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Abstract

The cycle-complete graph Ramsey number r(C,,, K,,) is the small-
est integer NV such that every graph G of order N contains a cycle C,,
on m vertices or has independence number a(G) > n. It has been con-
jectured by Erdds, Faudree, Rousseau and Schelp that r(Cy,, K,) =
(m—1)(n—1)+1 for all m > n > 3 (except r(Cs, K3) = 6). This
conjecture holds for 3 < n < 6. In this paper we will present a proof
for ’I“(Og,, K7) = 25.
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1. Introduction

We use [3] for terminology and notation not defined here and consider finite
and simple graphs only.

For two graphs G and H, the Ramsey number (G, H) is the smallest
integer N such that every 2-colouring of the edges of the complete graph
K contains a subgraph isomorphic to G in the first colour or a subgraph
isomorphic to H in the second colour.

A cycle on m vertices will be denoted by C),, and the independence
number of a graph by «(G). The cycle-complete graph Ramsey number
r(Cpm, Ky) is the smallest integer N such that for every graph G of order
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N, C,, C G or a(G) > n. The graph (n — 1)K,,,—1 shows that r(C,,, K,,) >
(m—1)(n—1)+1for all m >n > 3.

Question 1 [5]. With n given, what is the smallest value of m such that
(1) r(Cm, Kp)=(m—1)(n—1)4+17

Conjecture 1 [5]. With the only exception of 7(Cs, K3) = 6, formula (1)

holds for all m >n > 3.

2. Results

The following observation is easily verified.
Observation 1. Formula (1) also holds for n = 1,2 and all m > 3.

Conjecture 1 was confirmed for n = 3 in early work on Ramsey theory ([6],
[12]), and it has been proved recently for n = 4 [14], n = 5 [2] and n = 6 [13].

Table 1. Exact Values of 7(C,, K).

m\n 3 4 5 6 7 8 9
3 6 9 14 18 23 28 36
4 7 10 14 18 22 26
5 9 13 17 21 25

>6 |2m—-1 3m—2 4m—3 bm—4

Bondy and Erdés [1] have proved that formula (1) holds if m > n? — 2. This
was improved by Thomason [15] to m > n? —n —1 for all n > 4 and further
tom >n?—2nforalln>5in [13]. Recently, Nikiforov succeeded to show
a lower bound which is linear in n.

Theorem 1 [9]. 7(Cy,, K,,) = (m—1)(n—1)+ 1 for allm > 4n + 2 and
alln > 4.

Nikiforov has also posed the following challenging conjecture.

Conjecture 2. For every k there exists ng = no(k) such that for n > ng
and m > n'/k,
r(Cm, Kp) =(m—1)(n—1) + 1.



THE CYCLE-COMPLETE GRAPH RAMSEY NUMBER 7(Cs, K7) 131

The known numbers for small values of m and n do not contradict this
conjecture.

In [8] it has been proved that r(Cs, Kg) = 21. In this paper we will
compute 7(Cs, K7).

Theorem 2. r(C5, K7) = 25.

Moreover, the fact that r(Cs, Kg) = 21 and r(Cs, K7) = 25, justifies the
following question.

Question 2. Does Formula (1) hold for all m > 57

3. Preliminary Results

For a vertex u € V(G) let N;(u) = {v € V(G)|d(u,v) = i} and N(u) =
{v e V(G)|d(u,v) > i}. For given N;(u) and N/ (u) let G; = G[N;(u)] and
G; = GIN (w)].

Lemma 1. Let G be a Cs-free graph. Then the graphs G1 and Gy are Py-free
for every vertex u € V(G).

Proof. If G = G[Ni(u)] contains a Py, then u is contained in a Cj, a
contradiction. Hence, G1 is Py-free.

Suppose now that Go contains a Py with vertices labeled wywowswy. If
N(u)NN (w1)NN (wy) # 0, then there is a C5, a contradiction. Hence we may
assume that there are two vertices uy,us € V(G1) such that ujwi, uswy €
E(G). Now consider the vertex ws. If wov € E(G) for a vertex v € V(Gy) —
{u1}, then there is a C5, a contradiction. Hence we may assume that wou; €
E(G). Now consider the vertex ws. Then ws is always contained in a C5, a
contradiction. Hence, G is Py-free. [

The following lemma is an immediate consequence of Lemma 1.

Lemma 2. Let G be a Cs-free graph and u € V(G). Then the components
of G1 and Ga are of the form Ky, Ko, K3 or Ky, forr > 2.

Using Lemma 2 we obtain the following lemma.

Lemma 3. Let G be a Cs-free graph with a(G) < 6. Then
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(a) a(G2) <5 and |V(G2)| < 15,
(b) a(G3) <6 —a(Gy) and |V(G3)| < 24 — 4a(Gh),
(c) If W C V(Ga), then a(Go[W]) > [H1].

Using the assumption that G is Cs-free we obtain the following lemmas.

Lemma 4. Let G be a Cs-free graph and FF C G with F = Ky4. Then
dr(v) <1 for allv e V(G) — V(F).

Lemma 5. Let G be a Cs-free graph with |V (G)| = 25 and a(G) < 6. If
I C V(G) is independent with |I| =k, 1 < k <5, then |[N(I)| > 3k + 1.

Proof. Suppose there is an independent set I C V(G) with |[I| = k, 1 <
k<5 ,and |[N(I)] < 3k.Let G' = G—(IUN(I)). Then |V(G")| > 25 — 4k =
4(7 — k) — 3. Since G is Cs-free, we conclude by Table 1 and Observation 1
that a(G') > 7—k. Let J be an independent set of size «(G') > 7—k in G'.
Then I U J is an independent set of size at least 7 in GG, a contradiction. m

The following two lemmas are easily verified using the fact that G is Cs-free.

Lemma 6. If F; is a component of Go with |V (F;)| > 2, then |N(F;) N
N(u)| =1.

Lemma 7. Let Fy, Fy be two components of Gy. If [V (Fy)| > 2, then N (F1)N
N(F>)NV(Gs2) = 0.

Lemma 8. Let F = Ky be a component of Go with V(F) = {w1, w2} and
J = N(wi) N N(wz) NV(G3). Then J is independent.

Proof. Suppose J is not independent. Then there is an edge in G3[J], say
zy. By lemma 6 there is a vertex v € N(w;) N N(wz) N N(u). But then
C5 C G{v, w1, wq, x,y}], a contradiction. |

Jayawardene and Rousseau have determined all Cs-free graphs G with
a(G) = 3 and order 11 and 12.

Lemma 9 [8]. Let G be a graph with Cs ¢ G and o(G) = 3.
(a) If [V(G)| = 12, then 3K, C G.
(b) If [V(G)| =11, then 2K4 U K3 C G.
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For a vertex u € V(G), an independent set I C V(G) of type (ng,ni,...,
ni—1,n;) is an independent set of size Z?:o n;, which contains n; vertices
from G;, 1 <i < k —1, and nj vertices from Gj. Furthermore, ny =1 (0),
if u is (not) contained in I.

Lemma 10. Let G be a graph with Cs ¢ G. Suppose Gy has five components
Fi,Fs, ..., F5s with |V(F;)| = 1,1 <i < p,|V(F;)| =2, p+1 < i <gq,
\V(F;)| =3, g+ 1 < i <5. Further there are vertices u; € V(G1) such that
G2[N(u;)] = Fj forp+1 < i < q and uyuj € E(G) forp+1 < i < q.
Suppose ¢ > p and |V (G%) — (UL_{N(F}))| > q—p+ 1. Then there exists an
independent set of type (1,0,5,1) or (1,0,4,2).

Proof. Suppose there is no independent set of type (1,0,5,1). Since
V(G3) — (U_{N(F;))| > q—p—+1 there exists ¢ with p+1 < i < g,
say i = p + 1, and two vertices v1,ve € V(G3) with vyw;, vow; € E(QG)
for i = 1,2, where V(Fpy1) = {w1,w2}. By Lemma 8, vjvy ¢ E(G). Since
G1l{up+1, ..., uq}] is complete and G is Cs-free, we have N(v;) NV (F;) =0
fori =1,2 and p+2 < j < ¢q. But then vy, v are contained in an independent
set I containing F; for 1 < i < p and a vertex from each F; for p+2 <1¢ <'5.
Hence I is an independent set of type (1,0,4,2), a contradiction. [

Lemma 11 [8]. Let G be a graph with §(G) > 4 and Cs ¢ G. Then a(G) >
A(G).
4. Proof of Theorem 2

Let |V(G)| = 25. By Lemma 5 and Lemma 11 we may assume that 4 <
0(G) < A(G) < 6. We distinguish these three cases.

1. A(G) =4

Then G is 4-regular. Moreover, by Lemma 5, if d(u,v) = 2 for two vertices
u,v € V(G), then

2) IN(u) N N(v)| = 1.

Hence G contains no induced K4 — e and no induced Cjy. For the neighbour-
hood of a vertex u we distinguish the following cases.
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Case 1. a(Gy) =4
By (2) we conclude that |V(G2)| = 3 -4 = 12. Since a(G2) < 6,F; =
G[Ng,(u;)] = Kz for some ¢ with 1 < i < 4. But then a(G[Ng,(F;)]) = 3.
Hence there are three independent vertices in Ng, (F;) which are contained
together with {wi,u9,us,us} in an independent set of type (0,4,0,3), a
contradiction.

Case 2. a(G1) =3
Let E(G1) = {wiuz} and F; = G[Ng,(u;)] with V(F;) = {w;1,wie} for
i = 1,2. Suppose F; = G[Ng,(u;)] = K3 for some ¢ with 3 < ¢ < 4, say i = 3.
Then |Ng,(F3)| = 3 and a(G[Ng,(F3)]) = 3. By (2) dryur,(v) < 1 for all
vertices v € Ng, (F3). Hence we may assume that Ng, (wi1) N Ngy (F3) = 0.
But then {ug, u3, us, w11 } UNg, (F3) is an independent set of type (0,3, 1, 3),
a contradiction.

Suppose now a(G[Ng,(ui)]) > 2 for 3 < i < 4. Since a(Ga) < 6, we
conclude wW11W12, W21W22 € E(G) Let NG3 (wij) = {xijlwiﬂ} for 1 S i,j S 2.
Then there are three independent vertices in Ng,(w;;) for ij = 12,21, 22.
These three vertices are contained together with wi; and weo,us, uq in an
independent set of type (0,3, 1,3), a contradiction.

For the remaining part we may assume that |E(G[N(v)])| > 2 for every
vertex v € V(G).

Case 3. a(G1) =2
Let E(G1) = {wjug,usus}. Then Ng,(uw;) = V(F;) = {wi,wi2} with
wiiwie € E(G) for 1 < i < 4. As above we conclude that there are three
independent vertices in Ng,(w;;) for ij = 32,41,42 which are contained
together with ug, u4, w11 and ws; in an independent set of type (0,2,2,3), a
contradiction.

Case 4. a(G1) =2
Let E(G1) = {uiug, ujus, ugus }. We may assume that G[N(v)] = K3UK] for
every vertex v € V(G). Choose an edge vw with N(u) = {w, ui,us2,us} and
N(w) = {u,w;,we,ws} such that G[{u1,ue,us}] = K3 = G{w, w2, ws}].
Then there exist vertices x; and y; for 1 <4 < 3 such that u;x;, wy; € E(G).
Let V(G1) = {u1,u2,us, w1, wa, w3} and V(Ga) = {x1,z2,23,y1,Y2,Y3}
Hence a(G2) < 5. If a(Ga) = 5, then there is an independent set of
type (1,1,5), a contradiction. Hence we may assume «(Gz) < 4. Since
E({z1, 22,23}, {y1,y2,ys}) contains only independent edges, we may assume
that |E({x1, 22,23}, {y1,y2,y3})| = 2 (else consider uy,z1 instead of u,w).
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We may assume that z2, y2 and x3, y3 are contained in a K4. Hence |V (G3)| =
2.2+ 2.3 =10. Therefore, V(G}) # ) and so there is an independent set
of type (1,1,4,0,1) (with respect to the edge uw), a contradiction.

2. A(G) =5

Case 1. a(G1) =5
Since a(G1) = 5 we conclude that a(G%) <1 and thus |V (G2)| > 25 — (1 +
5+ 4) = 15. By Lemma 3 we have |V (G2)| < 15. Therefore, Go = 5K3
and G3 = K,. Hence by Lemma 4 every vertex of (G3 is contained in an
independent set of type (1,0,5,1), a contradiction.

Case 2. a(Gy) =4
Then |V(G%)| < 8 by Lemma 3 and thus [V(G2)| > 11.

Case 2.1. E(G1) = {ujua}

Let Uy = {ui,u2} and Us = {us,uq,us}. By Lemma 5 we conclude that
|INa,(Uz)| > 9. Since a(G2[N(U1)]) > 2, we get a(G2[N(Uy)]) = 2 and
a(G2[N(Uz)]) = 3 by Lemma 3 and Lemma 7. Moreover, G3[N (Us)] = 3K3
by Lemma 6.

Let J = {us,u4,us} and G’ = G — (J U N(J)). Then |V(G)| = 12
and a(G’) > 3 by Table 1. Since I U J is an independent set in G with
[TUJ| < a(G) < 6 for every independent set I of G’, we conclude a(G’) = 3.
Hence 3K4 C G’ by Lemma 9. Therefore, Go[N (u1)] = {F1, Fo} = {K3, K3}
and we follow the arguments of Case 1 above.

Case 2.2. E(G1) = {ujug, ujus}
Let Uy = {u1, u2,us} and Uy = {ua4,us}. Similarily as in the previous case we
conclude that a(G2[N(U1)]) = 3, a(G2[N(Uz2)]) = 2 and G2[N(Usz)] = 2K.
Let Fy, F5, F3 be the three components of Go[N(Uy)] with F; = Ga[N(u;)]
for i = 1,2,3. Let J = {u1,uq,us} and G' = G — (JU N(J)). Then 11 <
|[V(G")| < 12 and thus 3Ky C G’ or 2K4 U K3 C G’ by Lemma 9. Since
N¢,(F1) and Fy, F3 are independent, Ng, (F;) = K3 for i = 2 or 3. But then
H; = Ng,(F;) = K4 is contained in a Ky C G’ for i = 2 or 3, a contradiction.

Case 2.3. E(G1) = {ujug, ujus, ujug}

Case 2.4. E(G1) = {ujua, ujus, ujug, ujus}
For both cases let J = {ug,us,us} and G' = G — (JU N(J)). By Lemma
5 we need |J U N(J)| > 13. Since 4 < «a(G2) < 5 we conclude that
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G[Ng,(u;)] &2 K3 for some 7,2 < i

1 < 4. Now we can follow the proof of
Case 4 (by considering u; with d(u;) =5 1

nstead of u).
Case 3. a(G1) =3

Case 3.1. E(G1) = {ujug, uzuy}

As in previous cases we conclude that a(G2) = 5 and Gao[N(us)] = Ks.
Suppose G is isomorphic to one of {K,,,, Ky,, Kny, Kn,, Kn;} with 2 <
np < mg <3,2<n3<ng <3 ns =3 Ifdw)=4=dws),let J=
{u,w1,ws} and G' = G—(JUN(J)). Then |V (G’)| = 11 and thus 2K4UK3 C
G’ by Lemma 9. Since Fy, Fy and Fj are independent and |V (F;)| > 2
for i = 2,4,5, there exist F;,i = 2,4 or 5, such that F; is contained in
a Ky C G' — {u;}, a contradiction. Suppose G5 is isomorphic to one of
{K17K17Kn3,Kn47Kn5} with 2 < ng < ng < 3,n5 = 3. Then ’V(Gg)’ >
25—6— (5+mn3+n4) =14 — n3 — nyg. Hence |V (G3) — (N(F1) UN(Fy))| >
14 —n3 —ng — 6 =8 — n3z — ng. Now by Lemma 10 there is an independent
set of type (1,0,5,1) or (1,0,4,2), a contradiction.

Finally suppose that G is isomorphic to { K1, K1, K1, K1, K3}. Let wy,
wa, w3, wq € V(G2) be four independent vertices with Ng, (u1) = Ng, (u2) =
{w1, w2} and Ng,(u3) = Ng,(us4) = {ws, ws}. If there is a vertex v € V(G3)
with v ¢ N(w;) for 1 < i <4, then v is contained in an independent set of
type (1,0,5,1) by Lemma 4, a contradiction.

Hence we may assume that V(G3%) = V(G3) C N(w1)UN (w2)UN (w3)U
N(wy). Furthermore, dg,(w;) = 3 for 1 < i < 4. Let H; = G[Ng,(w;)] for
1 < i< 4. Since |V(G3)| = 12 we have V(H;) NV (H;) =0 for 1 <i < j < 4.
Moreover, there are no edges between V(H;) and V(H;t1) for i = 1,3,
since G contains no Cs. Suppose a(Go[H; U H;11]) > 3, then there are three
independent vertices in V(H;)UV (H;41), which are contained together with
u;, Us, Wi—4, ws—; in an independent set of type (0,2,2,3), a contradiction.

Hence we may assume that Go[H; U H;11] = 2K3 for i = 1,3. Now any
two vertices v1 € V(H;) and vy € V(Hz) are contained in an independent
set of size four in G3 by Lemma 4. Hence 4 < a(G3) < 3 by Lemma 3, a
contradiction.

Case 3.2. E(G1) = {ujug, ujus, ugus}
See Case 4.

Case 3.3. E(G1) = {ujug, ujus, ugus}
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We first conclude that a(G3) = 5. Hence by Lemma 5 we get Ga[N (u;)] =
K3 for i = 4,5. We have 1 < dGQ(ul) < dg,(u2) < dgy(ug) < 2. Let
F; = Go[N(w;)] for 1 < i < 3 and J = {ui,uq,us}. If dg,(u1) = 1, then
G' = G[V(G) = (JUN(J))] has |V(G')| = 12. So 3K4 C G’ by Lemma 9.
Since Ng,(F1), V(F») and V(F3) are independent, N, (F}) is contained in
a K4 C G — F1. Hence there is a C5, a contradiction.

If dg, (u;) = 2 for 1 <4 < 3, then |V(G’)| = 11. So 2K, U K3 C G’ by
Lemma 9. Thus F; & K5 is contained in a Ky C G —u; for some 4,2 <14 < 3.
Hence there is a (5, a contradiction.

Case 4. a(G1) =2
Then G; = K3 U Ks. Let E(Gl) = {U1UQ,U1U3,UQU3,U4U5}.

Suppose first Ng, (us4) = Ng,(us) = {wa, ws} for two vertices wy, ws €
V(G2). Let F; = Go[N(u;)] for 1 <i < 3 and set F; = {w;} for i = 4,5. Now
let H; = G3[N(F;)] for 1 <i <5, J={u,wg, w5} and G = G— (JUN(J)).
Then 11 < |V(G’)| < 12 by Lemma 5. Suppose |V (G’)| = 12. Then 3K, C
G’ by Lemma 9. Thus G[F; U H;] & K4 for 1 < i < 3. Since there is
no Cs, we have |Fj| = 1 and |H;| = 3 for 1 < ¢ < 3. We may assume
|V(H4)| = 2 and |V(Hs)| = 3. Thus H; = K3 for ¢ = 1,2,3 and 5 and
Hy = K. Since E(Hy, Hs) = (), there is always an independent set with
four vertices, one from Hsy, H3, Hy and Hs. Together with wi,us and wuy
this gives an independent set of type (0,2,1,4), a contradiction. Suppose
now |V(G')] = 11. Then 2K, U K3 C G’ by Lemma 9. We can follow the
arguments above and may assume that |V (F3) UV (H3)| = K3. Again we
can find an independent set of type (0,2,1,4) as above, a contradiction.

Suppose next F; = G[Ng,(u;)] for i = 4,5 with |V (F;)| > 2 for two
independent components Fy and F5. Furthermore, F; = G[Ng, (u;)] for i =
1,2,3, since a(G2) = 5. We have 1 < |[V(F)| < |[V(Fy)| < |V (F3)] < 2. If
]V( i) =1 (ie., F; = {w;}) for some ¢ with 1 <4 < 3, then dg,(w;) =
else we would be in a previous case.

Suppose there are two vertices wi € V(Fi) and we € V(Hy) with
dlw;)) = 4,1 < i < 2. Let J = {u,w1,wz} and G’ = G — (JU N(J)).
Then [V(G')] = 11 and 2K, U K3 C G’ by Lemma 9. Thus F; is con-
tained in a Ky C G' — {u;} for some 7,4 < ¢ < 5. But then there is
a Cs, a contradiction. Hence we may assume that V(F;) = {w;1,wi}
for i = 2,3 and dg,(w;j) = 3 for ¢ = 2,3 and 1 < j < 2. But then
V(G)|>14+54+(1+2-242-2)+4-3=27> 25, a contradiction.
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3. A(G) =6

Case 1. a(G1) =6
Since a(G1) = 6 we conclude that V(G%) = 0 and thus 15 > |[V(Gs)| =
25 — 7 =18 by Lemma 3, a contradiction.

Case 2. a(Gy) =5
Then E(G1) = {wiug,uiug,...,u1us},2 < r < 6. Since a(Gy) = 5 we
conclude by Lemma 3 (b) that |V (G%)| < 4 and thus |V (G2)| > 25-7—4 =
14. Then o(G2) > 5 by Lemma 3 (¢). Thus a(G3) = 5 and G2 = 5K3 or
Gy =2 4K3U K5. By Lemma 6 we conclude |V (G1)| < 5 < 6, a contradiction.

Case 3. a(Gy) < 4
Using Lemma 2 and Lemma 7 we can show that «(G2) > 6 and thus there
is an independent set of type (1,0, 6), a contradiction. [
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