}$. Let F_{1}, F_{2}, F_{3} be the three components of $G_{2}\left[N\left(U_{1}\right)\right]$ with $F_{i}=G_{2}\left[N\left(u_{i}\right)\right]$ for $i=1,2,3$. Let $J=\left\{u_{1}, u_{4}, u_{5}\right\}$ and $G^{\prime}=G-(J \cup N(J))$. Then $11 \leq$ $\left|V\left(G^{\prime}\right)\right| \leq 12$ and thus $3 K_{4} \subset G^{\prime}$ or $2 K_{4} \cup K_{3} \subset G^{\prime}$ by Lemma 9 . Since $N_{G_{3}}\left(F_{1}\right)$ and F_{2}, F_{3} are independent, $N_{G_{3}}\left(F_{i}\right) \cong K_{3}$ for $i=2$ or 3 . But then $H_{i}=N_{G_{3}}\left(F_{i}\right) \cong K_{4}$ is contained in a $K_{4} \subset G^{\prime}$ for $i=2$ or 3 , a contradiction.

Case 2.3. $E\left(G_{1}\right)=\left\{u_{1} u_{2}, u_{1} u_{3}, u_{1} u_{4}\right\}$
Case 2.4. $E\left(G_{1}\right)=\left\{u_{1} u_{2}, u_{1} u_{3}, u_{1} u_{4}, u_{1} u_{5}\right\}$
For both cases let $J=\left\{u_{2}, u_{3}, u_{4}\right\}$ and $G^{\prime}=G-(J \cup N(J))$. By Lemma 5 we need $|J \cup N(J)| \geq 13$. Since $4 \leq \alpha\left(G_{2}\right) \leq 5$ we conclude that
$G\left[N_{G_{2}}\left(u_{i}\right)\right] \cong K_{3}$ for some $i, 2 \leq i \leq 4$. Now we can follow the proof of Case 4 (by considering u_{i} with $d\left(u_{i}\right)=5$ instead of u).

Case 3. $\alpha\left(G_{1}\right)=3$
Case 3.1. $E\left(G_{1}\right)=\left\{u_{1} u_{2}, u_{3} u_{4}\right\}$
As in previous cases we conclude that $\alpha\left(G_{2}\right)=5$ and $G_{2}\left[N\left(u_{5}\right)\right] \cong K_{3}$. Suppose G_{2} is isomorphic to one of $\left\{K_{n_{1}}, K_{n_{2}}, K_{n_{3}}, K_{n_{4}}, K_{n_{5}}\right\}$ with $2 \leq$ $n_{1} \leq n_{2} \leq 3,2 \leq n_{3} \leq n_{4} \leq 3, n_{5}=3$. If $d\left(w_{1}\right)=4=d\left(w_{3}\right)$, let $J=$ $\left\{u, w_{1}, w_{3}\right\}$ and $G^{\prime}=G-(J \cup N(J))$. Then $\left|V\left(G^{\prime}\right)\right|=11$ and thus $2 K_{4} \cup K_{3} \subset$ G^{\prime} by Lemma 9 . Since F_{2}, F_{4} and F_{5} are independent and $\left|V\left(F_{i}\right)\right| \geq 2$ for $i=2,4,5$, there exist $F_{i}, i=2,4$ or 5 , such that F_{i} is contained in a $K_{4} \subset G^{\prime}-\left\{u_{i}\right\}$, a contradiction. Suppose G_{2} is isomorphic to one of $\left\{K_{1}, K_{1}, K_{n_{3}}, K_{n_{4}}, K_{n_{5}}\right\}$ with $2 \leq n_{3} \leq n_{4} \leq 3, n_{5}=3$. Then $\left|V\left(G_{3}\right)\right| \geq$ $25-6-\left(5+n_{3}+n_{4}\right)=14-n_{3}-n_{4}$. Hence $\left|V\left(G_{3}\right)-\left(N\left(F_{1}\right) \cup N\left(F_{2}\right)\right)\right| \geq$ $14-n_{3}-n_{4}-6=8-n_{3}-n_{4}$. Now by Lemma 10 there is an independent set of type $(1,0,5,1)$ or $(1,0,4,2)$, a contradiction.

Finally suppose that G_{2} is isomorphic to $\left\{K_{1}, K_{1}, K_{1}, K_{1}, K_{3}\right\}$. Let w_{1}, $w_{2}, w_{3}, w_{4} \in V\left(G_{2}\right)$ be four independent vertices with $N_{G_{2}}\left(u_{1}\right)=N_{G_{2}}\left(u_{2}\right)=$ $\left\{w_{1}, w_{2}\right\}$ and $N_{G_{2}}\left(u_{3}\right)=N_{G_{2}}\left(u_{4}\right)=\left\{w_{3}, w_{4}\right\}$. If there is a vertex $v \in V\left(G_{3}^{*}\right)$ with $v \notin N\left(w_{i}\right)$ for $1 \leq i \leq 4$, then v is contained in an independent set of type ($1,0,5,1$) by Lemma 4 , a contradiction.

Hence we may assume that $V\left(G_{3}^{*}\right)=V\left(G_{3}\right) \subset N\left(w_{1}\right) \cup N\left(w_{2}\right) \cup N\left(w_{3}\right) \cup$ $N\left(w_{4}\right)$. Furthermore, $d_{G_{3}}\left(w_{i}\right)=3$ for $1 \leq i \leq 4$. Let $H_{i}=G\left[N_{G_{3}}\left(w_{i}\right)\right]$ for $1 \leq i \leq 4$. Since $\left|V\left(G_{3}\right)\right|=12$ we have $V\left(H_{i}\right) \cap V\left(H_{j}\right)=\emptyset$ for $1 \leq i<j \leq 4$. Moreover, there are no edges between $V\left(H_{i}\right)$ and $V\left(H_{i+1}\right)$ for $i=1,3$, since G contains no C_{5}. Suppose $\alpha\left(G_{2}\left[H_{i} \cup H_{i+1}\right]\right) \geq 3$, then there are three independent vertices in $V\left(H_{i}\right) \cup V\left(H_{i+1}\right)$, which are contained together with $u_{i}, u_{5}, w_{4-i}, w_{5-i}$ in an independent set of type ($0,2,2,3$), a contradiction.

Hence we may assume that $G_{2}\left[H_{i} \cup H_{i+1}\right] \cong 2 K_{3}$ for $i=1,3$. Now any two vertices $v_{1} \in V\left(H_{1}\right)$ and $v_{2} \in V\left(H_{2}\right)$ are contained in an independent set of size four in G_{3} by Lemma 4. Hence $4 \leq \alpha\left(G_{3}\right) \leq 3$ by Lemma 3, a contradiction.

Case 3.2. $E\left(G_{1}\right)=\left\{u_{1} u_{2}, u_{1} u_{3}, u_{4} u_{5}\right\}$
See Case 4.
Case 3.3. $E\left(G_{1}\right)=\left\{u_{1} u_{2}, u_{1} u_{3}, u_{2} u_{3}\right\}$

We first conclude that $\alpha\left(G_{2}\right)=5$. Hence by Lemma 5 we get $G_{2}\left[N\left(u_{i}\right)\right] \cong$ K_{3} for $i=4,5$. We have $1 \leq d_{G_{2}}\left(u_{1}\right) \leq d_{G_{2}}\left(u_{2}\right) \leq d_{G_{2}}\left(u_{3}\right) \leq 2$. Let $F_{i}=G_{2}\left[N\left(u_{i}\right)\right]$ for $1 \leq i \leq 3$ and $J=\left\{u_{1}, u_{4}, u_{5}\right\}$. If $d_{G_{2}}\left(u_{1}\right)=1$, then $G^{\prime}=G[V(G)-(J \cup N(J))]$ has $\left|V\left(G^{\prime}\right)\right|=12$. So $3 K_{4} \subset G^{\prime}$ by Lemma 9 . Since $N_{G_{3}}\left(F_{1}\right), V\left(F_{2}\right)$ and $V\left(F_{3}\right)$ are independent, $N_{G_{3}}\left(F_{1}\right)$ is contained in a $K_{4} \subset G-F_{1}$. Hence there is a C_{5}, a contradiction.

If $d_{G_{2}}\left(u_{i}\right)=2$ for $1 \leq i \leq 3$, then $\left|V\left(G^{\prime}\right)\right|=11$. So $2 K_{4} \cup K_{3} \subset G^{\prime}$ by Lemma 9. Thus $F_{i} \cong K_{2}$ is contained in a $K_{4} \subset G-u_{i}$ for some $i, 2 \leq i \leq 3$. Hence there is a C_{5}, a contradiction.

Case 4. $\alpha\left(G_{1}\right)=2$
Then $G_{1}=K_{3} \cup K_{2}$. Let $E\left(G_{1}\right)=\left\{u_{1} u_{2}, u_{1} u_{3}, u_{2} u_{3}, u_{4} u_{5}\right\}$.
Suppose first $N_{G_{2}}\left(u_{4}\right)=N_{G_{2}}\left(u_{5}\right)=\left\{w_{4}, w_{5}\right\}$ for two vertices $w_{4}, w_{5} \in$ $V\left(G_{2}\right)$. Let $F_{i}=G_{2}\left[N\left(u_{i}\right)\right]$ for $1 \leq i \leq 3$ and set $F_{i}=\left\{w_{i}\right\}$ for $i=4,5$. Now let $H_{i}=G_{3}\left[N\left(F_{i}\right)\right]$ for $1 \leq i \leq 5, J=\left\{u, w_{4}, w_{5}\right\}$ and $G^{\prime}=G-(J \cup N(J))$. Then $11 \leq\left|V\left(G^{\prime}\right)\right| \leq 12$ by Lemma 5. Suppose $\left|V\left(G^{\prime}\right)\right|=12$. Then $3 K_{4} \subset$ G^{\prime} by Lemma 9. Thus $G\left[F_{i} \cup H_{i}\right] \cong K_{4}$ for $1 \leq i \leq 3$. Since there is no C_{5}, we have $\left|F_{i}\right|=1$ and $\left|H_{i}\right|=3$ for $1 \leq i \leq 3$. We may assume $\left|V\left(H_{4}\right)\right|=2$ and $\left|V\left(H_{5}\right)\right|=3$. Thus $H_{i} \cong K_{3}$ for $i=1,2,3$ and 5 and $H_{4} \cong K_{2}$. Since $E\left(H_{4}, H_{5}\right)=\emptyset$, there is always an independent set with four vertices, one from H_{2}, H_{3}, H_{4} and H_{5}. Together with w_{1}, u_{2} and u_{4} this gives an independent set of type $(0,2,1,4)$, a contradiction. Suppose now $\left|V\left(G^{\prime}\right)\right|=11$. Then $2 K_{4} \cup K_{3} \subset G^{\prime}$ by Lemma 9 . We can follow the arguments above and may assume that $\left|V\left(F_{3}\right) \cup V\left(H_{3}\right)\right|=K_{3}$. Again we can find an independent set of type $(0,2,1,4)$ as above, a contradiction.

Suppose next $F_{i}=G\left[N_{G_{2}}\left(u_{i}\right)\right]$ for $i=4,5$ with $\left|V\left(F_{i}\right)\right| \geq 2$ for two independent components F_{4} and F_{5}. Furthermore, $F_{i}=G\left[N_{G_{2}}\left(u_{i}\right)\right]$ for $i=$ $1,2,3$, since $\alpha\left(G_{2}\right)=5$. We have $1 \leq\left|V\left(F_{1}\right)\right| \leq\left|V\left(F_{2}\right)\right| \leq\left|V\left(F_{3}\right)\right| \leq 2$. If $\left|V\left(F_{i}\right)\right|=1$ (i.e., $\left.F_{i}=\left\{w_{i}\right\}\right)$ for some i with $1 \leq i \leq 3$, then $d_{G_{3}}\left(w_{i}\right)=3$, else we would be in a previous case.

Suppose there are two vertices $w_{1} \in V\left(F_{1}\right)$ and $w_{2} \in V\left(H_{2}\right)$ with $d\left(w_{i}\right)=4,1 \leq i \leq 2$. Let $J=\left\{u, w_{1}, w_{2}\right\}$ and $G^{\prime}=G-(J \cup N(J))$. Then $\left|V\left(G^{\prime}\right)\right|=11$ and $2 K_{4} \cup K_{3} \subset G^{\prime}$ by Lemma 9 . Thus F_{i} is contained in a $K_{4} \subset G^{\prime}-\left\{u_{i}\right\}$ for some $i, 4 \leq i \leq 5$. But then there is a C_{5}, a contradiction. Hence we may assume that $V\left(F_{i}\right)=\left\{w_{i 1}, w_{i 2}\right\}$ for $i=2,3$ and $d_{G_{3}}\left(w_{i j}\right)=3$ for $i=2,3$ and $1 \leq j \leq 2$. But then $|V(G)| \geq 1+5+(1+2 \cdot 2+2 \cdot 2)+4 \cdot 3=27>25$, a contradiction.
3. $\Delta(G)=6$

Case 1. $\alpha\left(G_{1}\right)=6$
Since $\alpha\left(G_{1}\right)=6$ we conclude that $V\left(G_{3}^{*}\right)=\emptyset$ and thus $15 \geq\left|V\left(G_{2}\right)\right|=$ $25-7=18$ by Lemma 3, a contradiction.

Case 2. $\alpha\left(G_{1}\right)=5$
Then $E\left(G_{1}\right)=\left\{u_{1} u_{2}, u_{1} u_{3}, \ldots, u_{1} u_{r}\right\}, 2 \leq r \leq 6$. Since $\alpha\left(G_{1}\right)=5$ we conclude by Lemma 3 (b) that $\left|V\left(G_{3}^{*}\right)\right| \leq 4$ and thus $\left|V\left(G_{2}\right)\right| \geq 25-7-4=$ 14. Then $\alpha\left(G_{2}\right) \geq 5$ by Lemma 3 (c). Thus $\alpha\left(G_{2}^{*}\right)=5$ and $G_{2} \cong 5 K_{3}$ or $G_{2} \cong 4 K_{3} \cup K_{2}$. By Lemma 6 we conclude $\left|V\left(G_{1}\right)\right| \leq 5<6$, a contradiction.

Case 3. $\alpha\left(G_{1}\right) \leq 4$
Using Lemma 2 and Lemma 7 we can show that $\alpha\left(G_{2}\right) \geq 6$ and thus there is an independent set of type $(1,0,6)$, a contradiction.

References

[1] J.A. Bondy and P. Erdős, Ramsey numbers for cycles in graphs, J. Combin. Theory (B) 14 (1973) 46-54.
[2] B. Bollobás, C.J. Jayawardene, Z.K. Min, C.C. Rousseau, H.Y. Ru and J. Yang, On a conjecture involving cycle-complete graph Ramsey numbers, Australas. J. Combin. 22 (2000) 63-72.
[3] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan, London and Elsevier, New York, 1976).
[4] V. Chvátal and P. Erdős, A note on hamiltonian circuits, Discrete Math. 2 (1972) 111-113.
[5] P. Erdős, R.J. Faudree, C.C. Rousseau and R.H. Schelp, On cycle-complete graph Ramsey numbers, J. Graph Theory 2 (1978) 53-64.
[6] R.J. Faudree and R.H. Schelp, All Ramsey numbers for cycles in graphs, Discrete Math. 8 (1974) 313-329.
[7] C.J. Jayawardene and C.C. Rousseau, The Ramsey number for a qudrilateral versus a complete graph on six vertices, Congr. Numer. 123 (1997) 97-108.
[8] C.J. Jayawardene and C.C. Rousseau, The Ramsey Number for a Cycle of Length Five vs. a Complete Graph of Order Six, J. Graph Theory 35 (2000) 99-108.
[9] V. Nikiforov, The cycle-complete graph Ramsey numbers, preprint 2003, Univ. of Memphis.
[10] S.P. Radziszowski, Small Ramsey numbers, Elec. J. Combin. 1 (1994) DS1.
[11] S.P. Radziszowski and K.-K. Tse, A Computational Approach for the Ramsey Numbers $R\left(C_{4}, K_{n}\right)$, J. Comb. Math. Comb. Comput. 42 (2002) 195-207.
[12] V. Rosta, On a Ramsey Type Problem of J.A. Bondy and P. Erdős, I \& II, J. Combin. Theory (B) 15 (1973) 94-120.
[13] I. Schiermeyer, All Cycle-Complete Graph Ramsey Numbers $r\left(C_{m}, K_{6}\right)$, J. Graph Theory 44 (2003) 251-260.
[14] Y.J. Sheng, H.Y. Ru and Z.K. Min, The value of the Ramsey number $R\left(C_{n}, K_{4}\right)$ is $3(n-1)+1(n \geq 4)$, Australas. J. Combin. 20 (1999) 205-206.
[15] A. Thomason, private communication.

