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e-mail: E.Drgas-Burchardt@wmie.uz.zgora.pl

e-mail: A.Fiedorowicz@wmie.uz.zgora.pl

Abstract

The hereditary property of hypergraphs generated by the cost colour-
ing notion is considered in the paper. First, we characterize all maximal
graphs with respect to this property. Second, we give the generating
function for the sequence describing the number of such graphs with
the numbered order. Finally, we construct a maximal hypergraph for
each admissible number of vertices showing some density property. All
results can be applied to the problem of information storage.
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1. Introduction

In the paper, we investigate the hereditary property of hypergraphs ”to have
a cost bounded above by a constant”. An analysis of the property has been
motivated by the following application. Consider an agency, which is en-
gaged in the information storage. The company advertises itself as a secure
bank whose clients can preserve data independently of each other. A unit of
information corresponds to one safe. The agency takes precautions by allot-
ment of keys, that means ”to have an access to the chosen safe” is equivalent
of ”to use the set of keys corresponding to this safe”. The management of the
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company distributes the keys (algorithms, passwords,...) among employees.
Every worker has an associated natural cost of key preservation. Assume
that different costs characterize different people.

The object of our interest is expressed in the question: how to charac-
terize such sets of keys with their families of subsets corresponding to the
safes, whose preserving cost is bounded above by a given constant for each
client. Another task is to find such pairs (keys, information) which can be
optimally stored with the assumed cost. That means we cannot preserve
the cost adding more units of information.

Now, we present a mathematical model. Let vertices of a hypergraph
H correspond to different keys. Moreover, let a set of vertices creating an
edge in H correspond to one safe. Components of such a hypergraph de-
scribe different clients. With regard to the safety of information we can
assume that any subset of the set of keys corresponding to one safe cannot
be used to open other safes. It follows that H is a Sperner hypergraph.
People preserving keys, in fact different costs of key storage, correspond to
a colouring of H. Of course, the keys to one safe have to be preserved by
at least two people, which guarantees suitability of the colouring. In other
words, this colouring uses at least two colours for each edge. The problems
stated above are equivalent to the questions: how to characterize the prop-
erty of hypergraphs ”to have a cost smaller than or equal to a constant” and
how to characterize the maximal hypergraphs of this property. We solved
the latter problem in the class of graphs (two keys are sufficient to open a
safe). It is at the same time a partial solution in the class of hypergraphs (a
lot of keys can be needed to open a safe). Another goal of the paper is to
give the number of maximal graphs which can be constructed with respect
to the above mentioned property. Finally, we constructed a maximal hyper-
graph for each admissible number of vertices, showing some density property.

For the terminology of the graph and hypergraph theory not presented
here we refer to [1].

Let Ka1,...,ak
= (V1, . . . , Vk; E) denote the complete k-partite graph, such

that ai ≥ 0 and |Vi| = ai, i = 1, . . . , k .
For a given hypergraph H a proper k-colouring of H is a partition f =

(V1, . . . , Vk) of the set V (H), |V1| ≥ . . . ≥ |Vk| ≥ 0 such that for every edge
E of H there exist at least two indices 1 ≤ i, j ≤ k, i 6= j satisfying E ∩ Vi

and E ∩ Vj are nonempty. The proper k-colouring of a hypergraph H can
also be defined as a mapping from the set of vertices of H into the set [k] of
all positive integers smaller than or equal to k, called colours.
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The chromatic sum of H, denoted by ΣN (H), is the smallest sum of colours
over all vertices of H, among all proper k-colourings of H, k ∈ N , with N
being the set of all positive integers.

A proper k-colouring f of H which achieves the chromatic sum of H
with a minimum k is called the best colouring of H.

A Sperner hypergraph is a hypergraph which has no edge included in an
other edge.

Let J denote a set of all unlabelled finite Sperner hypergraphs without
loops. By I we denote a set of all unlabelled simple finite graphs.

For a Sperner hypergraph H we denote by E(H) a family of all subsets
E of V (H) none of which is an edge of H, satisfying H + E is a Sperner
hypergraph, excluding the empty set and all one-element subsets.

An additive hereditary hypergraph property is any set of hypergraphs
from J which is closed under isomorphism, disjoined unions and subhyper-
graphs. By Pcon we denote a set of all connected hypergraphs of an additive
hereditary property P. Notice that usually Pcon is neither hereditary nor
additive.

For any additive hereditary property P ⊆ J , the setsM(P) andM∗(P)
of maximal hypergraphs of P are defined by M(P) = {H ∈ J : H ∈ P and
H + E /∈ P for each E ∈ E(H)} and M∗(P) = {H ∈M(P) : E(H) 6= ∅}.

Let us define the family of hypergraph properties as follows Σk =
{H ∈ J : for every component H ′ of H holds ΣN (H ′) ≤ (k+2

2

)}, k ≥ 1.
It is easy to check that if H ′ ⊆ H then ΣN (H ′) ≤ ΣN (H).
By the above, Σk are additive hereditary properties of hypergraphs for

k ≥ 1.

2. Results

In the paper, we characterize the families M∗(Σk)∩Icon and M(Σk)∩Icon

and finally M(Σk)∩I, k ≥ 1. We also find the number of connected graphs
in M∗(Σk), in fact we use the generating function to count such graphs.
To do this we will recall, state and prove a few lemmas. The first of them
follows immediately out of the definitions.

Lemma 1. If H ∈M∗(Σk), k ≥ 1, is a connected hypergraph, then for any
best colouring f = (V1, . . . , Vp) of H and for any E ∈ E(H) there exists an
index i ∈ [p] satisfying E ⊆ Vi.
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It is easy to see that if ΣN (H) =
(k+2

2

)
, E(H) 6= ∅ and H is a connected

hypergraph, then H ∈ M∗(Σk) if and only if the condition stated above
holds.

On the other hand, it is not a sufficient condition at all. For example,
consider a hypergraph H = (V, E) such that V = {a, b, c, d, x, y} and E con-
sist of all 3 - element subsets of V , including vertex x or y. It is rather easy
to see that the only best colouring of H is of the form f = ({a, b, c, d}, {x, y})
and the chromatic sum of H is equal to 8. Hence H ∈ Σ3. Clearly, H ad-
mits the condition stated in Lemma 1. Let E = {a, b, c} ∈ E(H). We have
ΣN (H + E) = 10, because f ′ = ({b, c, d}, {x, y}, {a}) is the best colouring
of H + E. It follows that H is not a maximal hypergraph of Σ3.

Moreover, we check at once that for a disconnected hypergraph H the
necessary and sufficient conditions to be in M∗(Σk) are the following:
• for every component H ′ of H, H ′ ∈M(Σk),
• for any two components H1,H2 of H, ΣN (H1) + ΣN (H2) >

(k+2
2

)
.

An easy computation shows that the largest complete graph which is in Σk

has k + 1 vertices. It follows that

(M(Σk) ∩ I)− (M∗(Σk) ∩ I) = {Ki, i = 1, . . . , k + 1}.

Next we are going to formulate some necessary and sufficient conditions for a
connected graph, which is not complete, to be a maximal hypergraph of Σk.

It is clear that M∗(Σ1) ∩ Icon = ∅.

Lemma 2 ([3]). If Ka1,a2,...,at = (V1, . . . , Vt; E) and a1 ≥ a2 ≥ . . . ≥ at ≥ 1,
then f = (V1, V2, . . . , Vt) is the unique best colouring of Ka1,a2,...,at up to
order of parts of the same size.

Lemma 3. Let G = Ka1,a2,...,at = (V1, . . . , Vt; E) be a given hypergraph and
a1 ≥ a2 ≥ . . . ≥ at ≥ 1. Moreover let E(G) 3 E ⊆ Vj for some j, 1 ≤ j ≤ t.
Then every best colouring of the hypergraph G + E is of the form

f = (V1, . . . , Vj−1, Vk, Vj+1, . . . , Vk−1, Vj − {v}, Vk+1 . . . , Vt, {v}),

where v ∈ Vj and k = max{i : |Vi| = |Vj |}.

Proof. Suppose that f ′ = (V ′
1 , V

′
2 , . . . , V

′
p) is the best colouring of the

hypergraph G + E. Applying the definition of E(G) it is clear that for any
m, 1 ≤ m ≤ p, there exists w, 1 ≤ w ≤ t, such that V ′

m ⊆ Vw. It is also easy
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to see that there exist at least two sets V ′
n, V ′

l such that V ′
n ⊆ Vj and V ′

l ⊆ Vj

and V ′
l ∩ E 6= ∅, V ′

n ∩ E 6= ∅. Suppose that there exists x, x ∈ [t] − {j}
satisfying V ′

w ⊆ Vx and V ′
m ⊆ Vx for some w,m, 1 ≤ w < m ≤ p. Then the

sum of the colouring f∗ = (V ′
1 , V

′
2 , . . . , V

′
w ∪V ′

m, . . . , V ′
p) is less than the sum

of f ′, which contradicts the fact that f ′ is the best colouring of G + E.
In the same manner we can see that the partition (Vj−{v}, {v}), where

v ∈ E, is the only partition of the set Vj which realizes the least possible
sum of G + E. The statement finishes the proof.

Theorem 4. Let k ≥ 2. G ∈M∗(Σk)∩ Icon if and only if G ∼= Ka1,a2,...,ak
,

where a1 ≥ a2 ≥ . . . ≥ ak ≥ 0 are integers t + 1 − p >
(k+2

2

) − s,
(k+2

2

) −
k + 1 ≤ s ≤ (k+2

2

)
and a2 ≥ 1, with s =

∑k
j=1 jaj, t = max{i : ai 6= 0},

p = max{i : ai ≥ 2}.

Proof. (⇐) Let G = Ka1,a2,...,ak
= (V1, . . . , Vk; E) and the above conditions

hold. Since a2 ≥ 1, G is a connected graph. Lemma 2 now yields ΣN (G) =
s ≤ (k+2

2

)
, hence G ∈ Σk. If G was a complete graph, we would have

1 ≥ a1 ≥ . . . ak ≥ 0 and therefore s ≤ (k+1
2

)
<

(k+2
2

)−k +1, a contradiction.
Hence E(G) is nonempty and p, t are well defined. Let E ∈ E(G). It is
clear that there exists an index j, 1 ≤ j ≤ p, such that E ⊆ Vj . Let
m = max{i : ai = aj}. According to Lemma 3, we have

ΣN (G + E) =
m−1∑

x=1

axx + (am − 1)m +
t∑

x=m+1

axx + (t + 1)

= s−m + t + 1 ≥ s + t + 1− p >

(
k + 2

2

)
,

the last inequality holds from the assumption. Hence G + E /∈ Σk and
G ∈M∗(Σk) ∩ Icon.

(⇒) Let now G ∈ M∗(Σk) ∩ Icon and consider the best colouring f =
(V1, . . . , Vl), |Vl| ≥ 1, of G. Moreover, let aj = |Vj | for j = 1, . . . , l. Since
G ∈ Σk it is clear that ΣN (G) =

∑l
j=1 ajj = s ≤ (k+2

2

)
. Since G ∈M∗(Σk),

we can see that G is not a complete graph. We conclude from the form of the
colouring f and Lemma 1 that G is a complete multipartite graph Ka1,a2,...,al

.
We must have l ≤ k, because the only connected graph Ka1,a2,...,al

, where
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l ≥ k + 1, satisfying
∑l

j=1 ajj ≤
(k+2

2

)
is Kk+1 /∈ M∗(Σk). Moreover s =∑l

j=1 ajj ≥
(k+2

2

)− k +1. Otherwise, since for any E ∈ E(G), ΣN (G+E)−
ΣN (G) ≤ k by Lemmas 2 and 3, we have

ΣN (G + E) ≤ k + s < k +

(
k + 2

2

)
− k + 1 =

(
k + 2

2

)
+ 1.

Hence ΣN (G + E) ≤ (k+2
2

)
, which contradicts the maximality of G.

It remains to prove that t+1−p >
(k+2

2

)−s, with t, p as it was described.
Since t = l, Lemma 3 shows that ΣN (G+E) = s+ t+1−m, where E ∈ Vw

and m = max{i : |Vi| = |Vw|}. As m ≤ p we have

1 +

(
k + 2

2

)
≤ min{ΣN (G + E) : E ∈ E(G)} = s + t + 1− p,

which completes the proof.

As a consequence of the last proof we have the identity between the set of
connected graphs in M∗(Σk) and the set of connected graphs in M∗(Σk ∩
I). This completes the characterization of the families M(Σk) ∩ I and
M(Σk ∩ I).

Moreover, since every connected hypergraph in Σk has at most
(k+2

2

)−1
vertices and Kk+1 is a maximal hypergraph of Σk, it is clear that the order
of the connected hypergraph in M∗(Σk) is limited. In the next theorem, we
will show that there exists such a hypergraph for each admissible number of
vertices.

Theorem 5. For each integers k, p, k ≥ 2, k + 2 ≤ p ≤ (k+2
2

) − 1 there
exists a connected graph G ∈M∗(Σk) satisfying |V (G)| = p.

Proof. Let p satisfy k + 2 ≤ p ≤ (k+2
2

) − 2. First, we show that G =
Kl,1, . . . , 1︸ ︷︷ ︸

w−1

, where w, l are given by

w2 − w ≤ k2 + 3k + 2(1− p) < w2 + w,

l = p− w + 1,

has the desired property. We use Theorem 4 to show it. It is clear that for
fixed k, p there is exactly one number w satisfying the first two inequalities,
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because (w − 1)2 + (w − 1) = w2 − w. Consider the function f(p) = k2 +
3k + 2 − 2p of an integer p, k + 2 ≤ p ≤ (k+2

2

) − 1. It is obvious that f
has a maximum at p = k + 2, namely f(k + 2) = k2 + k − 2, and has a
minimum equal to 4 at p =

(k+2
2

)− 2. Hence k ≥ w ≥ 2. The task is now to
show that such a graph G satisfies the conditions stated in Theorem 4. It is
clear that max{i : ai 6= 0} = w. Since l = p − w + 1 ≥ k + 2 − k + 1 ≥ 3,
a1 ≥ a2 ≥ . . . ≥ ak ≥ 0 and max{i : ai ≥ 2} = 1. By w ≥ 2 we
have a2 ≥ 1. As w2 − w ≤ k2 + 3k + 2(1 − p) we obtain s ≤ (k+2

2

)
. As

w2 + w > k2 + 3k + 2(1− p) and k ≥ w the conditions s ≥ (k+2
2

)− k +1 and
w >

(k+2
2

)− s hold.
Similar considerations can be applied to G = K(k+2

2 )−2,1
.

In the next theorem, we give the generating function for the sequence de-
scribing |M∗(Σk) ∩ Icon|, k ≥ 1. To do this we will recall and prove two
lemmas. Both of these observations result easily from the known formula
for the number of ways of distinct decompositions of the positive integer
into positive summands with some restrictions [4].

Lemma 6. Let k be an arbitrary positive integer. The number of solutions
(x1, x2, . . .) of the equation

∑∞
i=1 xi

(i+1
2

)
=

(k+2
2

)
in sequences of nonnegative

integers is equal to c(k+2
2 ) where

f(x) =
∞∑

n=1

cnxn =
∞∏

n=2

1

1− x(n
2)

.

Proof. It is obvious that

∞∏

n=2

1

1− x(n
2)

= (1 + x + x2 + . . .)(1 + x3 + x6 + . . .)·

· . . . ·
(
1 + x(n

2) + x2(n
2)

)
· . . . .

According to the formula for the series product we have the right side of the
above equation being the sum of components of the form

xλ1xλ2(3
2)xλ3(4

2) · . . . = xλ1+λ2(3
2)+λ3(4

2)+···,

where λi is the number of expression taken from the ith series, the numer-
ation starting from zero. The coefficient of x(k+2

2 ) is thus equal to the number



74 E. Drgas-Burchardt and A. Fiedorowicz

of sequences (λ1, λ2, . . . , ) such that λ1 + λ2
(3
2

)
+ λ3

(4
2

)
+ · · · = (k+2

2

)
, which

completes the proof.

Lemma 7. Let i, k, 1 ≤ i < k be any positive integers. The number of
solutions (x1, x2, . . .) of the equation

∑∞
j=1 xj

(j+1
2

)
=

(k+2
2

)− i, in sequences
of nonnegative integers so that there exist indices t, p, t ≥ p + i satisfying
xt = 1, xp ≥ 1, xj = 0 for all j ≥ t + 1, xj = 0 for all p < j < t is equal to
b(k+2

2 )−i
, where

f(x) =
∞∑

j=1

bjx
j =

∞∑

t=i+1

x(t+1
2 )

t−i∑

p=1

p∏

n=1

x(p+1
2 )

1− x(n+1
2 )

.

Proof. We first observe that the right side of the above equation can be
written as

∞∑

t=i+1

x(t+1
2 )

t−i∑

p=1

x(p+1
2 )(1 + x + x2 + . . .)(1 + x3 + x6 + . . .)·

· . . . ·
(
1 + x(p+1

2 ) + x2(p+1
2 ) + . . .

)
.

According to the formulas for the series product, the sums product and
sums sum we have the right side of the above equation being the sum of the
components of the form

x1·(t+1
2 )x1·(p+1

2 )xλ1xλ2(3
2)xλ3(4

2) · . . . xλp(p+1
2 )

= x(t+1
2 )+(λp+1)(p+1

2 )+λp−1(p
2)+...+λ1(2

2),

where p + i ≤ t and λj is the number of expression taken from the jth
series of the last sum, the numeration starting from zero. The coefficient
of x(k+2

2 )−i is thus equal to the number of sequences (λ1, λ2, . . . , ) such that
λt = 1, p + i ≤ t, λj = 0, p < j < t and

λ1

(
2
2

)
+ λ2

(
3
2

)
+ λ3

(
4
2

)
+ · · ·+ λp−1

(
p

2

)

+(λp + 1)

(
p + 1

2

)
+

(
t + 1

2

)
=

(
k + 2

2

)
− i,

which completes the proof.
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Theorem 8. The generating function for the sequence (an)∞n=1, where for
k = 1, 2, . . .

a(k+2
2 ) = |M∗(Σk) ∩ Icon| − 2,

is of the form

f(x) =
∞∑

j=1

ajx
j =

∞∑

i=1

xi
∞∑

t=i+1

x(t+1
2 )

t−i∑

p=1

p∏

n=1

x(p+1
2 )

1− x(n+1
2 )

+
∞∏

n=2

1

1− x(n
2)

.

Proof. Theorem 4 shows that |M∗(Σk) ∩ Icon| is equal to the number of
connected graphs G ' Ka1,...,ak

, where a1 ≥ a2 ≥ . . . ≥ ak ≥ 0 are integers
and

(k+2
2

)−k+1 ≤ s ≤ (k+2
2

)
, t+1−p >

(k+2
2

)−s, a2 ≥ 1 with s =
∑k

j=1 jaj ,
t = max{i : ai 6= 0}, p = max{i : ai ≥ 2}. It follows that |M∗(Σk) ∩ Icon|
is equal to the number of solutions (a1, a2, . . . , ak) in the finite sequences of
nonnegative integers of the identity

k∑

i=1

xii = s(1)

satisfying a1 ≥ a2 ≥ . . . ≥ ak ≥ 0 and




(k+2
2

)− k + 1 ≤ s ≤ (k+2
2

)
,

t + 1− p >
(k+2

2

)− s,

t = max{i : ai 6= 0},
p = max{i : ai ≥ 2},

(2)

decreased by one, because the solution a1 =
(k+2

2

)
, ai = 0 for all 2 ≤ i ≤ k

should be excluded with respect to the condition a2 ≥ 1. It is easily seen
that the problem stated above can be written as follows: find the number
of solutions (a1, a2, . . .) in sequences of nonnegative integers of the identity

∞∑

i=1

xii = s(3)

satisfying a1 ≥ a2 ≥ . . . and (2). Then decrease it by two, because the
solutions
• a1 =

(k+2
2

)
, ai = 0 for all i ≥ 2,

• a1 = a2 = . . . = ak+1 = 1, ai = 0 for all i ≥ k + 2
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should be excluded. The second solution refers to a graph Kk+1, which is
in M(Σk)−M∗(Σk).

We can now rewrite (3) as

∞∑

i=1

(xi − xi+1)(1 + . . . + i) = s =
∞∑

i=1

(xi − xi+1)

(
i + 1

2

)
.(4)

Taking yn = (xn − xn+1) for n ≥ 1 we obtain

∞∑

i=1

yi

(
i + 1

2

)
= s(5)

where the condition x1 ≥ x2 ≥ . . . is substituted by yi ≥ 0 for i ≥ 1. It is
clear that (2) is always true if s =

(k+2
2

)
or equivalently t = p. We can now

rewrite (2) as





∃1≤i≤k−1 s =
(k+2

2

)− i

∃t,p∈N, t≥p+i yt = 1, yp ≥ 1 and ∀p<j<t∨j≥t+1 yj = 0
(6)

or

s =

(
k + 2

2

)
.(7)

Lemma 6 shows that the number of solutions of (5) satisfying (7) is equal
to c(k+2

2 ) where
∞∑

n=0

cnxn =
∞∏

n=2

1

1− x(n
2)

.

Lemma 7 yields that the number of such solutions satisfying (6) is equal to∑k−1
i=1 d(k+2

2 )−i
where

∞∑

j=1

djx
j =

∞∑

t=i+1

x(t+1
2 )

t−i∑

p=1

p∏

n=1

x(p+1
2 )

1− x(n+1
2 )

which means it is equal to g(k+2
2 ) where
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∞∑

j=1

gjx
j =

k−1∑

i=1

xi
∞∑

t=i+1

x(t+1
2 )

t−i∑

p=1

p∏

n=1

x(p+1
2 )

1− x(n+1
2 )

=
∞∑

i=1

xi
∞∑

t=i+1

x(t+1
2 )

t−i∑

p=1

p∏

n=1

x(p+1
2 )

1− x(n+1
2 )

.

and the proof is complete.
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