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Abstract

For given graphs G1, G2, . . . , Gk, k ≥ 2, the multicolor Ramsey
number R(G1, G2, . . . , Gk) is the smallest integer n such that if we arbi-
trarily color the edges of the complete graph on n vertices with k colors,
then it is always a monochromatic copy of some Gi, for 1 ≤ i ≤ k. We
give a lower bound for k-color Ramsey number R(Cm, Cm, . . . , Cm),
where m ≥ 8 is even and Cm is the cycle on m vertices. In addition,
we provide exact values for Ramsey numbers R(P3, Cm, Cp), where P3

is the path on 3 vertices, and several values for R(Pl, Pm, Cp), where
l, m, p ≥ 2. In this paper we present new results in this field as well as
some interesting conjectures.
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1. Introduction

In this paper all graphs considered are undirected, finite and contain neither
loops nor multiple edges. Let G be such a graph. The vertex set of G will
be denoted by V (G) and the edge set of G by E(G). Cm denotes the cycle
of length m, Pm — the path on m vertices. In this article we consider
only edge colorings of graphs. For given graphs G1, G2, . . . , Gk, k ≥ 2, the
multicolor Ramsey number R(G1, G2, . . . , Gk) is the smallest integer n such
that if we arbitrarily color the edges of the complete graph of order n with
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k colors, then it always contains a monochromatic copy of some Gi, for
1 ≤ i ≤ k. We often consider only 3-color Ramsey number R(G1, G2, G3)
(i.e., we color the edges of the complete graph Kn with color red, blue and
green). A 3-coloring of Kn is called a (G1, G2, G3;n)-coloring if it contains
neither a red G1 nor a blue G2 nor a green G3. (G1, G2, . . . , Gk;n)-coloring
is defined analogously. A (G1, G2, . . . , Gk; n)-coloring is said to be critical
if n = R(G1, G2, . . . , Gk) − 1. For v ∈ V (G), we define functions r(v), b(v)
and g(v) to be the numbers of red, blue and green neighbours of v. Very
little is known about multicolor Ramsey numbers. We refer the reader to
[9] and [1] for a survey.

2. The Ramsey Numbers for Even Cycles

Up to now, there have been known a few exact values for 3-color Ramsey
numbers for cycles. The following numbers are proved: R(C3, C3, C3) =
17 [7] and R(C4, C4, C4) = 11 [4]. By using computer support, the two
following numbers have been determined: R(C5, C5, C5) = 17 [10] and
R(C6, C6, C6) = 12 [11]. Recently, Faudree, Schelten and Schiermeyer have
shown (without using a computer) that

Theorem 1 [6].
R(C7, C7, C7) = 25.

In 1973, Bondy and Erdös formulated the following conjecture.

Conjecture 2 [2]. For all odd integers m ≥ 5,

R(Cm, Cm, Cm) = 4m− 3.

ÃLuczak has proved that this bound holds asymptotically.

Theorem 3 [8]. For all integers m ≥ 5,

R(Cm, Cm, Cm) = (4 + o(1))m.

Now, we shall give formula for a lower bound for multicolor Ramsey numbers.
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Theorem 4. For all even integers m ≥ 8 and an integer k ≥ 2,

R (Cm, Cm, . . . , Cm)︸ ︷︷ ︸
k times

> m + (k − 1)
m

2
− (k − 1)− 1.

Proof. All we need is to provide any k-coloring of graph G on m+(k−1)m
2 −

(k − 1)− 1 vertices which is a good (Cm, Cm, . . . , Cm)︸ ︷︷ ︸
k times

-coloring. Consider a

partition of V (G) into subsets V1, V2, . . . , Vk+1, where |V1| = m
2 and |Vi| =

m
2 − 1, i ∈ {2, . . . , k + 1}. Let e = {x, y}. Then this coloring is as follows:

(i) c(e) = 1 if x, y ∈ Vi, where i ∈ {1, 2, . . . , k + 1},
(ii) c(e) = j − 1 if x ∈ Vi, y ∈ Vj , where i ∈ {1, 2}, j ∈ {2, 3, . . . , k + 1}

and i < j,

(iii) c(e) = i− 1 if x ∈ Vi, y ∈ Vj , where i ∈ {3, 4, . . . , k + 1},
j ∈ {4, 5 . . . , k + 1} and i < j.

By the definition of our coloring, it is easy to see that there is no cycle Cm

in color 1. Furthermore, as each of the monochromatic sets of edges colored
with one of colors i = 2, . . . , k + 1, induce a bipartite subgraph Gi with the
smaller partition of the cardinality m

2 −1, there are no monochromatic cycle
Cm in Gi, and thus in the whole graph as well.

The following three corollaries are straightforward.

Corollary 5. For all even integers m ≥ 8,

R(Cm, Cm, Cm) > 2m− 3.

Corollary 6. For all even integers m ≥ 8,

R(Cm, Cm, Cm, Cm) >
5
2
m− 4.

In particular, we have that R(C8, C8, C8) > 13, R(C10, C10, C10) > 17, and
R(C8, C8, C8, C8) > 16.
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3. The Ramsey Numbers R(Pl, Pm, Cp)

This section is devoted to the study of the 3-color Ramsey numbers for two
paths and one cycle which have different length.

3..1 The Ramsey numbers R(P3, P3, Cm)

Arste et. al [1] gave the first two Ramsey numbers of this type: R(P3, P3, C3) =
5 and R(P3, P3, C4) = 6. It is easy to prove the following theorem.

Theorem 7. R(P3, P3, C5) = 6.

Proof. We will only show the inequality R(P3, P3, C5) > 5 by presenting a
coloring of K5 which contains neither a red path P3 nor a blue path P3 nor
a green cycle C5. Let the vertices of K5 be labeled 0, 1, 2, 3, 4. Let vertex
0 be joined by green edges to the vertices 1, 2, 3, 4. Vertex 1 is joined by a
green edge to 2, a red edge to 3 and a blue edge to 4, vertex 2 is joined by a
blue edge to 3 and by a red edge to 4. This enforces the green edge {3,4}.

Theorem 8. For all integers m ≥ 6,

R(P3, P3, Cm) = m.

Proof. Avoiding a red and a blue path P3 we obtain that r(v) ≤ 1 and
b(v) ≤ 1 for all vertices v in any 3-coloring of graph Km. By Dirac’s Theo-
rem, we immediately obtain a cycle Cm, which completes the proof.

3..2 The Ramsey numbers R(P3, P4, Cm)

In [1] we can find two results for Ramsey numbers of such type:
R(P3, P4, C3) = 7 and R(P3, P4, C4) = 7. We will prove the analogous result
for R(P3, P4, Cm).

First, we need the following definition.

Definition 1. Turán number T (m, G) is the maximum number of edges in
any m-vertex graph which does not contain a subgraph isomorphic to G.

Let us recall the well-known Turán numbers.
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Lemma 9 [12]. For all integers n ≥ 4,

T (m,P3) =
⌊m

2

⌋
,

T (m,P4) =

{
m if m ≡ 0 mod 3,
m−1 otherwise,

T (m,Cm) =
(

m− 1
2

)
+ 1,

T (m + 1, Cm) =
(

m− 1
2

)
+ 3.

Theorem 10. R(P3, P4, C5) = 7.

Proof. The proof of R(P3, P4, C5) ≤ 7 is simple, so it is left to the reader.
We will only show the inequality R(P3, P4, C5) > 6 by presenting a critical
coloring (P3, P4, C5; 6). Let the vertices of K6 be labeled 0, 1, . . . , 5, and let
us color the edges {0, 2}, {0, 5}, {2, 5}, {1, 3}, {1, 4}, {3, 4} with blue, and
the edges {0, 1}, {2, 3}, {4, 5} with red; the remaining edges are green. It is
easy to check that this coloring forces a green C6 but not C5.

Theorem 11. For all integers m ≥ 6,

R(P3, P4, Cm) = m + 1.

Proof. We can easily obtain the result for m = 6. Consider any 3-colored
K7. By Lemma 9, in order to avoid a red P3 and a blue P4, there must be
at most 3 red, 6 blue and remaining 12 green edges. If g(v) ≤ 2 for some
vertex v ∈ V (K7), then the graph K7 − v contains a green cycle C5 and we
immediately have a green C6 or a red P3, or a blue P4. If g(v) = 3 for some
vertex v, then K7−v contains a green C5 and also a green C6 or K7−v does
not contain a green C5 and C6 but contains a vertex w such that g(w) ≤ 2.
It is easy to check that the graph K7−{v, w} contains a green cycle C4, and
if there is no a green C5, then we quickly have a blue P4 or a red P3. The
proof of the case of m ∈ {7, 8, 9} is similar, so it is left to the reader.

In general case, the proof is by contradiction. Suppose, contrary to
our claim, that we have a 3-coloring of the complete graph Km+1. By
Lemma 9, in order to avoid a red P3, a blue P4 and a green Cm, graph
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Km+1 can have at most T (m + 1, Cm) + T (m + 1, P4) + T (m + 1, P3) ≤
1
2m2 − 3

2m + 3 + m + 1 + 1
2m + 1

2 = 1
2m2 + 41

2 < 1
2m2 + 1

2m edges, for all
m > 9, a contradiction.

3..3 The Ramsey numbers R(P4, P4, Cm)

In [1] we can find two values of Ramsey numbers of this type: R(P4, P4, C3) =
9 and R(P4, P4, C4) = 7.

Theorem 12. R(P4, P4, C5) = 9.

Proof. First we shall present a critical coloring (P4, P4, C5; 8), thus getting
R(P4, P4, C5) > 8. Let the vertices of K8 be labeled 1, 2, . . . , 8. We can
assume i, i + 1, i + 2, i + 3, i ∈ {1, 5} to be the vertices of two K4 which are
colored as follows: the edges {i, i+1}, {i, i+2}, {i+1, i+2} are red, vertex
i + 3 is joined by a blue edge to i, i + 1, i + 2, and the remaining edges of
the graph K8 are green.

Since R(P4, P4, C4) = 7, we can assume 1, 2, 3, 4 to be the vertices of
green C4. Avoiding a green cycle C5 we know that the number of red and
blue edges from vertices 5, . . . , 9 to green cycle is at least two. This forces
a red (or a blue) path P3: (i, x, j), where x ∈ C4 and i, j ∈ {5, . . . , 9}.
Without loss of generality, we assume x = 1, i = 5, j = 6. We have to
consider three cases.

Case 1. The edges {3, 5} and {3, 6} are green. This forces: {2, 5}, {4, 5},
{2, 6}, {4, 6} to be blue, and we immediately have a blue P4.

Case 2. The edges {3, 5} and {3, 6} are blue. Then it is forced: the
vertices 5 and 6 is joined by green edges to each of the vertices: 2, 4, 7, 8, 9.
Then {2, 4, 7, 8, 9} is the set of vertices of the complete graph K5. Avoiding
a green cycle in K9, there is no green edges in K5. Since R(P4, P4) = 5, we
can easily obtain a red or a blue path P4.

Case 3. Without loss of generality: {3, 5} is blue and {3, 6} is green.
This forces: {2, 6}, {4, 6} blue, {2, 5}, {4, 5} green, and one of the following
two subcases must occur:

Case 3.1. {1, 3} is blue. It forces {5, 7}, {5, 8}, {5, 9} green, {4, 7},
{4, 8}, {4, 9} red, {2, 7} green, {4, 5} blue and we have a blue path P4.
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Case 3.2. (1, 3) is red. We have two situations. In the first one, blue
{3, 7} forces {6, 7} green, {5, 7} blue, {5, 7}, {5, 9}, {3, 8}, {3, 9} green,
{4, 8}, {4, 9}, {8, 9} red. To avoid a green cycle (5, 2, 3, 6, 9, 5) we have
{6, 9} blue and {6, 8} is blue as well. But this forces {2, 9} green, and we
have a green cycle C5. In the latter case, green {3, 7} forces {2, 7}, {4, 7}
red, {4, 8}, {4, 9}, green, {5, 8}, {5, 9} blue, {6, 8}, {6, 9}, {3, 8} green, and
we have a green C5 (3, 6, 9, 4, 8, 3).

In the way similar to that used in the proof of Theorem 12 we can prove

Theorem 13. R(P4, P4, C6) = 8.

This result leads us to the following conjecture.

Conjecture 14. For all integers m ≥ 6, R(P4, P4, Cm) = m + 2.

4. The Ramsey Numbers R(P3, Cm, Cp)

In [6] Faudree, Schelten and Schiermeyer proved (without using a computer)
that R(C7, C7, C7) = 25. The next definitions come from that paper.

Definition 2. By K∗
12 we denote any graph of order 12 missing at most four

edges.

Definition 3. By ext(H,n) we denote the maximal number of edges a graph
of order n may contain, if it does not contain a subgraph isomorphic to H.

Definition 4. ext(C7, n)′ := max{|E(G)| : |V (G)| = n, C7 * G, B7,7 * G,
K∗

12 * G, G is not bipartite}.

Let us note that the graph B7,7 is a special kind of graph, however it will
not be used in our considerations.

Theorem 15. R(P3, C7, C7) = 13.

Proof. We can assume that the complete graph K13 is 3-colored with
colors red, blue and green. Avoiding a red P3, there are at most six red
edges. Suppose that K13 contains only these six red edges and does not
contain a blue or green C7. Because

(
13
2

)
= 78, either the blue or green color

classes contains at least 36 edges. We have to consider two situations.
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1. One of the induced color classes (blue or green) is bipartite. Without
loss of generality assume this is the blue color class. One of the partitions
sets has at least 7 vertices. Since R(P3, C7) = 7, the complete graph K13

has to contain a red P3 or a green C7.

2. If K∗
12 ⊆ K13, then one can observe that we may consider only one

case: K12 missing at most four edges, which is colored with red and blue
(green). The missing edges are colored with green (blue). It is easy to
check that we quickly have a red P3 or a blue (green) C7.

As Faudree et al. [6] proved that ext′(C7, 13) = 33, either we get a contra-
diction or a blue or green cycle C7.

Our last small Ramsey number is the following.

Theorem 16. R(P3, C5, C5) = 9.

Proof. Consider any 3-coloring of the complete graph K9. Avoiding a red
P3, there are at most four red edges. Suppose that K9 contains only four
red edges and does not contain a blue or a green C5. It is obvious that there
is a vertex v ∈ V (G) such that r(v) = 0. Next, one of the two cases must
hold.

1. the vertex v has at least five blue (green) edges,

2. the vertex v is joined by exactly four blue and four green edges to the
remaining vertices of K9.

Both of the above cases can be solved by using simple combinatoric prop-
erties and because lack of space we skip the rest of the proof (see [5] for
details).

These last two results lead us to the following conjecture.

Conjecture 17. For all odd integers m ≥ 5,

R(P3, Cm, Cm) = 2m− 1 = R(Cm, Cm).

With the aid of a computer we have obtained six new values for 3-color
Ramsey numbers R(P3, Cm, Cp). Old and new results are summarized in
the following table (the last two columns contain new values).
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P3 C3 C4 C5 C6

C3 11 [3] 8 [1] 9 [5] 11 [5]
C4 8 [1] 8 [5] 8 [5]
C5 9 Thm. 16 11 [5]
C6 9 [5]
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