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Abstract

Let G = (V, E) be a graph, and k ≥ 1 an integer. A subgraph D
is said to be k-dominating in G if every vertex of G−D is at distance
at most k from some vertex of D. For a given class D of graphs,
DomkD is the set of those graphs G in which every connected induced
subgraph H has some k-dominating induced subgraph D ∈ D which
is also connected. In our notation, DomD coincides with Dom1D. In
this paper we prove that DomDomDu = Dom2Du holds for Du = {all
connected graphs without induced Pu} (u ≥ 2). (In particular, D2 =
{K1} and D3 = {all complete graphs}.) Some negative examples are
also given.
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1. Introduction

Though domination is a relatively young subfield of graph theory, it already
has an extensive literature. It is also impressive how many other areas are
related to it. For a detailed account on the subject, we refer to the recent
book [8] and the earlier edited volume [10].

In several papers, e.g. [2, 3] and [5], we have dealt with the graph class
DomD, connected-hereditarily dominated by the members of a given family
D (see formal definition in the Abstract, or below). Generally we look for the
characterization of DomD in terms of forbidden induced subgraphs. In this
setting, an already classic result of Wolk [9] on “ trivially perfect ” graphs
(i.e., those having a dominating vertex in each connected induced subgraph)
can be formulated as the following equation between graph classes :

(1) Dom{K1} = Forb (P4, C4) .

(As usual, Pk and Ck denote the path and the cycle on k vertices, respec-
tively. For the formal definition of Forb, see the next subsection.)

Cozzens and Kelleher [6] and, independently and simultaneously, two of
the present authors [2] characterized the existence of dominating cliques as
follows :

(2) Dom{Kt | t ≥ 1} = Forb (P5, C5) .

Further equations of this form are proved in [4] and [5].
As regards domination in distance k, in [1] we showed the existence of

special k-dominating sets in some classes of graphs, continuing the work
begun in [7].

In [3] we proved the following identity, which contains both (1) and (2)
as particular cases, and will also be applied in the proof of the main result
of this paper :

(3) Dom Forb (Pk) = Forb (Pk+2, Ck+2)

for every k ≥ 2.

Here we investigate the iterated application of the operator ‘Dom’ and its
relation to the operator ‘Dom2’ acting at distance 2. We introduce the
Property (*) as follows. We say that a class D of graphs has Property (*) if

DomDomD = Dom2D.
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We shall prove that this equality does hold for infinitely many classes of
graphs D, namely for D = Du = Forb(Pu), for every u ≥ 2.

Though Dom2 is closely related to the iteration of Dom, Property (*)
does not hold for every family D. An infinite sequence of negative examples
is presented in the last section, with two further positive examples. They
lead to the following questions that remain open :

Problem 1. Characterize the families D satisfying Property (*).

Problem 2. More generally, characterize those classes D for which the k
times iterated Dom · · ·DomD coincides with DomkD.

Definitions and notation

All graphs considered in this paper are assumed to be finite.
Let k ≥ 1 be an integer. The set X of vertices — and the subgraph

induced by X — is k-dominating in the graph G = (V, E) if for every vertex
y ∈ V − X there exists some x ∈ X such that the distance of x and y in
G is at most k. For a given class D of graphs, DomkD denotes the set of
those graphs G in which every connected induced subgraph H has some
k-dominating induced subgraph D ∈ D which is also connected.

Remarks

1. The latter condition on connectedness was not necessary in other
works on the Dom operator. Dom also generates disconnected graphs, how-
ever, and those would make the iteration DomDom meaningless without
the additional assumption.

2. The term ‘k-dominating set’ is sometimes used in a different meaning
in the literature. In our context it is a shorthand for the more complicated
phrase ‘set dominating at distance k.’

3. In our notation, DomD coincides with Dom1D.
4. Every class D of graphs satisfies

DomDomD ⊆ Dom2D,

because every connected G ∈ DomDomD contains a dominating H ∈
DomD which is connected, and this H is dominated by some connected
J ∈ D ; i.e., this J ∈ D is a 2-dominating subgraph of G.
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This relation extends to k-times iteration, too : Dom · · ·DomD ⊆
DomkD for every D and every k ≥ 2.
We say that G is H-free if G does not contain H as an induced subgraph.
For a family H of graphs, Forb(H) will denote the class of graphs that are
H-free for all H ∈ H. If the members of H = {H1,H2, . . .} are explicitly
given, we write Forb(H1,H2, . . .) instead of Forb({H1, H2, . . .}).

We shall need two more definitions. For two disjoint sets X and Y of
vertices in a graph G = (V, E), X dominates Y if for every vertex y ∈ Y,
there exists some x ∈ X with xy ∈ E(G). If x is the unique neighbor of y in
X, we say that y is a private neighbor of x with respect to X.

2. Two Useful Lemmas

The following simple statement was already applied in [3].

Lemma 1. Suppose that G is a Ct-free and Pt-free graph. If D is a domi-
nating connected induced subgraph of G such that D is minimal under these
properties, then D is Pt−2-free.

The next assertion will play an important role in the proofs later.

Lemma 2. Let S and T be connected graphs, and let T have minimum
degree at least 2. Let G be a connected, F (T )-free graph in which every
minimal connected dominating induced subgraph is S-free. Then G has a
dominating connected induced subgraph which is S-free and T -free.

Proof. We take a minimal connected dominating subgraph D which has
as few induced subgraphs isomorphic to T as possible. This D is S-free by
the conditions, and if it has no T subgraph, then we are done. Suppose for a
contradiction that it has an induced T with non-cutting points v1, v2, . . . , vt.
We assume that in this sequence the non-cutting vertices of D are listed first ;
i.e., for some 0 ≤ s ≤ t, D− vi is connected if 1 ≤ i ≤ s and disconnected if
s < i ≤ t. We claim that if there is a subgraph ∆i = D ∪ {uj | 1 ≤ j ≤ i}
of G, with some i < s, such that
— for all 1 ≤ j ≤ i, the vertex uj is not in D,
— the only neighbor of uj in ∆i is vj , and
— ∆i contains the minimum number of copies of T among all dominating

connected induced subgraphs of G,
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then there exists a vertex ui+1 such that the same properties hold for sub-
script i + 1 instead of i in the subgraph ∆i+1 induced by ∆i ∪ {ui+1}.

(Actually, the last condition on the number of T subgraphs holds automati-
cally, because the insertion of pendant vertices cannot create new subgraphs
of minimum degree greater than one. The condition is listed here to make
it more transparent that the procedure works indeed.)

The construction is as follows :
Since i < s, vi+1 is a non-cutting vertex of D, neither of ∆i. Then the

graph Π = ∆i − vi+1 is connected and contains fewer copies of T than ∆i

does. Hence, by the conditions above, Π is not dominating in G. Conse-
quently, vi+1 has a private neighbor, namely there exists a vertex ui+1 6∈ ∆i

such that the only neighbor of this vertex in ∆i is vi+1. That is, we have
found the structure required.

Starting this process with i = 0 and ∆0 = T , after s steps an induced
subgraph ∆s is constructed. We now observe that all the vertices vj with
s < j ≤ t are cutpoints of ∆s, and the entire T − vj (which is connected)
together with all the ui (i ≤ s) belongs to the same component of ∆s − vj .
For each such j, we denote by uj an arbitrarily selected neighbor of vj in a
connected component of ∆s − vj not containing T − vj .

It only remains to observe that the subgraph of G induced by T ∪
{ui | 1 ≤ i ≤ t} is isomorphic to F (T ), and this contradiction proves the
Lemma.

3. Dominating Subgraphs Without Long Induced
Paths

Let the class of graphs Du consist of all the Pu-free graphs (u ≥ 2).

Theorem 1. The class Du satisfies Property (∗).

Proof. We will use the notation s := u + 2, t := u + 4. By the re-
mark after the definition of Property (∗), we need to show that Dom2Du ⊆
DomDomDu. The class Dom2Du is closed under induced subgraphs, thus
it is enough to prove for every G ∈ Dom2Du that G has a dominating con-
nected induced subgraph being in DomDu. Using the notation above, we
see that G is F (Cs)-free, Ct-free, and Pt-free, since in these graphs there



126 G. Bacsó, A. Tálos and Zs. Tuza

is no 2-dominating subgraph being in Du. Let us recall here Equation (3)
from above:

(3) DomDu = Forb (Ps, Cs) .

Based on this equality, it will suffice to prove that G has a dominating
connected induced subgraph being in Forb(Ps, Cs).
By Lemma 1, every minimal dominating connected induced subgraph of G
is Ps-free. Since G is F (Cs)-free, the conditions of Lemma 2 are fulfilled for
S = Ps and T = Cs. Thus, G has a dominating connected induced subgraph
H ∈ Forb(Ps, Cs), and the theorem follows.

Let us mention two interesting particular cases. If we apply Theorem 1 for
u = 2, we obtain the following :

Corollary 1. The one-element set {K1} satisfies Property (∗).

For u = 3, we get

Corollary 2. The set of all cliques has Property (∗).

From the proofs above, the following characterization is also obtained :

Theorem 2. For every u ≥ 2,
Dom2Du = DomDomDu = Forb(Pu+4, Cu+4, F (Cu+2)).

Proof. Denoting H = {Pu+4, Cu+4, F (Cu+2)}, the following sequence of
graph class containments can be extracted from Remark 4 and from the
proof of Theorem 1 :

Forb (H) ⊆ DomDomDu ⊆ Dom2Du ⊆ Forb (H) .

Thus, equality must hold throughout.

It is worth mentioning that the following characterization (concerning the
‘standard’ domination at distance one) has also been derived along the way :

Theorem 3. For the family D = D(t) = Forb(Pt, Ct),

DomD = Forb (Pt+2, Ct+2, F (Ct))

for each t ≥ 3.
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4. Dominating Subgraphs of Bounded Diameter

Let k ≥ 0 be an integer, and let D′k denote the family of all graphs of
diameter at most k. This D′k is of interest because, depending on the value
of k, it provides both positive and negative examples for Property (∗).
Proposition 1. For k ≥ 5, the family D′k does not have Property (∗).
Proof. The path Pk+4 is not dominated by any subgraph of diameter at
most k, i.e., no member of DomD′k may contain an induced Pk+4. However,
every dominating connected subgraph of Ck+6 contains an induced Pk+4,
thus, Ck+6 /∈ DomDomD′k.

On the other hand, if k ≥ 5, then the cycle Ck+6 has diameter bk/2c+
3 ≤ k. Hence, Ck+6 ∈ Dom2D′k \ DomDomD′k for every k ≥ 5, therefore
the two graph classes cannot be the same.

For k small, just the opposite is true :

Theorem 4. The family D′k has Property (∗) for every k ≤ 4.

Proof. If k = 0 or k = 1, then within the class of connected graphs, the
conditions ‘having diameter k’ and ‘not containing an induced Pk+2’ are
equivalent ; that is, on applying Theorem 1 we obtain

DomDomD′k = DomDomDk+2 = Dom2Dk+2 = Dom2D′k for k = 0, 1 .

Consider next k = 2. Clearly, DomDomD′2 ⊆ Dom2D′2 ⊆ Forb(P8, C8,
F (C6)). Conversely, we have already seen that DomD′2 = Dom(Forb P4) =
Forb(P6, C6), from which DomDomD′2 = Forb(P8, C8, F (C6)) follows by
Theorem 3.

Finally, let k = 3 or k = 4. It has been proved in [4] that, for every
k ≥ 3, DomD′k coincides with Forb(Pk+4). On applying Equation (3), from
this we obtain

(4) DomDomD′k = Forb (Pk+6, Ck+6) for all k ≥ 3

Now, the inclusion relation in Remark 4, the fact that Pk+6 and Ck+6 are
not 2-dominated by any subgraph of diameter at most k, and the character-
ization exhibited in Equation (4), together yield :

DomDomD′k ⊆ Dom2D′k ⊆ Forb (Pk+6, Ck+6) = DomDomD′k for k = 3, 4

Consequently, equality must hold throughout.

In fact, our results allow us to go one step further :
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Theorem 5. For k = 3 and k = 4, DomDomDomD′k = Dom3D′k =
Forb(Pk+8, Ck+8, F (Ck+6)).

Proof. Combine Remark 4, Equation (4), Theorem 3, and the fact that
the graphs Pk+8, Ck+8, and F (Ck+6) do not belong to Dom3D′k.

Note added in Proof. From some recent results of the authors, the equa-
tion DomDomD = Dom2D can be derived for further classes of graphs.
Details will be given in a forthcoming paper.
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