NOTE ON THE SPLIT DOMINATION NUMBER OF THE CARTESIAN PRODUCT OF PATHS

Maciej Zwierzchowski

Institute of Mathematics Technical University of Szczecin Al. Piastów 48/49, 70–310 Szczecin, Poland

e-mail: mzwierz@ps.pl

Abstract

In this note the split domination number of the Cartesian product of two paths is considered. Our results are related to [2] where the domination number of $P_m \Box P_n$ was studied. The split domination number of $P_2 \Box P_n$ is calculated, and we give good estimates for the split domination number of $P_m \Box P_n$ expressed in terms of its domination number.

Keywords: domination number, split domination number, Cartesian product of graphs.

2000 Mathematics Subject Classification: 05C69.

1. Introduction

In this paper we consider finite undirected simple graphs. For any graph G we denote V(G) and E(G), the vertex set of G and the edge set of G, respectively. If n is the cardinality of V(G), then we say that G is of order n. By $\langle X \rangle_G$ we mean a subgraph of a graph G induced by a subset $X \subseteq V(G)$. A subset $D \subseteq V(G)$ is a dominating set of G, if for every $x \in V(G) - D$, there is a vertex $y \in D$ such that $xy \in E(G)$. We also say that x is dominated by D in G or by y in G. A dominating set D of G is a split dominating set of G, if the induced subgraph $\langle V(G) - D \rangle_G$ of G is disconnected. The domination number, [the split domination number] of a graph G, denoted $\gamma(G), [\gamma_s(G)]$ is the cardinality of the smallest dominating [the smallest split dominating] set

of G. A dominating set D is called a $\gamma(G)$ -set if D realizes the domination number. Similarly we define a $\gamma_s(G)$ -set. From the definition of a split dominating set it follows immediately that $\gamma(G) \leq \gamma_s(G)$. Additionally note that for a connected graph G a $\gamma_s(G)$ -set exists if and only if G is different from a complete graph. More information about a split dominating set and the split domination number can be found in [3]. The Cartesian product of two graphs G and H, is a graph $G \Box H$ with $V(G \Box H) = V(G) \times V(H)$ and $(g_1, h_1)(g_2, h_2) \in E(G \Box H)$ if and only if $(g_1 = g_2 \text{ and } h_1h_2 \in E(H))$ or $(g_1g_2 \in E(G) \text{ and } h_1 = h_2)$.

Any other terms not defined in this paper can be found in [1].

2. Main Results

Theorem 1. For any $n, m \geq 2$

$$\gamma(P_m \Box P_n) \le \gamma_s(P_m \Box P_n) \le \gamma(P_m \Box P_n) + 1.$$

Proof. Let $m, n \geq 2$ and let D be the minimum dominating set of $P_m \Box P_n$. According to the definition of a split dominating set we have $\gamma(P_m \Box P_n) \leq \gamma_s(P_m \Box P_n)$. Thus to prove this theorem we will show that $\gamma_s(P_m \Box P_n) \leq \gamma(P_m \Box P_n) + 1$. Consider the graph $P_m \Box P_n$, as m canonical copies of P_n with vertices labelled $x_{i,j}$, for $i = 1, 2, \ldots, n$ and $j = 1, 2, \ldots, m$, and with edges $x_{i,j}x_{i+1,j}$ and $x_{i,j}x_{i,j+1}$.

If $x_{1,1} \in D$, then the subset $D' = D - \{x_{1,1}\} \cup \{x_{1,2}, x_{2,1}\}$ is also a dominating set of $P_m \Box P_n$. Moreover, since $N_{P_m \Box P_n}(x_{1,1}) = \{x_{1,2}, x_{2,1}\} \subset D'$, then $x_{1,1}$ is an isolated vertex of the induced subgraph $\langle V(P_m \Box P_n) - D' \rangle_{P_m \Box P_n}$ of a graph $P_m \Box P_n$. It means that D' is a split dominating set of $P_m \Box P_n$, with $|D'| \leq \gamma(P_m \Box P_n) + 1$.

If $x_{1,1} \notin D$, then it must be that $x_{1,2} \in D$ or $x_{2,1} \in D$ (otherwise $x_{1,1}$ would not be dominated by D in $P_m \Box P_n$). Assume that $x_{1,2} \in D$, then $D' = D \cup \{x_{1,2}\}$ is a split dominating set of $P_m \Box P_n$ and $|D'| \leq |D| + 1 = \gamma(P_m \Box P_n) + 1$, as desired.

Thus $\gamma_s(P_m \Box P_n) \leq \gamma(P_m \Box P_n) + 1$, for any $m, n \geq 2$ and the proof is complete.

In [2] it was obtained that $\lim_{n,m\to\infty} \frac{\gamma(P_m \Box P_n)}{mn} = \frac{1}{5}$. As a consequence from the above fact and from Theorem 1 we obtain the following

Corollary 2.

$$\lim_{n,m\to\infty}\frac{\gamma_s(P_m\Box P_n)}{mn}=\frac{1}{5}.$$

The following result was proved in [2].

Theorem 3 [2]. For $n \geq 2$,

$$\gamma(P_2 \Box P_n) = \left\lceil \frac{n+1}{2} \right\rceil.$$

Inspired by this result we shall calculate the split domination number of $P_2 \Box P_n$, for $n \ge 2$. Before proceeding we give a few necessary results.

Let $V(P_2) = \{v_1, v_2\}$ and $V(P_n) = \{u_1, u_2, ..., u_n\}$. For convenience, in the rest of the paper we will write x_i instead of $(v_1, u_i) \in V(P_2 \Box P_n)$ and y_i instead of $(v_2, u_i) \in V(P_2 \Box P_n)$, for i = 1, 2, ..., n. Hence $V(P_2 \Box P_n) =$ $\{x_i, y_i : i = 1, 2, ..., n\}$ and $E(P_2 \Box P_n) = \{x_i x_{i+1}, y_i y_{i+1}, x_i y_i, x_n y_n : i =$ $1, 2, ..., n - 1\}.$

Lemma 4. If $n \equiv 2 \pmod{4}$, $n \geq 2$, then

$$D = \{x_i : i \equiv 1 \pmod{4}\} \cup \{y_j : j \equiv 3 \pmod{4}\} \cup \{y_n\}$$

is the $\gamma_s(P_2 \Box P_n)$ -set with $|D| = \lceil \frac{n+1}{2} \rceil$.

Proof. Let $D = \{x_i : i \equiv 1 \pmod{4}\} \cup \{y_j : j \equiv 3 \pmod{4}\} \cup \{y_n\}$ be a subset of $V(P_2 \Box P_n)$.

We show that any vertex of $P_2 \Box P_n$ is either in D or it is adjacent to some vertex from D. Let r be an integer not greater than n.

If r = 4q, $q \ge 1$, then the vertex x_r is adjacent to $x_{r+1} = x_{4q+1} \in D$ and y_r is adjacent to $y_{r-1} = y_{4q-1} \in D$.

If r = 4q + 1, $q \ge 0$, then $x_r \in D$ and y_r is adjacent to x_r .

If r = 4q + 2, $q \ge 0$, then x_r is adjacent to $x_{r-1} \in D$. If r = n, then $y_r = y_n \in D$ and if r < n, then y_r is adjacent to $y_{r+1} \in D$.

Finally, if r = 4q + 3, $q \ge 0$, then $y_r \in D$ and x_r is adjacent to y_r .

All this together gives that D is a dominating set of $P_2 \Box P_n$.

Let n = 4s + 2, $s \ge 0$. We state that $|D| = \lceil \frac{n+1}{2} \rceil$. Indeed, partition $V(P_2 \Box P_n)$ into subsets $B_i = \{x_{4i-3}, y_{4i-3}, \ldots, x_{4i}, y_{4i}\}$, for $i = 1, 2, \ldots, s$

and $B_{s+1} = \{x_{n-1}, y_{n-1}, x_n, y_n\}$. Note that $|D \cap B_i| = 2$, for $i = 1, 2, \ldots, s + 1$. Thus $|D| = 2s + 2 = \lceil \frac{n+1}{2} \rceil = \gamma(P_2 \Box P_n)$, by Theorem 3. Since $N_{P_2 \Box P_n}(x_n) = \{x_{n-1}, y_n\} \subset D$, hence x_n is an isolated vertex of $\langle V(P_2 \Box P_n) - D \rangle_{P_2 \Box P_n}$. Thus this induced subgraph is disconnected. All this together gives that D is a $\gamma_s(P_2 \Box P_n)$ -set, since D is a split dominating set of $P_2 \Box P_n$ with the minimum cardinality. Hence the result is true.

Lemma 5. If $n \equiv 0 \pmod{4}$, $n \geq 2$, then

$$D = \{x_i : i \equiv 1 \pmod{4}\} \cup \{y_j : j \equiv 3 \pmod{4}\} \cup \{x_n\}$$

is the $\gamma_s(P_2 \Box P_n)$ -set with $|D| = \lceil \frac{n+1}{2} \rceil$.

Proof. Let D be as in the statement of the theorem. Arguing similarly as in the proof of above lemma, it follows that D is a dominating set of $P_2 \Box P_n$. Now, we show that $|D| = \lceil \frac{n+1}{2} \rceil$. Put n = 4s and partition $V(P_2 \Box P_n)$ into the subsets $B_i = \{x_{4i-3}, y_{4i-3}, \ldots, x_{4i}, y_{4i}\}$, for $i = 1, 2, \ldots, s$. It is easy to observe that $|D \cap B_i| = 2$, for $i = 1, 2, \ldots, s - 1$ and $|D \cap B_s| = 3$. Hence $|D| = 2(s-1)+3 = 2s+1 = \lceil \frac{n+1}{2} \rceil = \gamma(P_2 \Box P_n)$, as desired. Finally, observe that y_n is an isolated vertex of $\langle V(P_2 \Box P_n) - D \rangle_{P_2 \Box P_n}$. This means that the last subgraph is disconnected and as a consequence D is a split dominating set of $P_2 \Box P_n$. Since D is also a $\gamma(P_2 \Box P_n)$ -set, it is a $\gamma_s(P_2 \Box P_n)$ -set, as required.

Lemma 6. Let $n \ge 5$ be odd and let D be a $\gamma(P_2 \Box P_n)$ -set. Then exactly one of x_1 and y_1 belong to D.

Proof. Let n = 2k + 1 with $k \ge 2$ and let D be a $\gamma(P_2 \Box P_n)$ -set. Assume that $x_1, y_1 \notin D$, then it must be that $x_2, y_2 \in D$ (otherwise x_1 or y_1 would not be dominated by D). Since $n \ge 5$ is odd, then $\{x_3, y_3\} \subset V(P_2 \Box P_n)$. Moreover $x_3, y_3 \notin D$. Indeed, without loss of generality, suppose that $x_3 \in D$. Then $D \cup \{y_1\} - \{x_2, y_2\}$ is a dominating set of $P_2 \Box P_n$, having the cardinality |D| - 1. This contradicts the fact that D is the minimum dominating set of $P_2 \Box P_n$.

So, we have $x_1, y_1, x_3, y_3 \notin D$ and $x_2, y_2 \in D$. Consider two induced subgraphs of $P_2 \Box P_n$:

$$X_1 = \langle \{x_1, y_1, x_2, y_2, x_3, y_3\} \rangle_{P_2 \square P_n} \text{ and } X_2 = \langle \{x_4, y_4, \dots, x_n, y_n\} \rangle_{P_2 \square P_n}.$$

Since $X_2 \cong P_2 \Box P_{n-3}$, then by Theorem 3 we have $\gamma(X_2) = \lceil \frac{n-2}{2} \rceil = \lceil \frac{2k-1}{2} \rceil = k$. Further $|D| = \gamma(X_1) + \gamma(X_2) = 2 + k = \lceil \frac{n+3}{2} \rceil > \lceil \frac{n+1}{2} \rceil = \gamma(P_2 \Box P_n)$, — a contradiction, since D is a $\gamma(P_2 \Box P_n)$ -set.

Now, assume that x_1 and $y_1 \in D$, then $x_2, y_2, x_3, y_3 \notin D$ (otherwise there would exist a dominating set of $P_2 \Box P_n$ with order strictly less than the cardinality of D). Arguing as above, for $X_1 = \langle \{x_1, y_1, x_2, y_2\} \rangle_{P_2 \Box P_n}$ and $X_2 = \langle \{x_3, y_3, \ldots, x_n, y_n\} \rangle_{P_2 \Box P_n}$, we also come to a contradiction. Hence the proof is complete.

In [2] the following was proved

Lemma 7 [2]. If $n \ge 5$ and n is odd, then

$$D = \{x_i : i \equiv 1 \pmod{4}\} \cup \{y_j : j \equiv 3 \pmod{4}\}$$

is the $\gamma(P_2 \Box P_n)$ -set with $|D| = \lceil \frac{n+1}{2} \rceil$.

Lemma 8. Let $n \geq 5$ be odd and let D be a $\gamma(P_2 \Box P_n)$ -set. Then

$$|D \cap \{x_i, y_i, x_{i+1}, y_{i+1}\}| = 1,$$

for $i = 1, 2, \ldots, n - 1$.

Proof. We prove this lemma by induction. First consider the base case, when n = 5. By Lemma 6, either $x_1 \in D$ or $y_1 \in D$ and $x_5 \in D$ or $y_5 \in D$. Since $\gamma(P_2 \Box P_5) = 3$, then

$$|D \cap \{x_2, y_2, x_3, y_3, x_4, y_4\}| = 1.$$

If $x_3, y_3 \notin D$, then x_3 or y_3 is not dominated by D in $P_2 \Box P_5$. So it must be that either $x_3 \in D$ or $y_3 \in D$. Thus the result holds for n = 5.

Assume that the result holds for n = 2k+1 and consider n = 2k+3. By Lemma 6, either $x_1 \in D$ or $y_1 \in D$. If $x_2, y_2 \notin D$, then by the assumption

$$|D \cap \{x_i, y_i, x_{i+1}, y_{i+1}\}| = 1,$$

for i = 3, 4, ..., n - 1. Moreover,

$$|D \cap \{x_1, y_1, x_2, y_2\}| = 1$$
 and
 $|D \cap \{x_2, y_2, x_3, y_3\}| = 1.$

Thus the result holds for n = 2k + 3.

If $x_2 \in D$ or $y_2 \in D$, then $D_1 = D \cap \{x_i, y_i : i = 4, \dots, n\}$ is a $\gamma(P_2 \Box P_{2k})$ -set and $|D_1| = \lceil \frac{2k+1}{2} \rceil = k+1$, by Theorem 3. Thus

$$|D| \ge |D_1| + 2 = k + 3 > \left\lceil \frac{2k + 3}{2} \right\rceil = \gamma(P_2 \Box P_{2k+3})$$

but this is impossible, since D is a $\gamma(P_2 \Box P_{2k+3})$ -set.

Hence the result is true for all odd $n \geq 5$.

Theorem 9. For $n \geq 2$,

$$\gamma_s(P_2 \Box P_n) = \begin{cases} \left\lceil \frac{n+1}{2} \right\rceil, & \text{if } n \text{ is even or } n = 3, \\ \left\lceil \frac{n+1}{2} \right\rceil + 1, & \text{if } n \ge 5 \text{ is odd.} \end{cases}$$

Proof. Let $n \ge 2$ be even. According to Lemma 4 and Lemma 5 the result is true.

If n = 3, then the set $\{x_2, y_2\}$ is the minimum split dominating set of $P_2 \Box P_3$, with the required cardinality.

Next, suppose that $n \ge 5$ is odd. Then n = 2k + 1, $(k \ge 2)$. According to Lemma 8 we have that the set D of Lemma 7 is unique (modulo the automorphism that exchanges paths P_n). Moreover, observe that D is not a split dominating set of $P_2 \Box P_n$. Thus $\gamma(P_2 \Box P_n) < \gamma_s(P_2 \Box P_n)$ and by Theorem 1 we obtain that $\gamma_s(P_2 \Box P_n) = \gamma(P_2 \Box P_n) + 1$.

Acknowledgement

The author would like to thank the referees for many helpful corrections.

References

- [1] R. Diestel, Graph Theory (Springer-Verlag New York, Inc., 1997).
- [2] M.S. Jacobson and L.F. Kinch, On the domination number of products of graphs: I, Ars Combinatoria 18 (1983) 33–44.
- [3] V.R. Kulli and B. Janakiram, The split domination number of a graph, Graph Theory Notes of New York XXXII (1997) 16–19.

Received 31 October 2003 Revised 12 May 2004