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Abstract

In this note the split domination number of the Cartesian prod-
uct of two paths is considered. Our results are related to [2] where
the domination number of Pm¤Pn was studied. The split domination
number of P2¤Pn is calculated, and we give good estimates for the
split domination number of Pm¤Pn expressed in terms of its domina-
tion number.
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1. Introduction

In this paper we consider finite undirected simple graphs. For any graph
G we denote V (G) and E(G), the vertex set of G and the edge set of G,
respectively. If n is the cardinality of V (G), then we say that G is of order n.
By 〈X〉G we mean a subgraph of a graph G induced by a subset X ⊆ V (G).
A subset D ⊆ V (G) is a dominating set of G, if for every x ∈ V (G)−D, there
is a vertex y ∈ D such that xy ∈ E(G). We also say that x is dominated by
D in G or by y in G. A dominating set D of G is a split dominating set of G,
if the induced subgraph 〈V (G)−D〉G of G is disconnected. The domination
number, [the split domination number] of a graph G, denoted γ(G), [γs(G)] is
the cardinality of the smallest dominating [the smallest split dominating] set
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of G. A dominating set D is called a γ(G)-set if D realizes the domination
number. Similarly we define a γs(G)-set. From the definition of a split
dominating set it follows immediately that γ(G) ≤ γs(G). Additionally note
that for a connected graph G a γs(G)-set exists if and only if G is different
from a complete graph. More information about a split dominating set and
the split domination number can be found in [3]. The Cartesian product
of two graphs G and H, is a graph G¤H with V (G¤H) = V (G) × V (H)
and (g1, h1)(g2, h2) ∈ E(G¤H) if and only if (g1 = g2 and h1h2 ∈ E(H)) or
(g1g2 ∈ E(G) and h1 = h2).

Any other terms not defined in this paper can be found in [1].

2. Main Results

Theorem 1. For any n,m ≥ 2

γ(Pm¤Pn) ≤ γs(Pm¤Pn) ≤ γ(Pm¤Pn) + 1.

Proof. Let m,n ≥ 2 and let D be the minimum dominating set of Pm¤Pn.
According to the definition of a split dominating set we have γ(Pm¤Pn) ≤
γs(Pm¤Pn). Thus to prove this theorem we will show that γs(Pm¤Pn) ≤
γ(Pm¤Pn) + 1. Consider the graph Pm¤Pn, as m canonical copies of Pn

with vertices labelled xi,j , for i = 1, 2, . . . , n and j = 1, 2, . . . , m, and with
edges xi,jxi+1,j and xi,jxi,j+1.

If x1,1 ∈ D, then the subset D′ = D − {x1,1} ∪ {x1,2, x2,1} is also a
dominating set of Pm¤Pn. Moreover, since NPm¤Pn(x1,1) = {x1,2, x2,1} ⊂
D′, then x1,1 is an isolated vertex of the induced subgraph 〈V (Pm¤Pn) −
D′〉Pm¤Pn of a graph Pm¤Pn. It means that D′ is a split dominating set of
Pm¤Pn, with |D′| ≤ γ(Pm¤Pn) + 1.

If x1,1 /∈ D, then it must be that x1,2 ∈ D or x2,1 ∈ D (otherwise x1,1

would not be dominated by D in Pm¤Pn). Assume that x1,2 ∈ D, then
D′ = D ∪ {x1,2} is a split dominating set of Pm¤Pn and |D′| ≤ |D| + 1 =
γ(Pm¤Pn) + 1, as desired.

Thus γs(Pm¤Pn) ≤ γ(Pm¤Pn) + 1, for any m,n ≥ 2 and the proof is
complete.

In [2] it was obtained that limn,m→∞
γ(Pm¤Pn)

mn = 1
5 . As a consequence from

the above fact and from Theorem 1 we obtain the following
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Corollary 2.

lim
n,m→∞

γs(Pm¤Pn)
mn

=
1
5
.

The following result was proved in [2].

Theorem 3 [2]. For n ≥ 2,

γ(P2¤Pn) =
⌈

n + 1
2

⌉
.

Inspired by this result we shall calculate the split domination number of
P2¤Pn, for n ≥ 2. Before proceeding we give a few necessary results.

Let V (P2) = {v1, v2} and V (Pn) = {u1, u2, . . . , un}. For convenience, in
the rest of the paper we will write xi instead of (v1, ui) ∈ V (P2¤Pn) and
yi instead of (v2, ui) ∈ V (P2¤Pn), for i = 1, 2, . . . , n. Hence V (P2¤Pn) =
{xi, yi : i = 1, 2, . . . , n} and E(P2¤Pn) = {xixi+1, yiyi+1, xiyi, xnyn : i =
1, 2, . . . , n− 1}.

Lemma 4. If n ≡ 2(mod 4), n ≥ 2, then

D = {xi : i ≡ 1(mod 4)} ∪ {yj : j ≡ 3(mod 4)} ∪ {yn}

is the γs(P2¤Pn)-set with |D| = dn+1
2 e.

Proof. Let D = {xi : i ≡ 1(mod 4)} ∪ {yj : j ≡ 3(mod 4)} ∪ {yn} be a
subset of V (P2¤Pn).

We show that any vertex of P2¤Pn is either in D or it is adjacent to
some vertex from D. Let r be an integer not greater than n.

If r = 4q, q ≥ 1, then the vertex xr is adjacent to xr+1 = x4q+1 ∈ D
and yr is adjacent to yr−1 = y4q−1 ∈ D.

If r = 4q + 1, q ≥ 0, then xr ∈ D and yr is adjacent to xr.
If r = 4q + 2, q ≥ 0, then xr is adjacent to xr−1 ∈ D. If r = n, then

yr = yn ∈ D and if r < n, then yr is adjacent to yr+1 ∈ D.
Finally, if r = 4q + 3, q ≥ 0, then yr ∈ D and xr is adjacent to yr.

All this together gives that D is a dominating set of P2¤Pn.
Let n = 4s + 2, s ≥ 0. We state that |D| = dn+1

2 e. Indeed, partition
V (P2¤Pn) into subsets Bi = {x4i−3, y4i−3, . . . , x4i, y4i}, for i = 1, 2, . . . , s



82 M. Zwierzchowski

and Bs+1 = {xn−1, yn−1, xn, yn}. Note that |D ∩ Bi| = 2, for i = 1, 2, . . . ,
s + 1. Thus |D| = 2s + 2 = dn+1

2 e = γ(P2¤Pn), by Theorem 3. Since
NP2¤Pn(xn) = {xn−1, yn} ⊂ D, hence xn is an isolated vertex of
〈V (P2¤Pn) − D〉P2¤Pn . Thus this induced subgraph is disconnected. All
this together gives that D is a γs(P2¤Pn)-set, since D is a split dominating
set of P2¤Pn with the minimum cardinality. Hence the result is true.

Lemma 5. If n ≡ 0(mod 4), n ≥ 2, then

D = {xi : i ≡ 1(mod 4)} ∪ {yj : j ≡ 3(mod 4)} ∪ {xn}

is the γs(P2¤Pn)-set with |D| = dn+1
2 e.

Proof. Let D be as in the statement of the theorem. Arguing similarly as
in the proof of above lemma, it follows that D is a dominating set of P2¤Pn.
Now, we show that |D| = dn+1

2 e. Put n = 4s and partition V (P2¤Pn) into
the subsets Bi = {x4i−3, y4i−3, . . . , x4i, y4i}, for i = 1, 2, . . . , s. It is easy to
observe that |D ∩ Bi| = 2, for i = 1, 2, . . . , s − 1 and |D ∩ Bs| = 3. Hence
|D| = 2(s−1)+3 = 2s+1 = dn+1

2 e = γ(P2¤Pn), as desired. Finally, observe
that yn is an isolated vertex of 〈V (P2¤Pn)−D〉P2¤Pn . This means that the
last subgraph is disconnected and as a consequence D is a split dominating
set of P2¤Pn. Since D is also a γ(P2¤Pn)-set, it is a γs(P2¤Pn)-set, as
required.

Lemma 6. Let n ≥ 5 be odd and let D be a γ(P2¤Pn)-set. Then exactly
one of x1 and y1 belong to D.

Proof. Let n = 2k + 1 with k ≥ 2 and let D be a γ(P2¤Pn)-set. Assume
that x1, y1 /∈ D, then it must be that x2, y2 ∈ D (otherwise x1 or y1 would
not be dominated by D). Since n ≥ 5 is odd, then {x3, y3} ⊂ V (P2¤Pn).
Moreover x3, y3 /∈ D. Indeed, without loss of generality, suppose that x3 ∈
D. Then D∪{y1}−{x2, y2} is a dominating set of P2¤Pn, having the cardi-
nality |D| − 1. This contradicts the fact that D is the minimum dominating
set of P2¤Pn.

So, we have x1, y1, x3, y3 /∈ D and x2, y2 ∈ D. Consider two induced
subgraphs of P2¤Pn :

X1 = 〈{x1, y1, x2, y2, x3, y3}〉P2¤Pn
and

X2 = 〈{x4, y4, . . . , xn, yn}〉P2¤Pn
.
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Since X2
∼= P2¤Pn−3, then by Theorem 3 we have γ(X2) = dn−2

2 e =
d2k−1

2 e = k. Further |D| = γ(X1) + γ(X2) = 2 + k = dn+3
2 e > dn+1

2 e =
γ(P2¤Pn), — a contradiction, since D is a γ(P2¤Pn)-set.

Now, assume that x1 and y1 ∈ D, then x2, y2, x3, y3 /∈ D (otherwise
there would exist a dominating set of P2¤Pn with order strictly less than
the cardinality of D). Arguing as above, for X1 = 〈{x1, y1, x2, y2}〉P2¤Pn and
X2 = 〈{x3, y3, . . . , xn, yn}〉P2¤Pn , we also come to a contradiction. Hence the
proof is complete.

In [2] the following was proved

Lemma 7 [2]. If n ≥ 5 and n is odd, then

D = {xi : i ≡ 1(mod 4)} ∪ {yj : j ≡ 3(mod 4)}

is the γ(P2¤Pn)-set with |D| = dn+1
2 e.

Lemma 8. Let n ≥ 5 be odd and let D be a γ(P2¤Pn)-set. Then

|D ∩ {xi, yi, xi+1, yi+1}| = 1,

for i = 1, 2, . . . , n− 1.

Proof. We prove this lemma by induction. First consider the base case,
when n = 5. By Lemma 6, either x1 ∈ D or y1 ∈ D and x5 ∈ D or y5 ∈ D.
Since γ(P2¤P5) = 3, then

|D ∩ {x2, y2, x3, y3, x4, y4}| = 1.

If x3, y3 /∈ D, then x3 or y3 is not dominated by D in P2¤P5. So it must be
that either x3 ∈ D or y3 ∈ D. Thus the result holds for n = 5.

Assume that the result holds for n = 2k+1 and consider n = 2k+3. By
Lemma 6, either x1 ∈ D or y1 ∈ D. If x2, y2 /∈ D, then by the assumption

|D ∩ {xi, yi, xi+1, yi+1}| = 1,

for i = 3, 4, . . . , n− 1. Moreover,

|D ∩ {x1, y1, x2, y2}| = 1 and

|D ∩ {x2, y2, x3, y3}| = 1.

Thus the result holds for n = 2k + 3.
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If x2 ∈ D or y2 ∈ D, then D1 = D∩{xi, yi : i = 4, . . . , n} is a γ(P2¤P2k)-set
and |D1| = d2k+1

2 e = k + 1, by Theorem 3. Thus

|D| ≥ |D1|+ 2 = k + 3 >

⌈
2k + 3

2

⌉
= γ(P2¤P2k+3)

but this is impossible, since D is a γ(P2¤P2k+3)-set.
Hence the result is true for all odd n ≥ 5.

Theorem 9. For n ≥ 2,

γs(P2¤Pn) =

{ ⌈
n+1

2

⌉
, if n is even or n = 3,

⌈
n+1

2

⌉
+ 1, if n ≥ 5 is odd.

Proof. Let n ≥ 2 be even. According to Lemma 4 and Lemma 5 the result
is true.

If n = 3, then the set {x2, y2} is the minimum split dominating set of
P2¤P3, with the required cardinality.

Next, suppose that n ≥ 5 is odd. Then n = 2k + 1, (k ≥ 2). According
to Lemma 8 we have that the set D of Lemma 7 is unique (modulo the
automorphism that exchanges paths Pn). Moreover, observe that D is not
a split dominating set of P2¤Pn. Thus γ(P2¤Pn) < γs(P2¤Pn) and by
Theorem 1 we obtain that γs(P2¤Pn) = γ(P2¤Pn) + 1.
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