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Abstract

The cycle-complete graph Ramsey number r(Cm,Kn) is the small-
est integer N such that every graph G of order N contains a cycle Cm

on m vertices or has independence number α(G) ≥ n. It has been con-
jectured by Erdős, Faudree, Rousseau and Schelp that r(Cm, Kn) =
(m − 1)(n − 1) + 1 for all m ≥ n ≥ 3 (except r(C3,K3) = 6). This
conjecture holds for 3 ≤ n ≤ 6. In this paper we will present a proof
for r(C5,K7) = 25.
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1. Introduction

We use [3] for terminology and notation not defined here and consider finite
and simple graphs only.

For two graphs G and H, the Ramsey number r(G,H) is the smallest
integer N such that every 2-colouring of the edges of the complete graph
KN contains a subgraph isomorphic to G in the first colour or a subgraph
isomorphic to H in the second colour.

A cycle on m vertices will be denoted by Cm and the independence
number of a graph by α(G). The cycle-complete graph Ramsey number
r(Cm,Kn) is the smallest integer N such that for every graph G of order



130 I. Schiermeyer

N , Cm ⊂ G or α(G) ≥ n. The graph (n− 1)Km−1 shows that r(Cm,Kn) ≥
(m− 1)(n− 1) + 1 for all m ≥ n ≥ 3.

Question 1 [5]. With n given, what is the smallest value of m such that

r(Cm, Kn) = (m− 1)(n− 1) + 1 ?(1)

Conjecture 1 [5]. With the only exception of r(C3,K3) = 6, formula (1)
holds for all m ≥ n ≥ 3.

2. Results

The following observation is easily verified.

Observation 1. Formula (1) also holds for n = 1, 2 and all m ≥ 3.

Conjecture 1 was confirmed for n = 3 in early work on Ramsey theory ([6],
[12]), and it has been proved recently for n = 4 [14], n = 5 [2] and n = 6 [13].

Table 1. Exact Values of r(Cm,Kn).

m\n 3 4 5 6 7 8 9
3 6 9 14 18 23 28 36
4 7 10 14 18 22 26
5 9 13 17 21 25
≥ 6 2m− 1 3m− 2 4m− 3 5m− 4

Bondy and Erdős [1] have proved that formula (1) holds if m ≥ n2− 2. This
was improved by Thomason [15] to m ≥ n2−n− 1 for all n ≥ 4 and further
to m ≥ n2 − 2n for all n ≥ 5 in [13]. Recently, Nikiforov succeeded to show
a lower bound which is linear in n.

Theorem 1 [9]. r(Cm,Kn) = (m − 1)(n − 1) + 1 for all m ≥ 4n + 2 and
all n ≥ 4.

Nikiforov has also posed the following challenging conjecture.

Conjecture 2. For every k there exists n0 = n0(k) such that for n > n0

and m > n1/k,
r(Cm,Kn) = (m− 1)(n− 1) + 1.
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The known numbers for small values of m and n do not contradict this
conjecture.

In [8] it has been proved that r(C5,K6) = 21. In this paper we will
compute r(C5,K7).

Theorem 2. r(C5,K7) = 25.

Moreover, the fact that r(C5, K6) = 21 and r(C5,K7) = 25, justifies the
following question.

Question 2. Does Formula (1) hold for all m ≥ 5?

3. Preliminary Results

For a vertex u ∈ V (G) let Ni(u) = {v ∈ V (G)|d(u, v) = i} and N∗
i (u) =

{v ∈ V (G)|d(u, v) ≥ i}. For given Ni(u) and N∗
i (u) let Gi = G[Ni(u)] and

G∗
i = G[N∗

i (u)].

Lemma 1. Let G be a C5-free graph. Then the graphs G1 and G2 are P4-free
for every vertex u ∈ V (G).

Proof. If G1 = G[N1(u)] contains a P4, then u is contained in a C5, a
contradiction. Hence, G1 is P4-free.

Suppose now that G2 contains a P4 with vertices labeled w1w2w3w4. If
N(u)∩N(w1)∩N(w4) 6= ∅, then there is a C5, a contradiction. Hence we may
assume that there are two vertices u1, u2 ∈ V (G1) such that u1w1, u2w4 ∈
E(G). Now consider the vertex w2. If w2v ∈ E(G) for a vertex v ∈ V (G1)−
{u1}, then there is a C5, a contradiction. Hence we may assume that w2u1 ∈
E(G). Now consider the vertex w3. Then w3 is always contained in a C5, a
contradiction. Hence, G2 is P4-free.

The following lemma is an immediate consequence of Lemma 1.

Lemma 2. Let G be a C5-free graph and u ∈ V (G). Then the components
of G1 and G2 are of the form K1,K2,K3 or K1,r for r ≥ 2.

Using Lemma 2 we obtain the following lemma.

Lemma 3. Let G be a C5-free graph with α(G) ≤ 6. Then
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(a) α(G2) ≤ 5 and |V (G2)| ≤ 15,

(b) α(G∗
3) ≤ 6− α(G1) and |V (G∗

3)| ≤ 24− 4α(G1),

(c) If W ⊂ V (G2), then α(G2[W ]) ≥ d |W |
3 e.

Using the assumption that G is C5-free we obtain the following lemmas.

Lemma 4. Let G be a C5-free graph and F ⊂ G with F ∼= K4. Then
dF (v) ≤ 1 for all v ∈ V (G)− V (F ).

Lemma 5. Let G be a C5-free graph with |V (G)| = 25 and α(G) ≤ 6. If
I ⊂ V (G) is independent with |I| = k, 1 ≤ k ≤ 5, then |N(I)| ≥ 3k + 1.

Proof. Suppose there is an independent set I ⊂ V (G) with |I| = k, 1 ≤
k ≤ 5, and |N(I)| ≤ 3k. Let G′ = G− (I ∪N(I)). Then |V (G′)| ≥ 25−4k =
4(7− k)− 3. Since G is C5-free, we conclude by Table 1 and Observation 1
that α(G′) ≥ 7− k. Let J be an independent set of size α(G′) ≥ 7− k in G′.
Then I ∪ J is an independent set of size at least 7 in G, a contradiction.

The following two lemmas are easily verified using the fact that G is C5-free.

Lemma 6. If Fi is a component of G2 with |V (Fi)| ≥ 2, then |N(Fi) ∩
N(u)| = 1.

Lemma 7. Let F1, F2 be two components of G1. If |V (F2)| ≥ 2, then N(F1)∩
N(F2) ∩ V (G2) = ∅.

Lemma 8. Let F ∼= K2 be a component of G2 with V (F ) = {w1, w2} and
J = N(w1) ∩N(w2) ∩ V (G3). Then J is independent.

Proof. Suppose J is not independent. Then there is an edge in G3[J ], say
xy. By lemma 6 there is a vertex v ∈ N(w1) ∩ N(w2) ∩ N(u). But then
C5 ⊆ G[{v, w1, w2, x, y}], a contradiction.

Jayawardene and Rousseau have determined all C5-free graphs G with
α(G) = 3 and order 11 and 12.

Lemma 9 [8]. Let G be a graph with C5 6⊂ G and α(G) = 3.

(a) If |V (G)| = 12, then 3K4 ⊂ G.

(b) If |V (G)| = 11, then 2K4 ∪K3 ⊂ G.
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For a vertex u ∈ V (G), an independent set I ⊂ V (G) of type (n0, n1, . . . ,
nk−1, n

∗
k) is an independent set of size

∑k
i=0 ni, which contains ni vertices

from Gi, 1 ≤ i ≤ k − 1, and n∗k vertices from G∗
k. Furthermore, n0 = 1 (0),

if u is (not) contained in I.

Lemma 10. Let G be a graph with C5 6⊂ G. Suppose G2 has five components
F1, F2, . . . , F5 with |V (Fi)| = 1, 1 ≤ i ≤ p, |V (Fi)| = 2, p + 1 ≤ i ≤ q,
|V (Fi)| = 3, q + 1 ≤ i ≤ 5. Further there are vertices ui ∈ V (G1) such that
G2[N(ui)] = Fi for p + 1 ≤ i ≤ q and uuuj ∈ E(G) for p + 1 ≤ i ≤ q.
Suppose q > p and |V (G∗

3)− (∪p
i=1N(Fi))| ≥ q− p + 1. Then there exists an

independent set of type (1, 0, 5, 1) or (1, 0, 4, 2).

Proof. Suppose there is no independent set of type (1, 0, 5, 1). Since
|V (G∗

3) − (∪p
i=1N(Fi))| ≥ q − p + 1 there exists i with p + 1 ≤ i ≤ q,

say i = p + 1, and two vertices v1, v2 ∈ V (G3) with v1wi, v2wi ∈ E(G)
for i = 1, 2, where V (Fp+1) = {w1, w2}. By Lemma 8, v1v2 /∈ E(G). Since
G1[{up+1, . . . , uq}] is complete and G is C5-free, we have N(vi)∩ V (Fj) = ∅
for i = 1, 2 and p+2 ≤ j ≤ q. But then v1, v2 are contained in an independent
set I containing Fi for 1 ≤ i ≤ p and a vertex from each Fi for p+2 ≤ i ≤ 5.
Hence I is an independent set of type (1, 0, 4, 2), a contradiction.

Lemma 11 [8]. Let G be a graph with δ(G) ≥ 4 and C5 6⊂ G. Then α(G) ≥
∆(G).

4. Proof of Theorem 2

Let |V (G)| = 25. By Lemma 5 and Lemma 11 we may assume that 4 ≤
δ(G) ≤ ∆(G) ≤ 6. We distinguish these three cases.

1. ∆(G) = 4

Then G is 4-regular. Moreover, by Lemma 5, if d(u, v) = 2 for two vertices
u, v ∈ V (G), then

|N(u) ∩N(v)| = 1.(2)

Hence G contains no induced K4− e and no induced C4. For the neighbour-
hood of a vertex u we distinguish the following cases.
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Case 1. α(G1) = 4
By (2) we conclude that |V (G2)| = 3 · 4 = 12. Since α(G2) ≤ 6, Fi =
G[NG2(ui)] ∼= K3 for some i with 1 ≤ i ≤ 4. But then α(G[NG3(Fi)]) = 3.
Hence there are three independent vertices in NG3(Fi) which are contained
together with {u1, u2, u3, u4} in an independent set of type (0, 4, 0, 3), a
contradiction.

Case 2. α(G1) = 3
Let E(G1) = {u1u2} and Fi = G[NG2(ui)] with V (Fi) = {wi1, wi2} for
i = 1, 2. Suppose Fi = G[NG2(ui)] ∼= K3 for some i with 3 ≤ i ≤ 4, say i = 3.
Then |NG3(F3)| = 3 and α(G[NG3(F3)]) = 3. By (2) dF1∪F2(v) ≤ 1 for all
vertices v ∈ NG3(F3). Hence we may assume that NG3(w11) ∩NG3(F3) = ∅.
But then {u2, u3, u4, w11}∪NG3(F3) is an independent set of type (0, 3, 1, 3),
a contradiction.

Suppose now α(G[NG2(ui)]) ≥ 2 for 3 ≤ i ≤ 4. Since α(G2) ≤ 6, we
conclude w11w12, w21w22 ∈ E(G). Let NG3(wij) = {xij1xij2} for 1 ≤ i, j ≤ 2.
Then there are three independent vertices in NG3(wij) for ij = 12, 21, 22.
These three vertices are contained together with w11 and u2, u3, u4 in an
independent set of type (0, 3, 1, 3), a contradiction.

For the remaining part we may assume that |E(G[N(v)])| ≥ 2 for every
vertex v ∈ V (G).

Case 3. α(G1) = 2
Let E(G1) = {u1u2, u3u4}. Then NG2(ui) = V (Fi) = {wi1, wi2} with
wi1wi2 ∈ E(G) for 1 ≤ i ≤ 4. As above we conclude that there are three
independent vertices in NG3(wij) for ij = 32, 41, 42 which are contained
together with u2, u4, w11 and w31 in an independent set of type (0, 2, 2, 3), a
contradiction.

Case 4. α(G1) = 2
Let E(G1) = {u1u2, u1u3, u2u3}. We may assume that G[N(v)] ∼= K3∪K1 for
every vertex v ∈ V (G). Choose an edge uw with N(u) = {w, u1, u2, u3} and
N(w) = {u, w1, w2, w3} such that G[{u1, u2, u3}] ∼= K3

∼= G[{w1, w2, w3}].
Then there exist vertices xi and yi for 1 ≤ i ≤ 3 such that uixi, wiyi ∈ E(G).
Let V (G1) = {u1, u2, u3, w1, w2, w3} and V (G2) = {x1, x2, x3, y1, y2, y3}.
Hence α(G2) ≤ 5. If α(G2) = 5, then there is an independent set of
type (1, 1, 5), a contradiction. Hence we may assume α(G2) ≤ 4. Since
E({x1, x2, x3}, {y1, y2, y3}) contains only independent edges, we may assume
that |E({x1, x2, x3}, {y1, y2, y3})| = 2 (else consider u1, x1 instead of u,w).
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We may assume that x2, y2 and x3, y3 are contained in a K4. Hence |V (G3)| =
2 · 2 + 2 · 3 = 10. Therefore, V (G∗

4) 6= ∅ and so there is an independent set
of type (1, 1, 4, 0, 1) (with respect to the edge uw), a contradiction.

2. ∆(G) = 5

Case 1. α(G1) = 5
Since α(G1) = 5 we conclude that α(G∗

3) ≤ 1 and thus |V (G2)| ≥ 25− (1 +
5 + 4) = 15. By Lemma 3 we have |V (G2)| ≤ 15. Therefore, G2

∼= 5K3

and G3
∼= K4. Hence by Lemma 4 every vertex of G3 is contained in an

independent set of type (1, 0, 5, 1), a contradiction.

Case 2. α(G1) = 4
Then |V (G∗

3)| ≤ 8 by Lemma 3 and thus |V (G2)| ≥ 11.

Case 2.1. E(G1) = {u1u2}
Let U1 = {u1, u2} and U2 = {u3, u4, u5}. By Lemma 5 we conclude that
|NG2(U2)| ≥ 9. Since α(G2[N(U1)]) ≥ 2, we get α(G2[N(U1)]) = 2 and
α(G2[N(U2)]) = 3 by Lemma 3 and Lemma 7. Moreover, G2[N(U2)] ∼= 3K3

by Lemma 6.
Let J = {u3, u4, u5} and G′ = G − (J ∪ N(J)). Then |V (G′)| = 12

and α(G′) ≥ 3 by Table 1. Since I ∪ J is an independent set in G with
|I∪J | ≤ α(G) ≤ 6 for every independent set I of G′, we conclude α(G′) = 3.
Hence 3K4 ⊂ G′ by Lemma 9. Therefore, G2[N(u1)] = {F1, F2} ∼= {K3,K3}
and we follow the arguments of Case 1 above.

Case 2.2. E(G1) = {u1u2, u1u3}
Let U1 = {u1, u2, u3} and U2 = {u4, u5}. Similarily as in the previous case we
conclude that α(G2[N(U1)]) = 3, α(G2[N(U2)]) = 2 and G2[N(U2)] ∼= 2K3.
Let F1, F2, F3 be the three components of G2[N(U1)] with Fi = G2[N(ui)]
for i = 1, 2, 3. Let J = {u1, u4, u5} and G′ = G − (J ∪ N(J)). Then 11 ≤
|V (G′)| ≤ 12 and thus 3K4 ⊂ G′ or 2K4 ∪ K3 ⊂ G′ by Lemma 9. Since
NG3(F1) and F2, F3 are independent, NG3(Fi) ∼= K3 for i = 2 or 3. But then
Hi = NG3(Fi) ∼= K4 is contained in a K4 ⊂ G′ for i = 2 or 3, a contradiction.

Case 2.3. E(G1) = {u1u2, u1u3, u1u4}

Case 2.4. E(G1) = {u1u2, u1u3, u1u4, u1u5}
For both cases let J = {u2, u3, u4} and G′ = G − (J ∪ N(J)). By Lemma
5 we need |J ∪ N(J)| ≥ 13. Since 4 ≤ α(G2) ≤ 5 we conclude that
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G[NG2(ui)] ∼= K3 for some i, 2 ≤ i ≤ 4. Now we can follow the proof of
Case 4 (by considering ui with d(ui) = 5 instead of u).

Case 3. α(G1) = 3

Case 3.1. E(G1) = {u1u2, u3u4}
As in previous cases we conclude that α(G2) = 5 and G2[N(u5)] ∼= K3.
Suppose G2 is isomorphic to one of {Kn1 ,Kn2 ,Kn3 , Kn4 ,Kn5} with 2 ≤
n1 ≤ n2 ≤ 3, 2 ≤ n3 ≤ n4 ≤ 3, n5 = 3. If d(w1) = 4 = d(w3), let J =
{u,w1, w3} and G′ = G−(J∪N(J)). Then |V (G′)| = 11 and thus 2K4∪K3 ⊂
G′ by Lemma 9. Since F2, F4 and F5 are independent and |V (Fi)| ≥ 2
for i = 2, 4, 5, there exist Fi, i = 2, 4 or 5, such that Fi is contained in
a K4 ⊂ G′ − {ui}, a contradiction. Suppose G2 is isomorphic to one of
{K1, K1, Kn3 ,Kn4 ,Kn5} with 2 ≤ n3 ≤ n4 ≤ 3, n5 = 3. Then |V (G3)| ≥
25− 6− (5 + n3 + n4) = 14− n3 − n4. Hence |V (G3)− (N(F1) ∪N(F2))| ≥
14− n3 − n4 − 6 = 8− n3 − n4. Now by Lemma 10 there is an independent
set of type (1, 0, 5, 1) or (1, 0, 4, 2), a contradiction.

Finally suppose that G2 is isomorphic to {K1,K1,K1,K1,K3}. Let w1,
w2, w3, w4 ∈ V (G2) be four independent vertices with NG2(u1) = NG2(u2) =
{w1, w2} and NG2(u3) = NG2(u4) = {w3, w4}. If there is a vertex v ∈ V (G∗

3)
with v /∈ N(wi) for 1 ≤ i ≤ 4, then v is contained in an independent set of
type (1, 0, 5, 1) by Lemma 4, a contradiction.

Hence we may assume that V (G∗
3) = V (G3) ⊂ N(w1)∪N(w2)∪N(w3)∪

N(w4). Furthermore, dG3(wi) = 3 for 1 ≤ i ≤ 4. Let Hi = G[NG3(wi)] for
1 ≤ i ≤ 4. Since |V (G3)| = 12 we have V (Hi)∩V (Hj) = ∅ for 1 ≤ i < j ≤ 4.
Moreover, there are no edges between V (Hi) and V (Hi+1) for i = 1, 3,
since G contains no C5. Suppose α(G2[Hi ∪Hi+1]) ≥ 3, then there are three
independent vertices in V (Hi)∪V (Hi+1), which are contained together with
ui, u5, w4−i, w5−i in an independent set of type (0, 2, 2, 3), a contradiction.

Hence we may assume that G2[Hi ∪Hi+1] ∼= 2K3 for i = 1, 3. Now any
two vertices v1 ∈ V (H1) and v2 ∈ V (H2) are contained in an independent
set of size four in G3 by Lemma 4. Hence 4 ≤ α(G3) ≤ 3 by Lemma 3, a
contradiction.

Case 3.2. E(G1) = {u1u2, u1u3, u4u5}
See Case 4.

Case 3.3. E(G1) = {u1u2, u1u3, u2u3}
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We first conclude that α(G2) = 5. Hence by Lemma 5 we get G2[N(ui)] ∼=
K3 for i = 4, 5. We have 1 ≤ dG2(u1) ≤ dG2(u2) ≤ dG2(u3) ≤ 2. Let
Fi = G2[N(ui)] for 1 ≤ i ≤ 3 and J = {u1, u4, u5}. If dG2(u1) = 1, then
G′ = G[V (G) − (J ∪ N(J))] has |V (G′)| = 12. So 3K4 ⊂ G′ by Lemma 9.
Since NG3(F1), V (F2) and V (F3) are independent, NG3(F1) is contained in
a K4 ⊂ G− F1. Hence there is a C5, a contradiction.

If dG2(ui) = 2 for 1 ≤ i ≤ 3, then |V (G′)| = 11. So 2K4 ∪K3 ⊂ G′ by
Lemma 9. Thus Fi

∼= K2 is contained in a K4 ⊂ G−ui for some i, 2 ≤ i ≤ 3.
Hence there is a C5, a contradiction.

Case 4. α(G1) = 2
Then G1 = K3 ∪K2. Let E(G1) = {u1u2, u1u3, u2u3, u4u5}.

Suppose first NG2(u4) = NG2(u5) = {w4, w5} for two vertices w4, w5 ∈
V (G2). Let Fi = G2[N(ui)] for 1 ≤ i ≤ 3 and set Fi = {wi} for i = 4, 5. Now
let Hi = G3[N(Fi)] for 1 ≤ i ≤ 5, J = {u,w4, w5} and G′ = G− (J ∪N(J)).
Then 11 ≤ |V (G′)| ≤ 12 by Lemma 5. Suppose |V (G′)| = 12. Then 3K4 ⊂
G′ by Lemma 9. Thus G[Fi ∪ Hi] ∼= K4 for 1 ≤ i ≤ 3. Since there is
no C5, we have |Fi| = 1 and |Hi| = 3 for 1 ≤ i ≤ 3. We may assume
|V (H4)| = 2 and |V (H5)| = 3. Thus Hi

∼= K3 for i = 1, 2, 3 and 5 and
H4

∼= K2. Since E(H4,H5) = ∅, there is always an independent set with
four vertices, one from H2,H3,H4 and H5. Together with w1, u2 and u4

this gives an independent set of type (0, 2, 1, 4), a contradiction. Suppose
now |V (G′)| = 11. Then 2K4 ∪ K3 ⊂ G′ by Lemma 9. We can follow the
arguments above and may assume that |V (F3) ∪ V (H3)| = K3. Again we
can find an independent set of type (0, 2, 1, 4) as above, a contradiction.

Suppose next Fi = G[NG2(ui)] for i = 4, 5 with |V (Fi)| ≥ 2 for two
independent components F4 and F5. Furthermore, Fi = G[NG2(ui)] for i =
1, 2, 3, since α(G2) = 5. We have 1 ≤ |V (F1)| ≤ |V (F2)| ≤ |V (F3)| ≤ 2. If
|V (Fi)| = 1 (i.e., Fi = {wi}) for some i with 1 ≤ i ≤ 3, then dG3(wi) = 3,
else we would be in a previous case.

Suppose there are two vertices w1 ∈ V (F1) and w2 ∈ V (H2) with
d(wi) = 4, 1 ≤ i ≤ 2. Let J = {u,w1, w2} and G′ = G − (J ∪ N(J)).
Then |V (G′)| = 11 and 2K4 ∪ K3 ⊂ G′ by Lemma 9. Thus Fi is con-
tained in a K4 ⊂ G′ − {ui} for some i, 4 ≤ i ≤ 5. But then there is
a C5, a contradiction. Hence we may assume that V (Fi) = {wi1, wi2}
for i = 2, 3 and dG3(wij) = 3 for i = 2, 3 and 1 ≤ j ≤ 2. But then
|V (G)| ≥ 1 + 5 + (1 + 2 · 2 + 2 · 2) + 4 · 3 = 27 > 25, a contradiction.
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3. ∆(G) = 6

Case 1. α(G1) = 6
Since α(G1) = 6 we conclude that V (G∗

3) = ∅ and thus 15 ≥ |V (G2)| =
25− 7 = 18 by Lemma 3, a contradiction.

Case 2. α(G1) = 5
Then E(G1) = {u1u2, u1u3, . . . , u1ur}, 2 ≤ r ≤ 6. Since α(G1) = 5 we
conclude by Lemma 3 (b) that |V (G∗

3)| ≤ 4 and thus |V (G2)| ≥ 25−7−4 =
14. Then α(G2) ≥ 5 by Lemma 3 (c). Thus α(G∗

2) = 5 and G2
∼= 5K3 or

G2
∼= 4K3∪K2. By Lemma 6 we conclude |V (G1)| ≤ 5 < 6, a contradiction.

Case 3. α(G1) ≤ 4
Using Lemma 2 and Lemma 7 we can show that α(G2) ≥ 6 and thus there
is an independent set of type (1, 0, 6), a contradiction.
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