THE CYCLE-COMPLETE GRAPH RAMSEY NUMBER $R(C_5, K_7)$

Ingo Schiermeyer

Institut für Diskrete Mathematik und Algebra Technische Universität Bergakademie Freiberg 09596 Freiberg, Germany

e-mail: schierme@tu-freiberg.de

Abstract

The cycle-complete graph Ramsey number $r(C_m,K_n)$ is the smallest integer N such that every graph G of order N contains a cycle C_m on m vertices or has independence number $\alpha(G) \geq n$. It has been conjectured by Erdős, Faudree, Rousseau and Schelp that $r(C_m,K_n)=(m-1)(n-1)+1$ for all $m\geq n\geq 3$ (except $r(C_3,K_3)=6$). This conjecture holds for $3\leq n\leq 6$. In this paper we will present a proof for $r(C_5,K_7)=25$.

Keywords: Ramsey numbers, extremal graphs.

2000 Mathematics Subject Classification: 05C55, 05C35.

1. Introduction

We use [3] for terminology and notation not defined here and consider finite and simple graphs only.

For two graphs G and H, the Ramsey number r(G, H) is the smallest integer N such that every 2-colouring of the edges of the complete graph K_N contains a subgraph isomorphic to G in the first colour or a subgraph isomorphic to H in the second colour.

A cycle on m vertices will be denoted by C_m and the independence number of a graph by $\alpha(G)$. The cycle-complete graph Ramsey number $r(C_m, K_n)$ is the smallest integer N such that for every graph G of order

 $N, C_m \subset G \text{ or } \alpha(G) \geq n$. The graph $(n-1)K_{m-1}$ shows that $r(C_m, K_n) \geq (m-1)(n-1)+1$ for all $m \geq n \geq 3$.

Question 1 [5]. With n given, what is the smallest value of m such that

(1)
$$r(C_m, K_n) = (m-1)(n-1) + 1 ?$$

Conjecture 1 [5]. With the only exception of $r(C_3, K_3) = 6$, formula (1) holds for all $m \ge n \ge 3$.

2. Results

The following observation is easily verified.

Observation 1. Formula (1) also holds for n = 1, 2 and all $m \ge 3$.

Conjecture 1 was confirmed for n = 3 in early work on Ramsey theory ([6], [12]), and it has been proved recently for n = 4 [14], n = 5 [2] and n = 6 [13].

Table 1. Exact Values of $r(C_m, K_n)$.

$m \backslash n$	3	4	5	6	7	8	9
3	6	9	14	18	23	28	36
4	7	10	14	18	22	26	
5	9	13	17	21	25		
≥ 6	2m - 1	3m-2	4m - 3	5m-4			

Bondy and Erdős [1] have proved that formula (1) holds if $m \ge n^2 - 2$. This was improved by Thomason [15] to $m \ge n^2 - n - 1$ for all $n \ge 4$ and further to $m \ge n^2 - 2n$ for all $n \ge 5$ in [13]. Recently, Nikiforov succeeded to show a lower bound which is linear in n.

Theorem 1 [9]. $r(C_m, K_n) = (m-1)(n-1) + 1$ for all $m \ge 4n + 2$ and all $n \ge 4$.

Nikiforov has also posed the following challenging conjecture.

Conjecture 2. For every k there exists $n_0 = n_0(k)$ such that for $n > n_0$ and $m > n^{1/k}$,

$$r(C_m, K_n) = (m-1)(n-1) + 1.$$

The known numbers for small values of m and n do not contradict this conjecture.

In [8] it has been proved that $r(C_5, K_6) = 21$. In this paper we will compute $r(C_5, K_7)$.

Theorem 2. $r(C_5, K_7) = 25$.

Moreover, the fact that $r(C_5, K_6) = 21$ and $r(C_5, K_7) = 25$, justifies the following question.

Question 2. Does Formula (1) hold for all $m \geq 5$?

3. Preliminary Results

For a vertex $u \in V(G)$ let $N_i(u) = \{v \in V(G) | d(u,v) = i\}$ and $N_i^*(u) = \{v \in V(G) | d(u,v) \ge i\}$. For given $N_i(u)$ and $N_i^*(u)$ let $G_i = G[N_i(u)]$ and $G_i^* = G[N_i^*(u)]$.

Lemma 1. Let G be a C_5 -free graph. Then the graphs G_1 and G_2 are P_4 -free for every vertex $u \in V(G)$.

Proof. If $G_1 = G[N_1(u)]$ contains a P_4 , then u is contained in a C_5 , a contradiction. Hence, G_1 is P_4 -free.

Suppose now that G_2 contains a P_4 with vertices labeled $w_1w_2w_3w_4$. If $N(u)\cap N(w_1)\cap N(w_4)\neq\emptyset$, then there is a C_5 , a contradiction. Hence we may assume that there are two vertices $u_1,u_2\in V(G_1)$ such that $u_1w_1,u_2w_4\in E(G)$. Now consider the vertex w_2 . If $w_2v\in E(G)$ for a vertex $v\in V(G_1)-\{u_1\}$, then there is a C_5 , a contradiction. Hence we may assume that $w_2u_1\in E(G)$. Now consider the vertex w_3 . Then w_3 is always contained in a C_5 , a contradiction. Hence, G_2 is P_4 -free.

The following lemma is an immediate consequence of Lemma 1.

Lemma 2. Let G be a C_5 -free graph and $u \in V(G)$. Then the components of G_1 and G_2 are of the form K_1, K_2, K_3 or $K_{1,r}$ for $r \geq 2$.

Using Lemma 2 we obtain the following lemma.

Lemma 3. Let G be a C_5 -free graph with $\alpha(G) \leq 6$. Then

- (a) $\alpha(G_2) \leq 5 \text{ and } |V(G_2)| \leq 15,$
- (b) $\alpha(G_3^*) \leq 6 \alpha(G_1)$ and $|V(G_3^*)| \leq 24 4\alpha(G_1)$,
- (c) If $W \subset V(G_2)$, then $\alpha(G_2[W]) \geq \lceil \frac{|W|}{3} \rceil$.

Using the assumption that G is C_5 -free we obtain the following lemmas.

Lemma 4. Let G be a C_5 -free graph and $F \subset G$ with $F \cong K_4$. Then $d_F(v) \leq 1$ for all $v \in V(G) - V(F)$.

Lemma 5. Let G be a C_5 -free graph with |V(G)| = 25 and $\alpha(G) \leq 6$. If $I \subset V(G)$ is independent with |I| = k, $1 \leq k \leq 5$, then $|N(I)| \geq 3k + 1$.

Proof. Suppose there is an independent set $I \subset V(G)$ with |I| = k, $1 \le k \le 5$, and $|N(I)| \le 3k$. Let $G' = G - (I \cup N(I))$. Then $|V(G')| \ge 25 - 4k = 4(7 - k) - 3$. Since G is C_5 -free, we conclude by Table 1 and Observation 1 that $\alpha(G') \ge 7 - k$. Let J be an independent set of size $\alpha(G') \ge 7 - k$ in G'. Then $I \cup J$ is an independent set of size at least 7 in G, a contradiction.

The following two lemmas are easily verified using the fact that G is C_5 -free.

Lemma 6. If F_i is a component of G_2 with $|V(F_i)| \geq 2$, then $|N(F_i)| \leq N(u) = 1$.

Lemma 7. Let F_1, F_2 be two components of G_1 . If $|V(F_2)| \ge 2$, then $N(F_1) \cap N(F_2) \cap V(G_2) = \emptyset$.

Lemma 8. Let $F \cong K_2$ be a component of G_2 with $V(F) = \{w_1, w_2\}$ and $J = N(w_1) \cap N(w_2) \cap V(G_3)$. Then J is independent.

Proof. Suppose J is not independent. Then there is an edge in $G_3[J]$, say xy. By lemma 6 there is a vertex $v \in N(w_1) \cap N(w_2) \cap N(u)$. But then $C_5 \subseteq G[\{v, w_1, w_2, x, y\}]$, a contradiction.

Jayawardene and Rousseau have determined all C_5 -free graphs G with $\alpha(G) = 3$ and order 11 and 12.

Lemma 9 [8]. Let G be a graph with $C_5 \not\subset G$ and $\alpha(G) = 3$.

- (a) If |V(G)| = 12, then $3K_4 \subset G$.
- (b) If |V(G)| = 11, then $2K_4 \cup K_3 \subset G$.

For a vertex $u \in V(G)$, an independent set $I \subset V(G)$ of type $(n_0, n_1, \ldots, n_{k-1}, n_k^*)$ is an independent set of size $\sum_{i=0}^k n_i$, which contains n_i vertices from G_i , $1 \le i \le k-1$, and n_k^* vertices from G_k^* . Furthermore, $n_0 = 1$ (0), if u is (not) contained in I.

Lemma 10. Let G be a graph with $C_5 \not\subset G$. Suppose G_2 has five components F_1, F_2, \ldots, F_5 with $|V(F_i)| = 1$, $1 \le i \le p$, $|V(F_i)| = 2$, $p+1 \le i \le q$, $|V(F_i)| = 3$, $q+1 \le i \le 5$. Further there are vertices $u_i \in V(G_1)$ such that $G_2[N(u_i)] = F_i$ for $p+1 \le i \le q$ and $u_u u_j \in E(G)$ for $p+1 \le i \le q$. Suppose q > p and $|V(G_3^*) - (\bigcup_{i=1}^p N(F_i))| \ge q - p + 1$. Then there exists an independent set of type (1,0,5,1) or (1,0,4,2).

Proof. Suppose there is no independent set of type (1,0,5,1). Since $|V(G_3^*) - (\bigcup_{i=1}^p N(F_i))| \ge q - p + 1$ there exists i with $p+1 \le i \le q$, say i = p+1, and two vertices $v_1, v_2 \in V(G_3)$ with $v_1w_i, v_2w_i \in E(G)$ for i = 1, 2, where $V(F_{p+1}) = \{w_1, w_2\}$. By Lemma 8, $v_1v_2 \notin E(G)$. Since $G_1[\{u_{p+1}, \ldots, u_q\}]$ is complete and G is C_5 -free, we have $N(v_i) \cap V(F_j) = \emptyset$ for i = 1, 2 and $p+2 \le j \le q$. But then v_1, v_2 are contained in an independent set I containing F_i for $1 \le i \le p$ and a vertex from each F_i for $p+2 \le i \le 5$. Hence I is an independent set of type (1,0,4,2), a contradiction.

Lemma 11 [8]. Let G be a graph with $\delta(G) \geq 4$ and $C_5 \not\subset G$. Then $\alpha(G) \geq \Delta(G)$.

4. Proof of Theorem 2

Let |V(G)| = 25. By Lemma 5 and Lemma 11 we may assume that $4 \le \delta(G) \le \Delta(G) \le 6$. We distinguish these three cases.

1.
$$\Delta(G) = 4$$

Then G is 4-regular. Moreover, by Lemma 5, if d(u, v) = 2 for two vertices $u, v \in V(G)$, then

$$(2) |N(u) \cap N(v)| = 1.$$

Hence G contains no induced $K_4 - e$ and no induced C_4 . For the neighbourhood of a vertex u we distinguish the following cases.

Case 1. $\alpha(G_1)=4$

By (2) we conclude that $|V(G_2)| = 3 \cdot 4 = 12$. Since $\alpha(G_2) \leq 6$, $F_i = G[N_{G_2}(u_i)] \cong K_3$ for some i with $1 \leq i \leq 4$. But then $\alpha(G[N_{G_3}(F_i)]) = 3$. Hence there are three independent vertices in $N_{G_3}(F_i)$ which are contained together with $\{u_1, u_2, u_3, u_4\}$ in an independent set of type (0, 4, 0, 3), a contradiction.

Case 2. $\alpha(G_1) = 3$

Let $E(G_1) = \{u_1u_2\}$ and $F_i = G[N_{G_2}(u_i)]$ with $V(F_i) = \{w_{i1}, w_{i2}\}$ for i = 1, 2. Suppose $F_i = G[N_{G_2}(u_i)] \cong K_3$ for some i with $3 \le i \le 4$, say i = 3. Then $|N_{G_3}(F_3)| = 3$ and $\alpha(G[N_{G_3}(F_3)]) = 3$. By (2) $d_{F_1 \cup F_2}(v) \le 1$ for all vertices $v \in N_{G_3}(F_3)$. Hence we may assume that $N_{G_3}(w_{11}) \cap N_{G_3}(F_3) = \emptyset$. But then $\{u_2, u_3, u_4, w_{11}\} \cup N_{G_3}(F_3)$ is an independent set of type (0, 3, 1, 3), a contradiction.

Suppose now $\alpha(G[N_{G_2}(u_i)]) \geq 2$ for $3 \leq i \leq 4$. Since $\alpha(G_2) \leq 6$, we conclude $w_{11}w_{12}, w_{21}w_{22} \in E(G)$. Let $N_{G_3}(w_{ij}) = \{x_{ij1}x_{ij2}\}$ for $1 \leq i, j \leq 2$. Then there are three independent vertices in $N_{G_3}(w_{ij})$ for ij = 12, 21, 22. These three vertices are contained together with w_{11} and u_2, u_3, u_4 in an independent set of type (0, 3, 1, 3), a contradiction.

For the remaining part we may assume that $|E(G[N(v)])| \ge 2$ for every vertex $v \in V(G)$.

Case 3. $\alpha(G_1) = 2$

Let $E(G_1) = \{u_1u_2, u_3u_4\}$. Then $N_{G_2}(u_i) = V(F_i) = \{w_{i1}, w_{i2}\}$ with $w_{i1}w_{i2} \in E(G)$ for $1 \le i \le 4$. As above we conclude that there are three independent vertices in $N_{G_3}(w_{ij})$ for ij = 32, 41, 42 which are contained together with u_2, u_4, w_{11} and w_{31} in an independent set of type (0, 2, 2, 3), a contradiction.

Case 4. $\alpha(G_1) = 2$

Let $E(G_1) = \{u_1u_2, u_1u_3, u_2u_3\}$. We may assume that $G[N(v)] \cong K_3 \cup K_1$ for every vertex $v \in V(G)$. Choose an edge uw with $N(u) = \{w, u_1, u_2, u_3\}$ and $N(w) = \{u, w_1, w_2, w_3\}$ such that $G[\{u_1, u_2, u_3\}] \cong K_3 \cong G[\{w_1, w_2, w_3\}]$. Then there exist vertices x_i and y_i for $1 \le i \le 3$ such that $u_ix_i, w_iy_i \in E(G)$. Let $V(G_1) = \{u_1, u_2, u_3, w_1, w_2, w_3\}$ and $V(G_2) = \{x_1, x_2, x_3, y_1, y_2, y_3\}$. Hence $\alpha(G_2) \le 5$. If $\alpha(G_2) = 5$, then there is an independent set of type (1, 1, 5), a contradiction. Hence we may assume $\alpha(G_2) \le 4$. Since $E(\{x_1, x_2, x_3\}, \{y_1, y_2, y_3\})$ contains only independent edges, we may assume that $|E(\{x_1, x_2, x_3\}, \{y_1, y_2, y_3\})| = 2$ (else consider u_1, x_1 instead of u, w).

We may assume that x_2, y_2 and x_3, y_3 are contained in a K_4 . Hence $|V(G_3)| = 2 \cdot 2 + 2 \cdot 3 = 10$. Therefore, $V(G_4^*) \neq \emptyset$ and so there is an independent set of type (1, 1, 4, 0, 1) (with respect to the edge uw), a contradiction.

2.
$$\Delta(G) = 5$$

Case 1. $\alpha(G_1) = 5$

Since $\alpha(G_1) = 5$ we conclude that $\alpha(G_3^*) \le 1$ and thus $|V(G_2)| \ge 25 - (1 + 5 + 4) = 15$. By Lemma 3 we have $|V(G_2)| \le 15$. Therefore, $G_2 \cong 5K_3$ and $G_3 \cong K_4$. Hence by Lemma 4 every vertex of G_3 is contained in an independent set of type (1,0,5,1), a contradiction.

Case 2. $\alpha(G_1) = 4$

Then $|V(G_3^*)| \leq 8$ by Lemma 3 and thus $|V(G_2)| \geq 11$.

Case 2.1. $E(G_1) = \{u_1u_2\}$

Let $U_1 = \{u_1, u_2\}$ and $U_2 = \{u_3, u_4, u_5\}$. By Lemma 5 we conclude that $|N_{G_2}(U_2)| \geq 9$. Since $\alpha(G_2[N(U_1)]) \geq 2$, we get $\alpha(G_2[N(U_1)]) = 2$ and $\alpha(G_2[N(U_2)]) = 3$ by Lemma 3 and Lemma 7. Moreover, $G_2[N(U_2)] \cong 3K_3$ by Lemma 6.

Let $J = \{u_3, u_4, u_5\}$ and $G' = G - (J \cup N(J))$. Then |V(G')| = 12 and $\alpha(G') \geq 3$ by Table 1. Since $I \cup J$ is an independent set in G with $|I \cup J| \leq \alpha(G) \leq 6$ for every independent set I of G', we conclude $\alpha(G') = 3$. Hence $3K_4 \subset G'$ by Lemma 9. Therefore, $G_2[N(u_1)] = \{F_1, F_2\} \cong \{K_3, K_3\}$ and we follow the arguments of Case 1 above.

Case 2.2. $E(G_1) = \{u_1u_2, u_1u_3\}$

Let $U_1=\{u_1,u_2,u_3\}$ and $U_2=\{u_4,u_5\}$. Similarly as in the previous case we conclude that $\alpha(G_2[N(U_1)])=3$, $\alpha(G_2[N(U_2)])=2$ and $G_2[N(U_2)]\cong 2K_3$. Let F_1,F_2,F_3 be the three components of $G_2[N(U_1)]$ with $F_i=G_2[N(u_i)]$ for i=1,2,3. Let $J=\{u_1,u_4,u_5\}$ and $G'=G-(J\cup N(J))$. Then $11\leq |V(G')|\leq 12$ and thus $3K_4\subset G'$ or $2K_4\cup K_3\subset G'$ by Lemma 9. Since $N_{G_3}(F_1)$ and F_2,F_3 are independent, $N_{G_3}(F_i)\cong K_3$ for i=2 or 3. But then $H_i=N_{G_3}(F_i)\cong K_4$ is contained in a $K_4\subset G'$ for i=2 or 3, a contradiction.

Case 2.3.
$$E(G_1) = \{u_1u_2, u_1u_3, u_1u_4\}$$

Case 2.4. $E(G_1) = \{u_1u_2, u_1u_3, u_1u_4, u_1u_5\}$

For both cases let $J = \{u_2, u_3, u_4\}$ and $G' = G - (J \cup N(J))$. By Lemma 5 we need $|J \cup N(J)| \ge 13$. Since $4 \le \alpha(G_2) \le 5$ we conclude that

 $G[N_{G_2}(u_i)] \cong K_3$ for some $i, 2 \leq i \leq 4$. Now we can follow the proof of Case 4 (by considering u_i with $d(u_i) = 5$ instead of u).

Case 3.
$$\alpha(G_1) = 3$$

Case 3.1.
$$E(G_1) = \{u_1u_2, u_3u_4\}$$

As in previous cases we conclude that $\alpha(G_2) = 5$ and $G_2[N(u_5)] \cong K_3$. Suppose G_2 is isomorphic to one of $\{K_{n_1}, K_{n_2}, K_{n_3}, K_{n_4}, K_{n_5}\}$ with $2 \leq n_1 \leq n_2 \leq 3, 2 \leq n_3 \leq n_4 \leq 3, n_5 = 3$. If $d(w_1) = 4 = d(w_3)$, let $J = \{u, w_1, w_3\}$ and $G' = G - (J \cup N(J))$. Then |V(G')| = 11 and thus $2K_4 \cup K_3 \subset G'$ by Lemma 9. Since F_2, F_4 and F_5 are independent and $|V(F_i)| \geq 2$ for i = 2, 4, 5, there exist $F_i, i = 2, 4$ or 5, such that F_i is contained in a $K_4 \subset G' - \{u_i\}$, a contradiction. Suppose G_2 is isomorphic to one of $\{K_1, K_1, K_{n_3}, K_{n_4}, K_{n_5}\}$ with $2 \leq n_3 \leq n_4 \leq 3, n_5 = 3$. Then $|V(G_3)| \geq 25 - 6 - (5 + n_3 + n_4) = 14 - n_3 - n_4$. Hence $|V(G_3) - (N(F_1) \cup N(F_2))| \geq 14 - n_3 - n_4 - 6 = 8 - n_3 - n_4$. Now by Lemma 10 there is an independent set of type (1, 0, 5, 1) or (1, 0, 4, 2), a contradiction.

Finally suppose that G_2 is isomorphic to $\{K_1, K_1, K_1, K_1, K_3\}$. Let $w_1, w_2, w_3, w_4 \in V(G_2)$ be four independent vertices with $N_{G_2}(u_1) = N_{G_2}(u_2) = \{w_1, w_2\}$ and $N_{G_2}(u_3) = N_{G_2}(u_4) = \{w_3, w_4\}$. If there is a vertex $v \in V(G_3^*)$ with $v \notin N(w_i)$ for $1 \le i \le 4$, then v is contained in an independent set of type (1, 0, 5, 1) by Lemma 4, a contradiction.

Hence we may assume that $V(G_3^*) = V(G_3) \subset N(w_1) \cup N(w_2) \cup N(w_3) \cup N(w_4)$. Furthermore, $d_{G_3}(w_i) = 3$ for $1 \le i \le 4$. Let $H_i = G[N_{G_3}(w_i)]$ for $1 \le i \le 4$. Since $|V(G_3)| = 12$ we have $V(H_i) \cap V(H_j) = \emptyset$ for $1 \le i < j \le 4$. Moreover, there are no edges between $V(H_i)$ and $V(H_{i+1})$ for i = 1, 3, since G contains no G_3 . Suppose $\alpha(G_2[H_i \cup H_{i+1}]) \ge 3$, then there are three independent vertices in $V(H_i) \cup V(H_{i+1})$, which are contained together with $u_i, u_5, w_{4-i}, w_{5-i}$ in an independent set of type (0, 2, 2, 3), a contradiction.

Hence we may assume that $G_2[H_i \cup H_{i+1}] \cong 2K_3$ for i = 1, 3. Now any two vertices $v_1 \in V(H_1)$ and $v_2 \in V(H_2)$ are contained in an independent set of size four in G_3 by Lemma 4. Hence $4 \leq \alpha(G_3) \leq 3$ by Lemma 3, a contradiction.

Case 3.2.
$$E(G_1) = \{u_1u_2, u_1u_3, u_4u_5\}$$

See Case 4.

Case 3.3.
$$E(G_1) = \{u_1u_2, u_1u_3, u_2u_3\}$$

We first conclude that $\alpha(G_2)=5$. Hence by Lemma 5 we get $G_2[N(u_i)]\cong K_3$ for i=4,5. We have $1\leq d_{G_2}(u_1)\leq d_{G_2}(u_2)\leq d_{G_2}(u_3)\leq 2$. Let $F_i=G_2[N(u_i)]$ for $1\leq i\leq 3$ and $J=\{u_1,u_4,u_5\}$. If $d_{G_2}(u_1)=1$, then $G'=G[V(G)-(J\cup N(J))]$ has |V(G')|=12. So $3K_4\subset G'$ by Lemma 9. Since $N_{G_3}(F_1),V(F_2)$ and $V(F_3)$ are independent, $N_{G_3}(F_1)$ is contained in a $K_4\subset G-F_1$. Hence there is a C_5 , a contradiction.

If $d_{G_2}(u_i) = 2$ for $1 \le i \le 3$, then |V(G')| = 11. So $2K_4 \cup K_3 \subset G'$ by Lemma 9. Thus $F_i \cong K_2$ is contained in a $K_4 \subset G - u_i$ for some $i, 2 \le i \le 3$. Hence there is a C_5 , a contradiction.

Case 4. $\alpha(G_1) = 2$

Then $G_1 = K_3 \cup K_2$. Let $E(G_1) = \{u_1u_2, u_1u_3, u_2u_3, u_4u_5\}$.

Suppose first $N_{G_2}(u_4) = N_{G_2}(u_5) = \{w_4, w_5\}$ for two vertices $w_4, w_5 \in V(G_2)$. Let $F_i = G_2[N(u_i)]$ for $1 \le i \le 3$ and set $F_i = \{w_i\}$ for i = 4, 5. Now let $H_i = G_3[N(F_i)]$ for $1 \le i \le 5$, $J = \{u, w_4, w_5\}$ and $G' = G - (J \cup N(J))$. Then $11 \le |V(G')| \le 12$ by Lemma 5. Suppose |V(G')| = 12. Then $3K_4 \subset G'$ by Lemma 9. Thus $G[F_i \cup H_i] \cong K_4$ for $1 \le i \le 3$. Since there is no C_5 , we have $|F_i| = 1$ and $|H_i| = 3$ for $1 \le i \le 3$. We may assume $|V(H_4)| = 2$ and $|V(H_5)| = 3$. Thus $H_i \cong K_3$ for i = 1, 2, 3 and 5 and $H_4 \cong K_2$. Since $E(H_4, H_5) = \emptyset$, there is always an independent set with four vertices, one from H_2, H_3, H_4 and H_5 . Together with w_1, u_2 and u_4 this gives an independent set of type (0, 2, 1, 4), a contradiction. Suppose now |V(G')| = 11. Then $2K_4 \cup K_3 \subset G'$ by Lemma 9. We can follow the arguments above and may assume that $|V(F_3) \cup V(H_3)| = K_3$. Again we can find an independent set of type (0, 2, 1, 4) as above, a contradiction.

Suppose next $F_i = G[N_{G_2}(u_i)]$ for i=4,5 with $|V(F_i)| \geq 2$ for two independent components F_4 and F_5 . Furthermore, $F_i = G[N_{G_2}(u_i)]$ for i=1,2,3, since $\alpha(G_2)=5$. We have $1\leq |V(F_1)|\leq |V(F_2)|\leq |V(F_3)|\leq 2$. If $|V(F_i)|=1$ (i.e., $F_i=\{w_i\}$) for some i with $1\leq i\leq 3$, then $d_{G_3}(w_i)=3$, else we would be in a previous case.

Suppose there are two vertices $w_1 \in V(F_1)$ and $w_2 \in V(H_2)$ with $d(w_i) = 4$, $1 \le i \le 2$. Let $J = \{u, w_1, w_2\}$ and $G' = G - (J \cup N(J))$. Then |V(G')| = 11 and $2K_4 \cup K_3 \subset G'$ by Lemma 9. Thus F_i is contained in a $K_4 \subset G' - \{u_i\}$ for some $i, 4 \le i \le 5$. But then there is a C_5 , a contradiction. Hence we may assume that $V(F_i) = \{w_{i1}, w_{i2}\}$ for i = 2, 3 and $d_{G_3}(w_{ij}) = 3$ for i = 2, 3 and $1 \le j \le 2$. But then $|V(G)| \ge 1 + 5 + (1 + 2 \cdot 2 + 2 \cdot 2) + 4 \cdot 3 = 27 > 25$, a contradiction.

3.
$$\Delta(G) = 6$$

Case 1. $\alpha(G_1) = 6$

Since $\alpha(G_1) = 6$ we conclude that $V(G_3^*) = \emptyset$ and thus $15 \ge |V(G_2)| = 25 - 7 = 18$ by Lemma 3, a contradiction.

Case 2. $\alpha(G_1) = 5$

Then $E(G_1) = \{u_1u_2, u_1u_3, \dots, u_1u_r\}, 2 \leq r \leq 6$. Since $\alpha(G_1) = 5$ we conclude by Lemma 3 (b) that $|V(G_3^*)| \leq 4$ and thus $|V(G_2)| \geq 25 - 7 - 4 = 14$. Then $\alpha(G_2) \geq 5$ by Lemma 3 (c). Thus $\alpha(G_2^*) = 5$ and $G_2 \cong 5K_3$ or $G_2 \cong 4K_3 \cup K_2$. By Lemma 6 we conclude $|V(G_1)| \leq 5 < 6$, a contradiction.

Case 3.
$$\alpha(G_1) \leq 4$$

Using Lemma 2 and Lemma 7 we can show that $\alpha(G_2) \geq 6$ and thus there is an independent set of type (1,0,6), a contradiction.

References

- [1] J.A. Bondy and P. Erdős, Ramsey numbers for cycles in graphs, J. Combin. Theory (B) 14 (1973) 46–54.
- [2] B. Bollobás, C.J. Jayawardene, Z.K. Min, C.C. Rousseau, H.Y. Ru and J. Yang, On a conjecture involving cycle-complete graph Ramsey numbers, Australas. J. Combin. **22** (2000) 63–72.
- [3] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan, London and Elsevier, New York, 1976).
- [4] V. Chvátal and P. Erdős, A note on hamiltonian circuits, Discrete Math. 2 (1972) 111–113.
- [5] P. Erdős, R.J. Faudree, C.C. Rousseau and R.H. Schelp, *On cycle-complete graph Ramsey numbers*, J. Graph Theory **2** (1978) 53–64.
- [6] R.J. Faudree and R.H. Schelp, All Ramsey numbers for cycles in graphs, Discrete Math. 8 (1974) 313–329.
- [7] C.J. Jayawardene and C.C. Rousseau, *The Ramsey number for a quadrilateral versus a complete graph on six vertices*, Congr. Numer. **123** (1997) 97–108.
- [8] C.J. Jayawardene and C.C. Rousseau, *The Ramsey Number for a Cycle of Length Five vs. a Complete Graph of Order Six*, J. Graph Theory **35** (2000) 99–108.

- [9] V. Nikiforov, *The cycle-complete graph Ramsey numbers*, preprint 2003, Univ. of Memphis.
- [10] S.P. Radziszowski, Small Ramsey numbers, Elec. J. Combin. 1 (1994) DS1.
- [11] S.P. Radziszowski and K.-K. Tse, A Computational Approach for the Ramsey Numbers $R(C_4, K_n)$, J. Comb. Math. Comb. Comput. **42** (2002) 195–207.
- [12] V. Rosta, On a Ramsey Type Problem of J.A. Bondy and P. Erdős, I & II, J. Combin. Theory (B) 15 (1973) 94–120.
- [13] I. Schiermeyer, All Cycle-Complete Graph Ramsey Numbers $r(C_m, K_6)$, J. Graph Theory 44 (2003) 251–260.
- [14] Y.J. Sheng, H.Y. Ru and Z.K. Min, The value of the Ramsey number $R(C_n, K_4)$ is 3(n-1)+1 $(n \ge 4)$, Australas. J. Combin. **20** (1999) 205–206.
- [15] A. Thomason, private communication.

Received 6 November 2003 Revised 16 February 2005