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15 Świȩtokrzyska street, 25–406 Kielce, Poland

and
Institute of Computer Science
Polish Academy of Sciences

21 Ordona street, 01–237 Warsaw, Poland

e-mail: adidzik@ipipan.waw.pl

and

Konstanty Junosza-Szaniawski

Warsaw University of Technology
Pl. Politechniki 1, 00–661 Warsaw, Poland

e-mail: k.szaniawski@mini.pw.edu.pl

Abstract

We formulate general boundary conditions for a labelling to assure
the existence of a balanced n-simplex in a triangulated polyhedron.
Furthermore we prove a Knaster-Kuratowski-Mazurkiewicz type theo-
rem for polyhedrons and generalize some theorems of Ichiishi and Idzik.
We also formulate a necessary condition for a continuous function de-
fined on a polyhedron to be an onto function.
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1. Preliminaries

By N and R we denote the set of natural numbers and reals, respectively.
Let n ∈ N and V be a finite set of cardinality at least n + 1. P(V ) is the
family of all subsets of V and Pn(V ) is the family of all subsets of V of
cardinality n + 1. For A ⊂ Rn co A is the convex hull of A and af A is the
affine hull of A (the minimal affine subspace containing A). Let riZ and
bd Z be the relative interior and the boundary of a set Z ⊂ Rn, respectively.
The relative interior of the set Z is considered with respect to the affine
hull of Z. Dimension of a set A ⊂ Rn is the dimension of af A. If for some
A ⊂ Rn the dimension of af A is n−1, then af A is called a hyperplane. And
if for a finite set A = {a0, · · · , am} ⊂ Rn (m ∈ {0, · · · , n}) the dimension of
af A is equal to m, then coA is called a simplex (precisely an m-simplex).

2. Polyhedrons

By a polyhedron we understand the convex hull of a finite set of Rn. Let
P ⊂ Rn be a polyhedron of dimension n. A face of the polyhedron P is the
intersection of P with some of its supporting hyperplane. Denote the set of
all k-dimensional faces of the polyhedron P by Fk(P ) (k ≤ n) and the set
of all vertices of the polyhedron P by V (P ) (V (P ) = F0(P )). The maximal
dimension proper faces of the polyhedron P are called facets. Let Trn be a
family of n-simplexes such that P =

⋃
δ∈Trn

δ and for any δ1, δ2 ∈ Trn, δ1∩δ2

is the empty set or their common face. A triangulation of the polyhedron P
(we denote it by Tr) is a family of simplexes containing Trn and fulfilling
the following condition: any face of any simplex of Tr also belongs to Tr.
Let Trm (m ∈ {0, · · · , n}) denote the family of m-simplexes belonging to a
triangulation Tr. Hence Tr =

⋃n
i=0 Tri. Let V = Tr0 be the set of vertices

of all simplexes of Tr. Notice, that Tr0 =
⋃

δ∈Trn
V (δ). An (n− 1)-simplex

of Trn−1 is a boundary (n−1)-simplex if it is a facet of exactly one n-simplex
of Trn.

Let U be a finite set. An n-primoid LU
n over U is a nonempty family of

subsets of U of cardinality n + 1 fulfilling the following condition: for every
set T ∈ LU

n and for any u ∈ U there exists exactly one u′ ∈ T such that a
set T \ {u′} ∪ {u} ∈ LU

n .
Each function l : V → U is called a labelling. An n-simplex δ ∈ Trn

is completely labelled if l(V (δ)) ∈ LU
n and an (n − 1)-simplex δ ∈ Trn−1 is

x-labelled (x ∈ U) if l(V (δ)) ∪ {x} ∈ LU
n .
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The following theorem is a special case of the theorem of Idzik and Junosza-
Szaniawski formulated for geometric complexes. This theorem generalizes
the well known Sperner lemma [9].

Theorem 2.1 (Theorem 6.1 in [3]). Let Tr be a triangulation of an n-
dimensional polyhedron P ⊂ Rn, V = Tr0, LU

n be an n-primoid over a set
U and x ∈ U be a fixed element. Let l : V → U be a labelling. Then the
number of completely labelled n-simplexes in Tr is congruent to the number
of boundary x-labelled (n− 1)-simplexes in Tr modulo 2.

Let U ⊂ Rn be a finite set containing V (P ) and let b ∈ riP be a point,
which is not a convex combination of fewer than n + 1 points of the set U .
The family Lb

n = {T ⊂ U : |T | = n + 1, b ∈ co T} is a primoid over the
set U (see Example 3.6 in [3]). We say a b-balanced n-simplex instead of a
completely labelled n-simplex if LU

n = Lb
n. In the case b = 0 a b-balanced

n-simplex is called a balanced n-simplex.

3. Main Theorem

Theorem 3.1. Let P ⊂ Rn be a polyhedron of dimension n, Tr be a triangu-
lation of the polyhedron P , V = Tr0. Let U ⊂ Rn be a finite set containing
V (P ), let b ∈ riP be a point which is not a convex combination of fewer
than n + 1 points of U and let l : V → U be a labelling. If for every facet
Fn−1 of the polyhedron P we have l(V ∩ Fn−1) ⊂ Fn−1, then the number of
b-balanced n-simplexes in the triangulation Tr is odd.

Remark 3.2. Notice that the condition l(V ∩Fn−1) ⊂ Fn−1 implies that for
each lower dimensional face F we have l(V ∩ F ) ⊂ F , because: l(V ∩ F ) ⊂⋂

F⊂Fn−1∈Fn−1(P ) Fn−1 = F .

Proof of Theorem 3.1. We apply the induction with respect to dimen-
sion of the polyhedron P . If dimension of P is equal to 1, then the theorem
is obvious. Assume that the theorem is true for all polyhedrons of dimension
k (k ∈ N). Consider a polyhedron P of dimension k + 1. Choose a vertex
of P and denote it by x. Let b′ be a point different from x, lying on the
boundary of P and on the straight line passing through points b and x. Let
Fb′ be a face of P containing b′. Observe that dimension of Fb′ is equal to k,
because otherwise the point b would be a convex combination of fewer than
(k + 1)+1 points of V (P ).



98 A. Idzik and K. Junosza-Szaniawski

Let us count x-labeled k-simplexes on bdP . For any facet F different from
Fb′ there is no x-labeled k-simplex contained in F since for all δ ∈ Trk ∩ F
co l(V (δ)) ⊂ F and b /∈ co ({x} ∪ V (F )). Hence all x-labeled k-simplexes
are contained in Fb′ . Notice that a k-simplex δ ∈ Trk ∩Fb′ is the x-labelled
k-simplex if and only if δ is a b′-balanced k-simplex. Because of Remark 3.2
we may apply the induction assumption for Fb′ (Fb′ is considered as a subset
of af Fb′) and the point b′. Therefore the number of b′-balanced k-simplexes
on Fb′ is odd. Thus the number of boundary x-labeled k-simplexes in Tr is
odd and by Theorem the number of the b-balanced (k + 1)-simplexes in Tr
is odd.

Observe that for any polyhedron Q, triangulation Tr′ of bdQ and a point
c ∈ riQ the family Tr = {co ({c} ∪ V (δ)) : δ ∈ Tr′} ∪ Tr′ ∪ {c} is a
triangulation of the polyhedron Q.

For any (n− 1)-dimensional hyperplane hF
b containing the point b and dis-

joint with a facet F of the polyhedron P let HF
b denote the open halfspace

containing F and such that hF
b is its boundary.

Theorem 3.3. Let P ⊂ Rn be a polyhedron of dimension n, Tr be a trian-
gulation of the polyhedron P , V = Tr0. Let U ⊂ Rn be a finite set containing
V (P ), let b ∈ riP be a point which is not a convex combination of fewer than
n + 1 points of U and let l : V → U be a labelling. If for every facet Fn−1 of
the polyhedron P there exists an (n− 1)-dimensional hyperplane h

Fn−1

b con-
taining the point b and disjoint with Fn−1 such that l(V ∩ Fn−1) ⊂ H

Fn−1

b ,
then the number of b-balanced n-simplexes in the triangulation Tr is odd.

Proof. For n = 1 the theorem is obvious, so we consider n > 1. Let
V (P ) = {a0, · · · , ak} (k ≥ n). Let a′i = 2ai − b for i ∈ {0, · · · , k} and let
P ′ = co {a′0, · · · , a′k}. Notice that P ⊂ P ′.

Now we define a triangulation of P ′, which is an extension of the trian-
gulation Tr on P . We will define a triangulation of P ′ \ riP .

For every face F = co {ai(0), · · · , ai(l)} ({ai(0), · · · , ai(l)} ⊂ V (P )) of the
polyhedron P we denote F ′ = co {a′i(0), · · · , a′i(l)}. Every face F of P has
one-to-one correspondence to the face F ′ of P ′.

Let us denote FF ′ = co {F ∪ F ′}. Thus P ′ \ riP =
⋃

F∈Fn−1(P ) FF ′.
For n = 1 the triangulation of P ′ is trivial, so we may assume n > 1.
For any face F1 ∈ F1(P ) we choose a point vF ′1 ∈ riF ′

1 in such a way
that the point b is not a convex hull of less than n + 1 points of U ∪ {vF ′1 :
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F1 ∈ F1(P )}. We join vF ′1 with every vertex of the face F ′
1. Thus we

receive triangulation of F ′
1. We choose a point vF1F ′1 ∈ riF1F

′
1 in such

a way that the point b is not a convex hull of less than n + 1 points of
U ∪ {vF ′1 , vF1F ′1 : F1 ∈ F1(P )}. We join vF1F ′1 with every vertex of the face
F ′

1, with the point vF ′1 and with every vertex of V ∩ F1. Thus we receive
triangulation of F1F

′
1.

Now we apply the induction for k ∈ {2, · · · , n − 1}: For any face Fk ∈
Fk(P ) we choose a point vF ′

k
∈ riF ′

k in such a way that the point b is not
a convex hull of less than n + 1 points of U ∪ ⋃k

i=1{vF ′ : F ∈ Fi(P )} ∪⋃k−1
i=1 {vFF ′ : F ∈ Fi(P )}. We join vF ′

k
with every vertex of F ′

k and every
point of the set

⋃
F ′⊂F ′

k
{vF ′}. Thus we get a triangulation of the face F ′

k.
We choose a point vFkF ′

k
∈ riFkF

′
k in such a way that the point b is not a

convex hull of less than n + 1 points of U ∪ ⋃k
i=1{vF ′ , vFF ′ : F ∈ Fi(P )}.

For each Fk ∈ Fk(P ) we join the vertex vFkF ′
k

with the vertex vF ′ , with
all the vertices of V ∩ Fk, vertices of F ′

k and with the vertices of the set⋃
F⊂Fk

{vF ′ , vFF ′}.
We get the triangulation of P ′ \ riP and we denote it by Tr′′. Hence

Tr′ = Tr ∪ Tr′′ is a triangulation of P ′, which is an extension of the trian-
gulation Tr on P .

Let U ′ = U ∪⋃n−1
i=1 {vF ′ , vFF ′ : F ∈ Fi(P )}. Let V ′ = Tr′0. We define a

labelling l′ : V ′ → U ′. Let l′(v) = l(v) for v ∈ V and l(v) = v for v ∈ V ′ \V .
Notice that the labelling l′ satisfies conditions of Theorem 3.1. Thus there
exists an odd number of b-balanced n-simplexes in Tr′. All b-balanced n-
simplexes belong to Tr since for any facet F of P we have l′(V ′∩FF ′) ⊂ HF

b ,
where HF

b is an open halfspace such that the point b is on its boundary.

In the proof of Theorems 3.1, 3.3 the condition: b ∈ riP is a point which is
not a convex combination of fewer than n + 1 elements of l(V ) is essential.
If we omit this condition we may still prove that there exists at least one
b-balanced n-simplex (not necessarily an odd number of such n-simplexes).
Related results were obtained by van der Laan, Talman and Yang [6, 7].

Theorem 3.4. Let P ⊂ Rn be a polyhedron of dimension n, Tr be a tri-
angulation of the polyhedron P , V = Tr0. Let U ⊂ Rn be a finite set, let
b ∈ riP and let l : V → U be a labelling. If for every facet F of the poly-
hedron P there exists an (n− 1)-dimensional hyperplane hF

b containing the
point b and disjoint with F such that l(V ∩ F ) ⊂ HF

b , then there exists a
b-balanced n-simplex in the triangulation Tr.
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Proof. Take a sequence of points bk, which converges to the point b and bk is
not a convex combination of fewer that n+1 elements of l(V ) for any k ∈ N .
For sufficiently large k we may assume that HF

b ∩ l(V ∩F ) = HF
bk
∩ l(V ∩F )

for some (n − 1)-dimensional hyperplane hF
bk

and every facet F of P and
apply Theorem 3.3 to bk. Thus there exists a bk-balanced n-simplex in Trn.
Since the points bk converge to the point b and the set U is finite, then there
exists at least one b-balanced n-simplex in Trn.

Theorem 3.4 applied to the n-dimensional cube implies the Poincaré-Miranda
theorem [5].

Theorem 3.5. Let P be an n-dimensional polyhedron, b ∈ riP and U ⊂ Rn

be a finite set containing V (P ). Let {Cu ⊂ Rn : u ∈ U} be a family of
closed sets such that P ⊂ ⋃

u∈U Cu and for every facet Fn−1 of the poly-
hedron P there exists a hyperplane h

Fn−1

b containing b and disjoint with
Fn−1 such that for every face F of P we have F ⊂ ⋃

u∈U∩HF
b

Cu, where

HF
b =

⋂
F⊂Fn−1∈Fn−1

H
Fn−1

b . Then there exists T ⊂ U , |T | = n + 1, such
that b ∈ co T and

⋂
u∈T Cu 6= ∅.

Proof. Let Trk (k ∈ N) be a sequence of triangulations of P with the
diameter of simplexes tending to zero, when k tends to infinity. Denote
Vk = Trk

0 . We define a labelling lk on the vertices Vk (k ∈ N) in the
following way: for v ∈ Vk let lk(v) = u for some u such, that v ∈ Cu and
furthermore if v ∈ bd P , then u ∈ ⋂

Fn−13v,Fn−1∈Fn−1(P ) H
Fn−1

b .
Since P ⊂ ⋃

u∈U Cu and F ⊂ ⋃
u∈HF

b
Cu, then the labelling lk is well

defined and it satisfies the conditions of Theorem 3.4. Thus there exists
a b-balanced n-simplex δk ∈ Trk. Let V (δk) = {vk

0 , · · · , vk
n}. Hence for

i ∈ {0, · · · , n} vk
i ∈ Clk(vk

i ). Because the diameter of simplexes of Trk tends
to zero, there exists z ∈ P and a subsequence of vk

i which converges to z for
each i ∈ N . Since Cu is a closed set for u ∈ U and U is a finite set, then
z ∈ Cti for i ∈ {0, · · · , n} and T = {t0, · · · , tn}, |T | = n + 1, b ∈ co T and
thus

⋂
u∈T Cu 6= ∅.

Theorem 3.5 is a generalization of an earlier result of Ichiishi and Idzik:

Theorem 3.6 (Theorem 3.1 in [1]). Let P be an n-dimensional polyhedron,
b ∈ riP and U ⊂ Rn be a finite set containing V (P ). Let {Cu ⊂ Rn : u ∈ U}
be a family of closed sets such that P ⊂ ⋃

u∈U Cu and F ⊂ ⋃
u∈U∩af F Cu for

every face F of the polyhedron P . Then there exists T ⊂ U , |T | = n + 1,
such that b ∈ co T and

⋂
u∈T Cu 6= ∅.
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Notice that the theorem of Ichiishi and Idzik is more general than the
Knaster-Kuratowski-Mazurkiewicz covering lemma [4] and Shapley’s cov-
ering lemma (Theorem 7.3 in [8]).

The theorem below is related to Corollary 4.2 in [2].

Theorem 3.7. Let P ⊂ Rn be an n-dimensional polyhedron and f : P → Rn

be a continuous function. If for every facet F of the polyhedron P the set
f(F ) is in the closed halfspace HF , such that bd HF = af F and P is not
contained in HF , then P ⊂ f(P ).

Proof. Let b ∈ riP be a fixed point. Let Trk be a triangulation of the
polyhedron P with the diameter of simplexes tending to zero and with a set
of vertices denoted by Vk (k ∈ N). We define a labelling lk : Vk → Rn by
putting lk(v) = f(v) (v ∈ Vk, k ∈ N). Notice that the labelling lk satisfies
the conditions of Theorem 3.4 and there exists a b-balanced n-simplex in Trk.
Denote this n-simplex by δk. Without loss of generality we may assume that
there exists x ∈ P such that x = limk→∞ xk for every xk ∈ δk. Because f is
a continuous function and b ∈ co f(V (δk)) we have f(x) = b.

We have proved that riP ⊂ f(P ). Since the set f(P ) is closed, we have
P ⊂ f(P ).
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