COMBINATORIAL LEMMAS FOR POLYHEDRONS

Adam Idzik
Akademia Świȩtokrzyska
15 Świȩtokrzyska street, 25-406 Kielce, Poland
and
Institute of Computer Science
Polish Academy of Sciences
21 Ordona street, 01-237 Warsaw, Poland
e-mail: adidzik@ipipan.waw.pl
AND
Konstanty Junosza-Szaniawski
Warsaw University of Technology
Pl. Politechniki 1, 00-661 Warsaw, Poland
e-mail: k.szaniawski@mini.pw.edu.pl

Abstract

We formulate general boundary conditions for a labelling to assure the existence of a balanced n-simplex in a triangulated polyhedron. Furthermore we prove a Knaster-Kuratowski-Mazurkiewicz type theorem for polyhedrons and generalize some theorems of Ichiishi and Idzik. We also formulate a necessary condition for a continuous function defined on a polyhedron to be an onto function.

Keywords: KKM covering, labelling, primoid, pseudomanifold, simplicial complex, Sperner lemma.
2000 Mathematics Subject Classification: 05B30, 47H10, 52A20, 54 H 25 .

1. Preliminaries

By N and R we denote the set of natural numbers and reals, respectively. Let $n \in N$ and V be a finite set of cardinality at least $n+1 . \mathbf{P}(V)$ is the family of all subsets of V and $\mathbf{P}_{n}(V)$ is the family of all subsets of V of cardinality $n+1$. For $A \subset R^{n}$ co A is the convex hull of A and af A is the affine hull of A (the minimal affine subspace containing A). Let ri Z and $\operatorname{bd} Z$ be the relative interior and the boundary of a set $Z \subset R^{n}$, respectively. The relative interior of the set Z is considered with respect to the affine hull of Z. Dimension of a set $A \subset R^{n}$ is the dimension of af A. If for some $A \subset R^{n}$ the dimension of af A is $n-1$, then af A is called a hyperplane. And if for a finite set $A=\left\{a_{0}, \cdots, a_{m}\right\} \subset R^{n}(m \in\{0, \cdots, n\})$ the dimension of af A is equal to m, then co A is called a simplex (precisely an m-simplex).

2. Polyhedrons

By a polyhedron we understand the convex hull of a finite set of R^{n}. Let $P \subset R^{n}$ be a polyhedron of dimension n. A face of the polyhedron P is the intersection of P with some of its supporting hyperplane. Denote the set of all k-dimensional faces of the polyhedron P by $\mathbf{F}_{k}(P)(k \leq n)$ and the set of all vertices of the polyhedron P by $V(P)\left(V(P)=\mathbf{F}_{0}(P)\right)$. The maximal dimension proper faces of the polyhedron P are called facets. Let $T r_{n}$ be a family of n-simplexes such that $P=\bigcup_{\delta \in T r_{n}} \delta$ and for any $\delta_{1}, \delta_{2} \in T r_{n}, \delta_{1} \cap \delta_{2}$ is the empty set or their common face. A triangulation of the polyhedron P (we denote it by $T r$) is a family of simplexes containing $T r_{n}$ and fulfilling the following condition: any face of any simplex of Tr also belongs to Tr. Let $\operatorname{Tr}_{m}(m \in\{0, \cdots, n\})$ denote the family of m-simplexes belonging to a triangulation Tr. Hence $\operatorname{Tr}=\bigcup_{i=0}^{n} T r_{i}$. Let $V=T r_{0}$ be the set of vertices of all simplexes of Tr. Notice, that $T r_{0}=\bigcup_{\delta \in T r_{n}} V(\delta)$. An $(n-1)$-simplex of $T r_{n-1}$ is a boundary $(n-1)$-simplex if it is a facet of exactly one n-simplex of $T r_{n}$.

Let U be a finite set. An n-primoid \mathbf{L}_{n}^{U} over U is a nonempty family of subsets of U of cardinality $n+1$ fulfilling the following condition: for every set $T \in \mathbf{L}_{n}^{U}$ and for any $u \in U$ there exists exactly one $u^{\prime} \in T$ such that a set $T \backslash\left\{u^{\prime}\right\} \cup\{u\} \in \mathbf{L}_{n}^{U}$.

Each function $l: V \rightarrow U$ is called a labelling. An n-simplex $\delta \in T r_{n}$ is completely labelled if $l(V(\delta)) \in \mathbf{L}_{n}^{U}$ and an $(n-1)$-simplex $\delta \in T r_{n-1}$ is x-labelled $(x \in U)$ if $l(V(\delta)) \cup\{x\} \in \mathbf{L}_{n}^{U}$.

The following theorem is a special case of the theorem of Idzik and JunoszaSzaniawski formulated for geometric complexes. This theorem generalizes the well known Sperner lemma [9].

Theorem 2.1 (Theorem 6.1 in [3]). Let Tr be a triangulation of an n dimensional polyhedron $P \subset R^{n}$, $V=T r_{0}, \mathbf{L}_{n}^{U}$ be an n-primoid over a set U and $x \in U$ be a fixed element. Let $l: V \rightarrow U$ be a labelling. Then the number of completely labelled n-simplexes in Tr is congruent to the number of boundary x-labelled ($n-1$)-simplexes in Tr modulo 2 .

Let $U \subset R^{n}$ be a finite set containing $V(P)$ and let $b \in$ ri P be a point, which is not a convex combination of fewer than $n+1$ points of the set U. The family $\mathbf{L}_{n}^{b}=\{T \subset U:|T|=n+1, b \in \operatorname{co} T\}$ is a primoid over the set U (see Example 3.6 in [3]). We say a b-balanced n-simplex instead of a completely labelled n-simplex if $\mathbf{L}_{n}^{U}=\mathbf{L}_{n}^{b}$. In the case $b=0$ a b-balanced n-simplex is called a balanced n-simplex.

3. Main Theorem

Theorem 3.1. Let $P \subset R^{n}$ be a polyhedron of dimension n, Tr be a triangulation of the polyhedron $P, V=T r_{0}$. Let $U \subset R^{n}$ be a finite set containing $V(P)$, let $b \in$ ri P be a point which is not a convex combination of fewer than $n+1$ points of U and let $l: V \rightarrow U$ be a labelling. If for every facet F_{n-1} of the polyhedron P we have $l\left(V \cap F_{n-1}\right) \subset F_{n-1}$, then the number of b-balanced n-simplexes in the triangulation Tr is odd.

Remark 3.2. Notice that the condition $l\left(V \cap F_{n-1}\right) \subset F_{n-1}$ implies that for each lower dimensional face F we have $l(V \cap F) \subset F$, because: $l(V \cap F) \subset$ $\bigcap_{F \subset F_{n-1} \in \mathbf{F}_{n-1}(P)} F_{n-1}=F$.

Proof of Theorem 3.1. We apply the induction with respect to dimension of the polyhedron P. If dimension of P is equal to 1 , then the theorem is obvious. Assume that the theorem is true for all polyhedrons of dimension $k(k \in N)$. Consider a polyhedron P of dimension $k+1$. Choose a vertex of P and denote it by x. Let b^{\prime} be a point different from x, lying on the boundary of P and on the straight line passing through points b and x. Let $F_{b^{\prime}}$ be a face of P containing b^{\prime}. Observe that dimension of $F_{b^{\prime}}$ is equal to k, because otherwise the point b would be a convex combination of fewer than $(k+1)+1$ points of $V(P)$.

Let us count x-labeled k-simplexes on bd P. For any facet F different from $F_{b^{\prime}}$ there is no x-labeled k-simplex contained in F since for all $\delta \in \operatorname{Tr}^{k} \cap F$ $\operatorname{co} l(V(\delta)) \subset F$ and $b \notin \operatorname{co}(\{x\} \cup V(F))$. Hence all x-labeled k-simplexes are contained in $F_{b^{\prime}}$. Notice that a k-simplex $\delta \in T r^{k} \cap F_{b^{\prime}}$ is the x-labelled k-simplex if and only if δ is a b^{\prime}-balanced k-simplex. Because of Remark 3.2 we may apply the induction assumption for $F_{b^{\prime}}\left(F_{b^{\prime}}\right.$ is considered as a subset of af $F_{b^{\prime}}$) and the point b^{\prime}. Therefore the number of b^{\prime}-balanced k-simplexes on $F_{b^{\prime}}$ is odd. Thus the number of boundary x-labeled k-simplexes in Tr is odd and by Theorem the number of the b-balanced $(k+1)$-simplexes in Tr is odd.

Observe that for any polyhedron Q, triangulation $T r^{\prime}$ of $\operatorname{bd} Q$ and a point $c \in \operatorname{ri} Q$ the family $\operatorname{Tr}=\left\{\operatorname{co}(\{c\} \cup V(\delta)): \delta \in T r^{\prime}\right\} \cup T r^{\prime} \cup\{c\}$ is a triangulation of the polyhedron Q.

For any $(n-1)$-dimensional hyperplane h_{b}^{F} containing the point b and disjoint with a facet F of the polyhedron P let H_{b}^{F} denote the open halfspace containing F and such that h_{b}^{F} is its boundary.

Theorem 3.3. Let $P \subset R^{n}$ be a polyhedron of dimension n, Tr be a triangulation of the polyhedron $P, V=T r_{0}$. Let $U \subset R^{n}$ be a finite set containing $V(P)$, let $b \in \operatorname{ri} P$ be a point which is not a convex combination of fewer than $n+1$ points of U and let $l: V \rightarrow U$ be a labelling. If for every facet F_{n-1} of the polyhedron P there exists an $(n-1)$-dimensional hyperplane $h_{b}^{F_{n-1}}$ containing the point b and disjoint with F_{n-1} such that $l\left(V \cap F_{n-1}\right) \subset H_{b}^{F_{n-1}}$, then the number of b-balanced n-simplexes in the triangulation Tr is odd.

Proof. For $n=1$ the theorem is obvious, so we consider $n>1$. Let $V(P)=\left\{a_{0}, \cdots, a_{k}\right\}(k \geq n)$. Let $a_{i}^{\prime}=2 a_{i}-b$ for $i \in\{0, \cdots, k\}$ and let $P^{\prime}=\operatorname{co}\left\{a_{0}^{\prime}, \cdots, a_{k}^{\prime}\right\}$. Notice that $P \subset P^{\prime}$.

Now we define a triangulation of P^{\prime}, which is an extension of the triangulation $T r$ on P. We will define a triangulation of $P^{\prime} \backslash$ ri P.

For every face $F=\operatorname{co}\left\{a_{i(0)}, \cdots, a_{i(l)}\right\}\left(\left\{a_{i(0)}, \cdots, a_{i(l)}\right\} \subset V(P)\right)$ of the polyhedron P we denote $F^{\prime}=\operatorname{co}\left\{a_{i(0)}^{\prime}, \cdots, a_{i(l)}^{\prime}\right\}$. Every face F of P has one-to-one correspondence to the face F^{\prime} of P^{\prime}.

Let us denote $F F^{\prime}=\operatorname{co}\left\{F \cup F^{\prime}\right\}$. Thus $P^{\prime} \backslash \operatorname{ri} P=\bigcup_{F \in \mathbf{F}_{n-1}(P)} F F^{\prime}$.
For $n=1$ the triangulation of P^{\prime} is trivial, so we may assume $n>1$.
For any face $F_{1} \in \mathbf{F}_{1}(P)$ we choose a point $v_{F_{1}^{\prime}} \in \operatorname{ri} F_{1}^{\prime}$ in such a way that the point b is not a convex hull of less than $n+1$ points of $U \cup\left\{v_{F_{1}^{\prime}}\right.$:
$\left.F_{1} \in \mathbf{F}_{1}(P)\right\}$. We join $v_{F_{1}^{\prime}}$ with every vertex of the face F_{1}^{\prime}. Thus we receive triangulation of F_{1}^{\prime}. We choose a point $v_{F_{1} F_{1}^{\prime}} \in \operatorname{ri} F_{1} F_{1}^{\prime}$ in such a way that the point b is not a convex hull of less than $n+1$ points of $U \cup\left\{v_{F_{1}^{\prime}}, v_{F_{1} F_{1}^{\prime}}: F_{1} \in \mathbf{F}_{1}(P)\right\}$. We join $v_{F_{1} F_{1}^{\prime}}$ with every vertex of the face F_{1}^{\prime}, with the point $v_{F_{1}^{\prime}}$ and with every vertex of $V \cap F_{1}$. Thus we receive triangulation of $F_{1} F_{1}^{\prime}$.

Now we apply the induction for $k \in\{2, \cdots, n-1\}$: For any face $F_{k} \in$ $\mathbf{F}_{k}(P)$ we choose a point $v_{F_{k}^{\prime}} \in$ ri F_{k}^{\prime} in such a way that the point b is not a convex hull of less than $n+1$ points of $U \cup \bigcup_{i=1}^{k}\left\{v_{F^{\prime}}: F \in \mathbf{F}_{i}(P)\right\} \cup$ $\bigcup_{i=1}^{k-1}\left\{v_{F F^{\prime}}: F \in \mathbf{F}_{i}(P)\right\}$. We join $v_{F_{k}^{\prime}}$ with every vertex of F_{k}^{\prime} and every point of the set $\bigcup_{F^{\prime} \subset F_{k}^{\prime}}\left\{v_{F^{\prime}}\right\}$. Thus we get a triangulation of the face F_{k}^{\prime}. We choose a point $v_{F_{k} F_{k}^{\prime}} \in \operatorname{ri} F_{k} F_{k}^{\prime}$ in such a way that the point b is not a convex hull of less than $n+1$ points of $U \cup \bigcup_{i=1}^{k}\left\{v_{F^{\prime}}, v_{F F^{\prime}}: F \in \mathbf{F}_{i}(P)\right\}$. For each $F_{k} \in \mathbf{F}_{k}(P)$ we join the vertex $v_{F_{k} F_{k}^{\prime}}$ with the vertex $v_{F^{\prime}}$, with all the vertices of $V \cap F_{k}$, vertices of F_{k}^{\prime} and with the vertices of the set $\bigcup_{F \subset F_{k}}\left\{v_{F^{\prime}}, v_{F F^{\prime}}\right\}$.

We get the triangulation of $P^{\prime} \backslash$ ri P and we denote it by $T r^{\prime \prime}$. Hence $T r^{\prime}=T r \cup T r^{\prime \prime}$ is a triangulation of P^{\prime}, which is an extension of the triangulation Tr on P.

Let $U^{\prime}=U \cup \bigcup_{i=1}^{n-1}\left\{v_{F^{\prime}}, v_{F F^{\prime}}: F \in \mathbf{F}_{i}(P)\right\}$. Let $V^{\prime}=T r_{0}^{\prime}$. We define a labelling $l^{\prime}: V^{\prime} \rightarrow U^{\prime}$. Let $l^{\prime}(v)=l(v)$ for $v \in V$ and $l(v)=v$ for $v \in V^{\prime} \backslash V$. Notice that the labelling l^{\prime} satisfies conditions of Theorem 3.1. Thus there exists an odd number of b-balanced n-simplexes in $T r^{\prime}$. All b-balanced n simplexes belong to Tr since for any facet F of P we have $l^{\prime}\left(V^{\prime} \cap F F^{\prime}\right) \subset H_{b}^{F}$, where H_{b}^{F} is an open halfspace such that the point b is on its boundary.

In the proof of Theorems 3.1, 3.3 the condition: $b \in \mathrm{ri} P$ is a point which is not a convex combination of fewer than $n+1$ elements of $l(V)$ is essential. If we omit this condition we may still prove that there exists at least one b-balanced n-simplex (not necessarily an odd number of such n-simplexes). Related results were obtained by van der Laan, Talman and Yang [6, 7].

Theorem 3.4. Let $P \subset R^{n}$ be a polyhedron of dimension n, Tr be a triangulation of the polyhedron $P, V=T r_{0}$. Let $U \subset R^{n}$ be a finite set, let $b \in \operatorname{ri} P$ and let $l: V \rightarrow U$ be a labelling. If for every facet F of the polyhedron P there exists an ($n-1$)-dimensional hyperplane h_{b}^{F} containing the point b and disjoint with F such that $l(V \cap F) \subset H_{b}^{F}$, then there exists a b-balanced n-simplex in the triangulation Tr .

Proof. Take a sequence of points b_{k}, which converges to the point b and b_{k} is not a convex combination of fewer that $n+1$ elements of $l(V)$ for any $k \in N$. For sufficiently large k we may assume that $H_{b}^{F} \cap l(V \cap F)=H_{b_{k}}^{F} \cap l(V \cap F)$ for some $(n-1)$-dimensional hyperplane $h_{b_{k}}^{F}$ and every facet F of P and apply Theorem 3.3 to b_{k}. Thus there exists a b_{k}-balanced n-simplex in $T r_{n}$. Since the points b_{k} converge to the point b and the set U is finite, then there exists at least one b-balanced n-simplex in $T r_{n}$.
Theorem 3.4 applied to the n-dimensional cube implies the Poincaré-Miranda theorem [5].

Theorem 3.5. Let P be an n-dimensional polyhedron, $b \in \operatorname{ri} P$ and $U \subset R^{n}$ be a finite set containing $V(P)$. Let $\left\{C_{u} \subset R^{n}: u \in U\right\}$ be a family of closed sets such that $P \subset \bigcup_{u \in U} C_{u}$ and for every facet F_{n-1} of the polyhedron P there exists a hyperplane $h_{b}^{F_{n-1}}$ containing b and disjoint with F_{n-1} such that for every face F of P we have $F \subset \cup_{u \in U \cap H_{b}^{F}} C_{u}$, where $H_{b}^{F}=\bigcap_{F \subset F_{n-1} \in \mathbf{F}_{n-1}} H_{b}^{F_{n-1}}$. Then there exists $T \subset U,|T|=n+1$, such that $b \in \operatorname{co} T$ and $\bigcap_{u \in T} C_{u} \neq \emptyset$.

Proof. Let $\operatorname{Tr}^{k}(k \in N)$ be a sequence of triangulations of P with the diameter of simplexes tending to zero, when k tends to infinity. Denote $V_{k}=T r_{0}^{k}$. We define a labelling l_{k} on the vertices $V_{k}(k \in N)$ in the following way: for $v \in V_{k}$ let $l_{k}(v)=u$ for some u such, that $v \in C_{u}$ and furthermore if $v \in \operatorname{bd} P$, then $u \in \bigcap_{F_{n-1} \ni v, F_{n-1} \in \mathbf{F}_{n-1}(P)} H_{b}^{F_{n-1}}$.

Since $P \subset \bigcup_{u \in U} C_{u}$ and $F \subset \bigcup_{u \in H_{b}^{F}} C_{u}$, then the labelling l_{k} is well defined and it satisfies the conditions of Theorem 3.4. Thus there exists a b-balanced n-simplex $\delta_{k} \in T r^{k}$. Let $V\left(\delta_{k}\right)=\left\{v_{0}^{k}, \cdots, v_{n}^{k}\right\}$. Hence for $i \in\{0, \cdots, n\} v_{i}^{k} \in C_{l_{k}\left(v_{i}^{k}\right)}$. Because the diameter of simplexes of $T r^{k}$ tends to zero, there exists $z \in P$ and a subsequence of v_{i}^{k} which converges to z for each $i \in N$. Since C_{u} is a closed set for $u \in U$ and U is a finite set, then $z \in C_{t_{i}}$ for $i \in\{0, \cdots, n\}$ and $T=\left\{t_{0}, \cdots, t_{n}\right\},|T|=n+1, b \in \operatorname{co} T$ and thus $\bigcap_{u \in T} C_{u} \neq \emptyset$.
Theorem 3.5 is a generalization of an earlier result of Ichiishi and Idzik:
Theorem 3.6 (Theorem 3.1 in [1]). Let P be an n-dimensional polyhedron, $b \in \operatorname{ri} P$ and $U \subset R^{n}$ be a finite set containing $V(P) . \operatorname{Let}\left\{C_{u} \subset R^{n}: u \in U\right\}$ be a family of closed sets such that $P \subset \bigcup_{u \in U} C_{u}$ and $F \subset \bigcup_{u \in U \cap a f} F C_{u}$ for every face F of the polyhedron P. Then there exists $T \subset U,|T|=n+1$, such that $b \in \operatorname{co} T$ and $\bigcap_{u \in T} C_{u} \neq \emptyset$.

Notice that the theorem of Ichiishi and Idzik is more general than the Knaster-Kuratowski-Mazurkiewicz covering lemma [4] and Shapley's covering lemma (Theorem 7.3 in [8]).

The theorem below is related to Corollary 4.2 in [2].
Theorem 3.7. Let $P \subset R^{n}$ be an n-dimensional polyhedron and $f: P \rightarrow R^{n}$ be a continuous function. If for every facet F of the polyhedron P the set $f(F)$ is in the closed halfspace H^{F}, such that bd $H^{F}=$ af F and P is not contained in H^{F}, then $P \subset f(P)$.

Proof. Let $b \in$ ri P be a fixed point. Let $T r^{k}$ be a triangulation of the polyhedron P with the diameter of simplexes tending to zero and with a set of vertices denoted by $V_{k}(k \in N)$. We define a labelling $l_{k}: V_{k} \rightarrow R^{n}$ by putting $l_{k}(v)=f(v)\left(v \in V_{k}, k \in N\right)$. Notice that the labelling l_{k} satisfies the conditions of Theorem 3.4 and there exists a b-balanced n-simplex in $T r^{k}$. Denote this n-simplex by δ_{k}. Without loss of generality we may assume that there exists $x \in P$ such that $x=\lim _{k \rightarrow \infty} x_{k}$ for every $x_{k} \in \delta_{k}$. Because f is a continuous function and $b \in \operatorname{co} f\left(V\left(\delta_{k}\right)\right)$ we have $f(x)=b$.

We have proved that ri $P \subset f(P)$. Since the set $f(P)$ is closed, we have $P \subset f(P)$.

Acknowledgement

We are indebted to the referee for many valuable comments.

References

[1] T. Ichiishi and A. Idzik, Closed coverings of convex polyhedra, Internat. J. Game Theory 20 (1991) 161-169.
[2] T. Ichiishi and A. Idzik, Equitable allocation of divisible goods, J. Math. Econom. 32 (1998) 389-400.
[3] A. Idzik and K. Junosza-Szaniawski, Combinatorial lemmas for nonoriented pseudomanifolds, Top. Meth. in Nonlin. Anal. 22 (2003) 387-398.
[4] B. Knaster, C. Kuratowski and S. Mazurkiewicz, Ein beweis des fixpunktsatzes für n-dimensionale simplexe, Fund. Math. 14 (1929) 132-137.
[5] W. Kulpa, Poincaré and domain invariance theorem, Acta Univ. Carolinae Mathematica et Physica 39 (1998) 127-136.
[6] G. van der Laan, D. Talman and Z. Yang, Intersection theorems on polytypes, Math. Programming 84 (1999) 333-352.
[7] G. van der Laan, D. Talman and Z. Yang, Existence of balanced simplices on polytopes, J. Combin. Theory (A) 96 (2001) 25-38.
[8] L.S. Shapley, On balanced games without side payments, in: T.C. Hu and S.M. Robinson (eds.), Mathematical Programming (New York: Academic Press, 1973) 261-290.
[9] E. Sperner, Neuer beweis für die invarianz der dimensionszahl und des gebiets, Abh. Math. Sem. Univ. Hamburg 6 (1928) 265-272.

Recived 3 November 2003
Revised 21 March 2005

