COMBINATORIAL LEMMAS FOR POLYHEDRONS

Adam Idzik

Akademia Świętokrzyska

15 Świętokrzyska street, 25–406 Kielce, Poland
and
Institute of Computer Science
Polish Academy of Sciences
21 Ordona street, 01–237 Warsaw, Poland
e-mail: adidzik@ipipan.waw.pl

AND

Konstanty Junosza-Szaniawski

Warsaw University of Technology Pl. Politechniki 1, 00–661 Warsaw, Poland

e-mail: k.szaniawski@mini.pw.edu.pl

Abstract

We formulate general boundary conditions for a labelling to assure the existence of a balanced n-simplex in a triangulated polyhedron. Furthermore we prove a Knaster-Kuratowski-Mazurkiewicz type theorem for polyhedrons and generalize some theorems of Ichiishi and Idzik. We also formulate a necessary condition for a continuous function defined on a polyhedron to be an onto function.

Keywords: KKM covering, labelling, primoid, pseudomanifold, simplicial complex, Sperner lemma.

2000 Mathematics Subject Classification: 05B30, 47H10, 52A20, 54H25.

1. Preliminaries

By N and R we denote the set of natural numbers and reals, respectively. Let $n \in N$ and V be a finite set of cardinality at least n+1. $\mathbf{P}(V)$ is the family of all subsets of V and $\mathbf{P}_n(V)$ is the family of all subsets of V of cardinality n+1. For $A \subset R^n$ co A is the convex hull of A and af A is the affine hull of A (the minimal affine subspace containing A). Let ri Z and bd Z be the relative interior and the boundary of a set $Z \subset R^n$, respectively. The relative interior of the set Z is considered with respect to the affine hull of Z. Dimension of a set $A \subset R^n$ is the dimension of af A. If for some $A \subset R^n$ the dimension of af A is n-1, then af A is called a hyperplane. And if for a finite set $A = \{a_0, \dots, a_m\} \subset R^n \ (m \in \{0, \dots, n\})$ the dimension of af A is equal to m, then co A is called a simplex (precisely an m-simplex).

2. Polyhedrons

By a polyhedron we understand the convex hull of a finite set of R^n . Let $P \subset R^n$ be a polyhedron of dimension n. A face of the polyhedron P is the intersection of P with some of its supporting hyperplane. Denote the set of all k-dimensional faces of the polyhedron P by $\mathbf{F}_k(P)$ ($k \leq n$) and the set of all vertices of the polyhedron P by V(P) ($V(P) = \mathbf{F}_0(P)$). The maximal dimension proper faces of the polyhedron P are called facets. Let Tr_n be a family of n-simplexes such that $P = \bigcup_{\delta \in Tr_n} \delta$ and for any $\delta_1, \delta_2 \in Tr_n, \delta_1 \cap \delta_2$ is the empty set or their common face. A triangulation of the polyhedron P (we denote it by Tr) is a family of simplexes containing Tr_n and fulfilling the following condition: any face of any simplex of Tr also belongs to Tr. Let Tr_m ($m \in \{0, \dots, n\}$) denote the family of m-simplexes belonging to a triangulation Tr. Hence $Tr = \bigcup_{i=0}^n Tr_i$. Let $V = Tr_0$ be the set of vertices of all simplexes of Tr. Notice, that $Tr_0 = \bigcup_{\delta \in Tr_n} V(\delta)$. An (n-1)-simplex of Tr_{n-1} is a boundary (n-1)-simplex if it is a facet of exactly one n-simplex of Tr_n .

Let U be a finite set. An n-primoid \mathbf{L}_n^U over U is a nonempty family of subsets of U of cardinality n+1 fulfilling the following condition: for every set $T \in \mathbf{L}_n^U$ and for any $u \in U$ there exists exactly one $u' \in T$ such that a set $T \setminus \{u'\} \cup \{u\} \in \mathbf{L}_n^U$.

Each function $l: V \to U$ is called a *labelling*. An *n*-simplex $\delta \in Tr_n$ is *completely labelled* if $l(V(\delta)) \in \mathbf{L}_n^U$ and an (n-1)-simplex $\delta \in Tr_{n-1}$ is x-labelled $(x \in U)$ if $l(V(\delta)) \cup \{x\} \in \mathbf{L}_n^U$.

The following theorem is a special case of the theorem of Idzik and Junosza-Szaniawski formulated for geometric complexes. This theorem generalizes the well known Sperner lemma [9].

Theorem 2.1 (Theorem 6.1 in [3]). Let Tr be a triangulation of an n-dimensional polyhedron $P \subset \mathbb{R}^n$, $V = Tr_0$, \mathbf{L}_n^U be an n-primoid over a set U and $x \in U$ be a fixed element. Let $l: V \to U$ be a labelling. Then the number of completely labelled n-simplexes in Tr is congruent to the number of boundary x-labelled (n-1)-simplexes in Tr modulo 2.

Let $U \subset \mathbb{R}^n$ be a finite set containing V(P) and let $b \in \operatorname{ri} P$ be a point, which is not a convex combination of fewer than n+1 points of the set U. The family $\mathbf{L}_n^b = \{T \subset U : |T| = n+1, \ b \in \operatorname{co} T\}$ is a primoid over the set U (see Example 3.6 in [3]). We say a b-balanced n-simplex instead of a completely labelled n-simplex if $\mathbf{L}_n^U = \mathbf{L}_n^b$. In the case b = 0 a b-balanced n-simplex is called a balanced n-simplex.

3. Main Theorem

Theorem 3.1. Let $P \subset R^n$ be a polyhedron of dimension n, Tr be a triangulation of the polyhedron P, $V = Tr_0$. Let $U \subset R^n$ be a finite set containing V(P), let $b \in ri P$ be a point which is not a convex combination of fewer than n+1 points of U and let $l: V \to U$ be a labelling. If for every facet F_{n-1} of the polyhedron P we have $l(V \cap F_{n-1}) \subset F_{n-1}$, then the number of b-balanced n-simplexes in the triangulation Tr is odd.

Remark 3.2. Notice that the condition $l(V \cap F_{n-1}) \subset F_{n-1}$ implies that for each lower dimensional face F we have $l(V \cap F) \subset F$, because: $l(V \cap F) \subset \bigcap_{F \subset F_{n-1} \in \mathbf{F}_{n-1}(P)} F_{n-1} = F$.

Proof of Theorem 3.1. We apply the induction with respect to dimension of the polyhedron P. If dimension of P is equal to 1, then the theorem is obvious. Assume that the theorem is true for all polyhedrons of dimension k ($k \in N$). Consider a polyhedron P of dimension k + 1. Choose a vertex of P and denote it by x. Let b' be a point different from x, lying on the boundary of P and on the straight line passing through points b and x. Let $F_{b'}$ be a face of P containing b'. Observe that dimension of $F_{b'}$ is equal to k, because otherwise the point b would be a convex combination of fewer than (k+1)+1 points of V(P).

Let us count x-labeled k-simplexes on bd P. For any facet F different from $F_{b'}$ there is no x-labeled k-simplex contained in F since for all $\delta \in Tr^k \cap F$ $\operatorname{col}(V(\delta)) \subset F$ and $b \notin \operatorname{co}(\{x\} \cup V(F))$. Hence all x-labeled k-simplexes are contained in $F_{b'}$. Notice that a k-simplex $\delta \in Tr^k \cap F_{b'}$ is the x-labelled k-simplex if and only if δ is a b'-balanced k-simplex. Because of Remark 3.2 we may apply the induction assumption for $F_{b'}$ ($F_{b'}$ is considered as a subset of af $F_{b'}$) and the point b'. Therefore the number of b'-balanced k-simplexes on $F_{b'}$ is odd. Thus the number of boundary x-labeled k-simplexes in Tr is odd and by Theorem the number of the b-balanced (k+1)-simplexes in Tr is odd.

Observe that for any polyhedron Q, triangulation Tr' of $\operatorname{bd} Q$ and a point $c \in \operatorname{ri} Q$ the family $Tr = \{\operatorname{co}(\{c\} \cup V(\delta)) : \delta \in Tr'\} \cup Tr' \cup \{c\} \text{ is a triangulation of the polyhedron } Q$.

For any (n-1)-dimensional hyperplane h_b^F containing the point b and disjoint with a facet F of the polyhedron P let H_b^F denote the open halfspace containing F and such that h_b^F is its boundary.

Theorem 3.3. Let $P \subset R^n$ be a polyhedron of dimension n, Tr be a triangulation of the polyhedron P, $V = Tr_0$. Let $U \subset R^n$ be a finite set containing V(P), let $b \in ri$ P be a point which is not a convex combination of fewer than n+1 points of U and let $l: V \to U$ be a labelling. If for every facet F_{n-1} of the polyhedron P there exists an (n-1)-dimensional hyperplane $h_b^{F_{n-1}}$ containing the point b and disjoint with F_{n-1} such that $l(V \cap F_{n-1}) \subset H_b^{F_{n-1}}$, then the number of b-balanced n-simplexes in the triangulation Tr is odd.

Proof. For n=1 the theorem is obvious, so we consider n>1. Let $V(P)=\{a_0,\cdots,a_k\}$ $(k\geq n)$. Let $a_i'=2a_i-b$ for $i\in\{0,\cdots,k\}$ and let $P'=\operatorname{co}\{a_0',\cdots,a_k'\}$. Notice that $P\subset P'$.

Now we define a triangulation of P', which is an extension of the triangulation Tr on P. We will define a triangulation of $P' \setminus ri P$.

For every face $F = \operatorname{co} \{a_{i(0)}, \dots, a_{i(l)}\}$ $(\{a_{i(0)}, \dots, a_{i(l)}\} \subset V(P))$ of the polyhedron P we denote $F' = \operatorname{co} \{a'_{i(0)}, \dots, a'_{i(l)}\}$. Every face F of P has one-to-one correspondence to the face F' of P'.

Let us denote $FF' = \operatorname{co} \{ F \cup F' \}$. Thus $P' \setminus \operatorname{ri} P = \bigcup_{F \in \mathbf{F}_{n-1}(P)} FF'$.

For n = 1 the triangulation of P' is trivial, so we may assume n > 1.

For any face $F_1 \in \mathbf{F}_1(P)$ we choose a point $v_{F_1'} \in \mathrm{ri}\, F_1'$ in such a way that the point b is not a convex hull of less than n+1 points of $U \cup \{v_{F_1'}: v_{F_1'}: v_$

 $F_1 \in \mathbf{F}_1(P)$. We join $v_{F_1'}$ with every vertex of the face F_1' . Thus we receive triangulation of F_1' . We choose a point $v_{F_1F_1'} \in \operatorname{ri} F_1F_1'$ in such a way that the point b is not a convex hull of less than n+1 points of $U \cup \{v_{F_1'}, v_{F_1F_1'} : F_1 \in \mathbf{F}_1(P)\}$. We join $v_{F_1F_1'}$ with every vertex of the face F_1' , with the point $v_{F_1'}$ and with every vertex of $V \cap F_1$. Thus we receive triangulation of F_1F_1' .

Now we apply the induction for $k \in \{2, \dots, n-1\}$: For any face $F_k \in \mathbf{F}_k(P)$ we choose a point $v_{F'_k} \in \operatorname{ri} F'_k$ in such a way that the point b is not a convex hull of less than n+1 points of $U \cup \bigcup_{i=1}^k \{v_{F'} : F \in \mathbf{F}_i(P)\} \cup \bigcup_{i=1}^{k-1} \{v_{FF'} : F \in \mathbf{F}_i(P)\}$. We join $v_{F'_k}$ with every vertex of F'_k and every point of the set $\bigcup_{F' \subset F'_k} \{v_{F'}\}$. Thus we get a triangulation of the face F'_k . We choose a point $v_{F_kF'_k} \in \operatorname{ri} F_kF'_k$ in such a way that the point b is not a convex hull of less than n+1 points of $U \cup \bigcup_{i=1}^k \{v_{F'}, v_{FF'} : F \in \mathbf{F}_i(P)\}$. For each $F_k \in \mathbf{F}_k(P)$ we join the vertex $v_{F_kF'_k}$ with the vertex $v_{F'}$, with all the vertices of $V \cap F_k$, vertices of F'_k and with the vertices of the set $\bigcup_{F \subset F_k} \{v_{F'}, v_{FF'}\}$.

We get the triangulation of $P' \setminus ri P$ and we denote it by Tr''. Hence $Tr' = Tr \cup Tr''$ is a triangulation of P', which is an extension of the triangulation Tr on P.

Let $U' = U \cup \bigcup_{i=1}^{n-1} \{v_{F'}, v_{FF'} : F \in \mathbf{F}_i(P)\}$. Let $V' = Tr'_0$. We define a labelling $l' : V' \to U'$. Let l'(v) = l(v) for $v \in V$ and l(v) = v for $v \in V' \setminus V$. Notice that the labelling l' satisfies conditions of Theorem 3.1. Thus there exists an odd number of b-balanced n-simplexes in Tr'. All b-balanced n-simplexes belong to Tr since for any facet F of P we have $l'(V' \cap FF') \subset H_b^F$, where H_b^F is an open halfspace such that the point b is on its boundary.

In the proof of Theorems 3.1, 3.3 the condition: $b \in ri P$ is a point which is not a convex combination of fewer than n+1 elements of l(V) is essential. If we omit this condition we may still prove that there exists at least one b-balanced n-simplex (not necessarily an odd number of such n-simplexes). Related results were obtained by van der Laan, Talman and Yang [6, 7].

Theorem 3.4. Let $P \subset \mathbb{R}^n$ be a polyhedron of dimension n, Tr be a triangulation of the polyhedron P, $V = Tr_0$. Let $U \subset \mathbb{R}^n$ be a finite set, let $b \in ri\ P$ and let $l: V \to U$ be a labelling. If for every facet F of the polyhedron P there exists an (n-1)-dimensional hyperplane h_b^F containing the point b and disjoint with F such that $l(V \cap F) \subset H_b^F$, then there exists a b-balanced n-simplex in the triangulation Tr.

Proof. Take a sequence of points b_k , which converges to the point b and b_k is not a convex combination of fewer that n+1 elements of l(V) for any $k \in N$. For sufficiently large k we may assume that $H_b^F \cap l(V \cap F) = H_{b_k}^F \cap l(V \cap F)$ for some (n-1)-dimensional hyperplane $h_{b_k}^F$ and every facet F of P and apply Theorem 3.3 to b_k . Thus there exists a b_k -balanced n-simplex in Tr_n . Since the points b_k converge to the point b and the set b is finite, then there exists at least one b-balanced b-simplex in b-simplex in

Theorem 3.4 applied to the n-dimensional cube implies the Poincaré-Miranda theorem [5].

Theorem 3.5. Let P be an n-dimensional polyhedron, $b \in \operatorname{ri} P$ and $U \subset R^n$ be a finite set containing V(P). Let $\{C_u \subset R^n : u \in U\}$ be a family of closed sets such that $P \subset \bigcup_{u \in U} C_u$ and for every facet F_{n-1} of the polyhedron P there exists a hyperplane $h_b^{F_{n-1}}$ containing b and disjoint with F_{n-1} such that for every face F of P we have $F \subset \bigcup_{u \in U \cap H_b^F} C_u$, where $H_b^F = \bigcap_{F \subset F_{n-1} \in \mathbf{F}_{n-1}} H_b^{F_{n-1}}$. Then there exists $T \subset U$, |T| = n + 1, such that $b \in \operatorname{co} T$ and $\bigcap_{u \in T} C_u \neq \emptyset$.

Proof. Let Tr^k $(k \in N)$ be a sequence of triangulations of P with the diameter of simplexes tending to zero, when k tends to infinity. Denote $V_k = Tr_0^k$. We define a labelling l_k on the vertices V_k $(k \in N)$ in the following way: for $v \in V_k$ let $l_k(v) = u$ for some u such, that $v \in C_u$ and furthermore if $v \in \mathrm{bd} P$, then $u \in \bigcap_{F_{n-1} \ni v, F_{n-1} \in F_{n-1}(P)} H_b^{F_{n-1}}$.

furthermore if $v \in \operatorname{bd} P$, then $u \in \bigcap_{F_{n-1} \ni v, F_{n-1} \in \mathbf{F}_{n-1}(P)} H_b^{F_{n-1}}$. Since $P \subset \bigcup_{u \in U} C_u$ and $F \subset \bigcup_{u \in H_b^F} C_u$, then the labelling l_k is well defined and it satisfies the conditions of Theorem 3.4. Thus there exists a b-balanced n-simplex $\delta_k \in Tr^k$. Let $V(\delta_k) = \{v_0^k, \cdots, v_n^k\}$. Hence for $i \in \{0, \cdots, n\}$ $v_i^k \in C_{l_k(v_i^k)}$. Because the diameter of simplexes of Tr^k tends to zero, there exists $z \in P$ and a subsequence of v_i^k which converges to z for each $i \in N$. Since C_u is a closed set for $u \in U$ and U is a finite set, then $z \in C_{t_i}$ for $i \in \{0, \cdots, n\}$ and $T = \{t_0, \cdots, t_n\}$, |T| = n + 1, $b \in \operatorname{co} T$ and thus $\bigcap_{u \in T} C_u \neq \emptyset$.

Theorem 3.5 is a generalization of an earlier result of Ichiishi and Idzik:

Theorem 3.6 (Theorem 3.1 in [1]). Let P be an n-dimensional polyhedron, $b \in \operatorname{ri} P$ and $U \subset R^n$ be a finite set containing V(P). Let $\{C_u \subset R^n : u \in U\}$ be a family of closed sets such that $P \subset \bigcup_{u \in U} C_u$ and $F \subset \bigcup_{u \in U \cap \operatorname{af} F} C_u$ for every face F of the polyhedron P. Then there exists $T \subset U$, |T| = n + 1, such that $b \in \operatorname{co} T$ and $\bigcap_{u \in T} C_u \neq \emptyset$.

Notice that the theorem of Ichiishi and Idzik is more general than the Knaster-Kuratowski-Mazurkiewicz covering lemma [4] and Shapley's covering lemma (Theorem 7.3 in [8]).

The theorem below is related to Corollary 4.2 in [2].

Theorem 3.7. Let $P \subset R^n$ be an n-dimensional polyhedron and $f: P \to R^n$ be a continuous function. If for every facet F of the polyhedron P the set f(F) is in the closed halfspace H^F , such that $\operatorname{bd} H^F = \operatorname{af} F$ and P is not contained in H^F , then $P \subset f(P)$.

Proof. Let $b \in \operatorname{ri} P$ be a fixed point. Let Tr^k be a triangulation of the polyhedron P with the diameter of simplexes tending to zero and with a set of vertices denoted by V_k $(k \in N)$. We define a labelling $l_k : V_k \to R^n$ by putting $l_k(v) = f(v)$ $(v \in V_k, k \in N)$. Notice that the labelling l_k satisfies the conditions of Theorem 3.4 and there exists a b-balanced n-simplex in Tr^k . Denote this n-simplex by δ_k . Without loss of generality we may assume that there exists $x \in P$ such that $x = \lim_{k \to \infty} x_k$ for every $x_k \in \delta_k$. Because f is a continuous function and $b \in \operatorname{co} f(V(\delta_k))$ we have f(x) = b.

We have proved that ri $P \subset f(P)$. Since the set f(P) is closed, we have $P \subset f(P)$.

Acknowledgement

We are indebted to the referee for many valuable comments.

References

- [1] T. Ichiishi and A. Idzik, *Closed coverings of convex polyhedra*, Internat. J. Game Theory **20** (1991) 161–169.
- [2] T. Ichiishi and A. Idzik, Equitable allocation of divisible goods, J. Math. Econom. **32** (1998) 389–400.
- [3] A. Idzik and K. Junosza-Szaniawski, Combinatorial lemmas for nonoriented pseudomanifolds, Top. Meth. in Nonlin. Anal. 22 (2003) 387–398.
- [4] B. Knaster, C. Kuratowski and S. Mazurkiewicz, Ein beweis des fixpunktsatzes für n-dimensionale simplexe, Fund. Math. 14 (1929) 132–137.
- [5] W. Kulpa, *Poincaré and domain invariance theorem*, Acta Univ. Carolinae Mathematica et Physica **39** (1998) 127–136.

- [6] G. van der Laan, D. Talman and Z. Yang, Intersection theorems on polytypes, Math. Programming 84 (1999) 333–352.
- [7] G. van der Laan, D. Talman and Z. Yang, Existence of balanced simplices on polytopes, J. Combin. Theory (A) **96** (2001) 25–38.
- [8] L.S. Shapley, On balanced games without side payments, in: T.C. Hu and S.M. Robinson (eds.), Mathematical Programming (New York: Academic Press, 1973) 261–290.
- [9] E. Sperner, Neuer beweis für die invarianz der dimensionszahl und des gebiets, Abh. Math. Sem. Univ. Hamburg 6 (1928) 265–272.

Recived 3 November 2003 Revised 21 March 2005