DOMINATION NUMBERS IN GRAPHS WITH REMOVED EDGE OR SET OF EDGES

Magdalena Lemańska
Department of Mathematics
Gdańsk University of Technology
Narutowicza 11/12, 80-952 Gdańsk, Poland

e-mail: magda@mif.pg.gda.pl

Abstract

It is known that the removal of an edge from a graph G cannot decrease a domination number $\gamma(G)$ and can increase it by at most one. Thus we can write that $\gamma(G) \leq \gamma(G-e) \leq \gamma(G)+1$ when an arbitrary edge e is removed. Here we present similar inequalities for the weakly connected domination number γ_{w} and the connected domination number γ_{c}, i.e., we show that $\gamma_{w}(G) \leq \gamma_{w}(G-e) \leq \gamma_{w}(G)+1$ and $\gamma_{c}(G) \leq \gamma_{c}(G-e) \leq \gamma_{c}(G)+2$ if G and $G-e$ are connected. Additionally we show that $\gamma_{w}(G) \leq \gamma_{w}\left(G-E_{p}\right) \leq \gamma_{w}(G)+p-1$ and $\gamma_{c}(G) \leq \gamma_{c}\left(G-E_{p}\right) \leq \gamma_{c}(G)+2 p-2$ if G and $G-E_{p}$ are connected and $E_{p}=E\left(H_{p}\right)$ where H_{p} of order p is a connected subgraph of G.

Keywords: connected domination number, weakly connected domination number, edge removal.
2000 Mathematics Subject Classification: Primary: 05C69; Secondary: 05C05, 05C85.

1. Introduction

Let $G=(V, E)$ be a connected undirected graph. The neighbourhood $N_{G}(v)$ of a vertex $v \in V$ is the set of all vertices adjacent to v. For a set $X \subseteq V$, the open neighbourhood $N_{G}(X)$ is defined to be $\bigcup_{v \in X} N_{G}(v)$ and the closed neighbourhood $N_{G}[X]=N_{G}(X) \cup X$. A set $D \subseteq V$ is a dominating set if
$N_{G}[D]=V$. Further, D is a connected dominating set if D is dominating and $\langle D\rangle$, the subgraph induced by D, is connected.

The domination number of G, denoted $\gamma(G)$, is $\min \{|D|: D$ is a dominating set of $G\}$, while the connected domination number of G, denoted $\gamma_{c}(G)$, is $\min \{|D|: D$ is a connected dominating set of $G\}$.
A dominating set D is a weakly connected dominating set if the subgraph weakly induced by $D,\langle D\rangle_{w}=\left(N(D), E_{w}\right)$, is connected, where E_{w} is the set of all edges having at least one vertex in D. The weakly connected domination number of G, denoted $\gamma_{w}(G)$, is $\min \{|D|: D$ is a weakly connected dominating set of $G\}$. For unexplained terms and symbols see [1].

Let H_{p} be a connected subgraph of G with p vertices for $p \geq 2$ and $E_{p}=E\left(H_{p}\right)$ the set of edges of H_{p}. By $G-e$ we denote the graph formed by removing an edge e from G and by $G-E_{p}$ the graph formed by removing the set of edges E_{p} from G.

It is known [2] that the removal of an edge from G cannot decrease $\gamma(G)$ and can increase it by at most one. Thus we can write that $\gamma(G) \leq$ $\gamma(G-e) \leq \gamma(G)+1$ when an arbitrary edge e is removed. Here we present similar inequalities for numbers $\gamma_{c}(G)$ and $\gamma_{w}(G)$, i.e., we show that $\gamma_{c}(G) \leq$ $\gamma_{c}(G-e) \leq \gamma_{c}(G)+2$ and $\gamma_{w}(G) \leq \gamma_{w}(G-e) \leq \gamma_{w}(G)+1$ if G and $G-e$ are connected.

We also prove that $\gamma_{c}(G) \leq \gamma_{c}\left(G-E_{p}\right) \leq \gamma_{c}(G)+2 p-2$ and $\gamma_{w}(G) \leq$ $\gamma_{w}\left(G-E_{p}\right) \leq \gamma_{w}(G)+p-1$ if G and $G-E_{p}$ are connected.

2. Connected Domination Number

We study the behavior the connected domination number, with respect to edge or set of edges deletion. First we show that removing an edge cannot decrease the connected domination number and can increase it by at most two.

Theorem 1. If e is an edge of G and if G and $G-e$ are connected, then $\gamma_{c}(G) \leq \gamma_{c}(G-e) \leq \gamma_{c}(G)+2$.

Proof. First we show that $\gamma_{c}(G) \leq \gamma_{c}(G-e)$. Let D_{0} be a minimum connected dominating set of $G-e$. Certainly, D_{0} is a connected dominating set of G. Thus $\gamma_{c}(G) \leq\left|D_{0}\right|=\gamma_{c}(G-e)$.

Now we prove that $\gamma_{c}(G-e) \leq \gamma_{c}(G)+2$. Let D be a minimum connected dominating set of G and let e, say $e=x y$, be an edge of G such that $G-e$ is connected. We consider three cases.

Case 1. $x, y \notin D$. It is easy to see that D is a connected dominating set of $G-e$ and $\gamma_{c}(G-e) \leq|D|=\gamma_{c}(G) \leq \gamma_{c}(G)+2$.

Case 2. $|\{x, y\} \cap D|=1$, say $x \in D, y \notin D$. If $N_{G-e}(y) \cap D \neq \emptyset$, then D is a connected dominating set of $G-e$ and we have $\gamma_{c}(G-e) \leq|D|=$ $\gamma_{c}(G) \leq \gamma_{c}(G)+2$.

If $N_{G-e}(y) \cap D=\emptyset$, then $N_{G-e}(y) \cap(V-D) \neq \emptyset$ as $G-e$ is connected. Thus, there exists a vertex $y^{\prime} \in N_{G-e}(y) \cap(V-D)$ such that $N_{G-e}\left(y^{\prime}\right) \cap$ $D \neq \emptyset$. In this case $D \cup\left\{y^{\prime}\right\}$ is a connected dominating set of $G-e$ and $\gamma_{c}(G-e) \leq\left|D \cup\left\{y^{\prime}\right\}\right|=\gamma_{c}(G)+1 \leq \gamma_{c}(G)+2$.

Case 3. $x, y \in D$. Let $\langle D\rangle_{G-e}$ be the subgraph induced by D in $G-e$. If $\langle D\rangle_{G-e}$ is connected, then D is a connected dominating set of $G-e$ and $\gamma_{c}(G-e) \leq|D|=\gamma_{c}(G) \leq \gamma_{c}(G)+2$.

If $\langle D\rangle_{G-e}$ is not connected, then it has exactly two components with vertex sets, say D_{1} and D_{2}. Since $G-e$ is connected, there exists a path connecting D_{1} and D_{2}. Let $P=\left(x_{1}, \ldots, x_{k}\right)$ be a shortest path between D_{1} and D_{2}, say $x_{1} \in D_{1}, x_{k} \in D_{2}$. From the choice of P it follows that x_{2}, \ldots, x_{k-1} belong to $V-D$ and $3 \leq k \leq 4$ (otherwise some of vertices from a path would not be dominated).

If $k=3$, then $D \cup\left\{x_{2}\right\}$ is a connected dominating set of $G-e$ and $\gamma_{c}(G-e) \leq\left|D \cup\left\{x_{2}\right\}\right|=\gamma_{c}(G)+1 \leq \gamma_{c}(G)+2$.

If $k=4$, then $D \cup\left\{x_{2}, x_{3}\right\}$ is a connected dominating set of $G-e$ and thus $\gamma_{c}(G-e) \leq\left|D \cup\left\{x_{2}, x_{3}\right\}\right|=\gamma_{c}(G)+2$.
Now we study the effects on the connected domination number when a graph is modified by deleting a set of edges.
Theorem 2. Let H_{p} be a connected subgraph of order p in G, let E_{p} be the edge set of H_{p} and let $G-E_{p}$ be the graph obtained from G by deleting edges of E_{p}. If G and $G-E_{p}$ are connected, then $\gamma_{c}(G) \leq \gamma_{c}\left(G-E_{p}\right) \leq$ $\gamma_{c}(G)+2 p-2$.

Proof. Let D_{0} be a minimum connected dominating set of $G-E_{p}$. Then D_{0} is a connected dominating set of G and obviously $\gamma_{c}(G) \leq\left|D_{0}\right|=\gamma_{c}\left(G-E_{p}\right)$.

We now prove the inequality $\gamma_{c}\left(G-E_{p}\right) \leq \gamma_{c}(G)+2 p-2$. Let D be a minimum connected dominating set of G and let us denote $V\left(H_{p}\right) \cap D$ and $V\left(H_{p}\right) \cap(V-D)$ by S_{1} and S_{2}, respectively. Certainly, $0 \leq\left|S_{1}\right| \leq p$ and $0 \leq\left|S_{2}\right| \leq p$. If H_{p} is not a tree, then let $\left\{C_{1}, \ldots, C_{k}\right\}$ be a fundamental basis of H_{p}. We sequently remove edges belonging to E_{p} from a graph G according to the algorithm.

INPUT: a graph G, a subgraph H_{p}
OUTPUT: a spanning tree H_{p}^{\prime} of H_{p}
$H_{p}^{\prime}:=H_{p}$;
for $i=1$ to k do
Let $\left\{C_{1}, \ldots, C_{k-i+1}\right\}$ be a fundamental basis of H_{p}^{\prime};
if $V\left(C_{i}\right) \subset S_{1}$ or $V\left(C_{i}\right) \subset S_{2}$ then remove from H_{p}^{\prime} any edge e of C_{i};
else if there exists an edge e of C_{i} joining two vertices of S_{2} then remove e from H_{p}^{\prime};
else there exists a vertex v belonging to $V\left(C_{i}\right) \cap S_{2}$ such that its neighbours on C_{i}, say x and y, belong to S_{1}, then we remove from H_{p}^{\prime} either the edge $v x$ or $v y$
fi;
fi;
od;
Let E_{s} be the set of edges removed according to the above algorithm. Since $\left\{C_{1}, \ldots, C_{k}\right\}$ is a fundamental basis, the graph $H_{p}^{\prime}=H_{p}-E_{s}$ is a spanning tree of H_{p}, so $\left|H_{p}-E_{s}\right|=p-1$ and $\left|E_{s}\right| \leq\binom{ p}{2}-p+1$. Certainly, the set D is a minimum connected dominating set of the graph $G_{0}=G-E_{s}$ and $\gamma_{c}\left(G_{0}\right)=\gamma_{c}\left(G-E_{s}\right)=\gamma_{c}(G)$.

Let e_{1}, \ldots, e_{p-1} be the edges of $H_{p}-E_{s}$ and let $G_{i}=G_{i-1}-e_{i}=$ $G_{0}-\left\{e_{1}, \ldots, e_{i}\right\}$ for $i=1, \ldots, p-1$.

As $\gamma_{c}\left(G-E_{p}\right)=\gamma_{c}\left(G_{p-1}\right)$, by Theorem 1 we have

$$
\begin{aligned}
\gamma_{c}\left(G-E_{p}\right)=\gamma_{c}\left(G_{p-1}\right) & \leq \gamma_{c}\left(G_{p-2}\right)+2 \leq \gamma_{c}\left(G_{p-3}\right)+4 \\
& \leq \ldots \leq \\
\gamma_{c}\left(G_{1}\right)+2 p-4 & \leq \gamma_{c}\left(G_{0}\right)+2 p-2
\end{aligned}
$$

Thus $\gamma_{c}\left(G-E_{p}\right) \leq \gamma_{c}(G)+2 p-2$ since $\gamma_{c}\left(G_{0}\right)=\gamma_{c}(G)$.
Following theorem is an obvious generalisation of obtained results.
Theorem 3. If G and $G-E_{p}$ are connected and H_{p} has k components, then $\gamma_{c}(G) \leq \gamma_{c}\left(G-E_{p}\right) \leq \gamma_{c}(G)+2(p-k)$.

3. Weakly Connected Domination Number

In this part we study the behavior the weakly connected domination number with respect to edge or set of edges deletion from a graph.

Theorem 4. If e is an edge of a graph G and if G and $G-e$ are connected, then $\gamma_{w}(G) \leq \gamma_{w}(G-e) \leq \gamma_{w}(G)+1$.

Proof. Let D_{0} be a minimum weakly connected dominating set of $G-e$. Certainly, D_{0} is also a weakly connected dominating set of G and $\gamma_{w}(G) \leq$ $\left|D_{0}\right|=\gamma_{w}(G-e)$.

To prove the inequality $\gamma_{w}(G-e) \leq \gamma_{w}(G)+1$, let D be a minimum weakly connected dominating set of G, and let e, say $e=x y$, be an edge of G such that $G-e$ is connected. We consider three cases.

Case 1. If $x, y \in V-D$, then D is a weakly connected dominating set of $G-e$ and $\gamma_{w}(G-e) \leq|D|=\gamma_{w}(G) \leq \gamma_{w}(G)+1$.

Case 2. $x, y \in D$. Let F be the subgraph weakly induced by D in $G-e$. If F is connected, then D is a weakly connected dominating set of $G-e$ and $\gamma_{w}(G-e) \leq|D|=\gamma_{w}(G) \leq \gamma_{w}(G)+1$. If F is not connected, then it has exactly two components with vertex sets, say D_{1}, D_{2}, and suppose $x \in D_{1}, y \in D_{2}$.

Since F is disconnected and $G-e$ is connected, there are adjacent vertices $a, b \in V-D$ such that $a \in D_{1}, b \in D_{2}$.

Thus $D \cup\{a\}$ (and $D \cup\{b\}$) is a weakly connected dominating set of $G-e$ and $\gamma_{w}(G-e) \leq|D \cup\{a\}|=\gamma_{w}(G)+1$.

Case 3. $|\{x, y\} \cap D|=1$, say $x \in D, y \in V-D$. As in Case 2, let F be the subgraph weakly induced by D in $G-e$. If F is connected and $N_{G-e}(y) \cap D \neq \emptyset$, then D is a weakly connected dominating set in $G-e$ and we have desired inequality.

If F is connected and $N_{G-e}(y) \cap D=\emptyset$, then, since $G-e$ is connected, $N_{G-e}(y) \cap(V-D) \neq \emptyset$. Thus, there is a vertex $y^{\prime} \in N_{G-e}(y) \cap(V-D)$ such that $N_{G-e}\left(y^{\prime}\right) \cap D \neq \emptyset$. In this case $D \cup\{y\}$ is a weakly connected dominating set of $G-e$ and $\gamma_{w}(G-e) \leq|D \cup\{y\}|=\gamma_{w}(G)+1$.

If F is not connected, then it has exactly two components with vertex sets, say D_{1}, D_{2} and assume that $x \in D_{1}, y \in D_{2}$. Then it is no problem to observe that $N_{G-e}(y) \cap D \neq \emptyset$, i.e., y has a neighbour in D in $G-e$. This implies, that D is a dominating set of $G-e$.

Since F is disconnected and $G-e$ is connected, there are adjacent vertices $a, b \in V-D$ such that $a \in D_{1}, b \in D_{2}$.

Thus $D \cup\{a\}$ (and $D \cup\{b\}$) is a weakly connected dominating set of $G-e$ and $\gamma_{w}(G-e) \leq|D \cup\{a\}|=\gamma_{w}(G)+1$.

Theorem 5. Let H_{p} be a connected subgraph of order p in G, let E_{p} be the edge set of H_{p} and let $G-E_{p}$ be the graph formed by removing edges E_{p} from G. If G and $G-E_{p}$ are connected, then $\gamma_{w}(G) \leq \gamma_{w}\left(G-E_{p}\right) \leq \gamma_{w}(G)+p-1$.

Proof. Let D_{0} be a minimum weakly connected dominating set of $G-E_{p}$. It is no problem to observe that D_{0} is a weakly connected dominating set of G, so $\gamma_{w}(G) \leq\left|D_{0}\right|=\gamma_{w}\left(G-E_{p}\right)$.

Now we prove that $\gamma_{w}\left(G-E_{p}\right) \leq \gamma_{w}(G)+p-1$. Let D be a minimum weakly connected dominating set of G. As in the proof of Theorem 2, let E_{s} be a subset of E_{p} such that $H_{p}-E_{s}$ is a spanning tree of H_{p}, let e_{1}, \ldots, e_{p-1} be the edges of $H_{p}-E_{s}$ and $G_{i}=G_{i-1}-e_{i}=G_{0}-\left\{e_{1}, \ldots, e_{i}\right\}$ for $i=$ $1, \ldots, p-1$. The set D is a minimum weakly connected dominating set of a graph $G_{0}=G-E_{s}$. Thus $\gamma_{w}\left(G_{0}\right)=\gamma_{w}\left(G-E_{s}\right)=\gamma_{w}(G)$.

As $\gamma_{w}\left(G-E_{p}\right)=\gamma_{w}\left(G_{p-1}\right)$, by Theorem 4 we have

$$
\begin{aligned}
\gamma_{w}\left(G-E_{p}\right)=\gamma_{w}\left(G_{p-1}\right) & \leq \gamma_{w}\left(G_{p-2}\right)+1 \leq \gamma_{c}\left(G_{p-3}\right)+2 \\
& \leq \ldots \leq \\
\gamma_{c}\left(G_{1}\right)+p-2 & \leq \gamma_{c}\left(G_{0}\right)+p-1
\end{aligned}
$$

Thus $\gamma_{w}\left(G-E_{p}\right) \leq \gamma_{w}(G)+p-1$ as $\gamma_{w}\left(G_{0}\right)=\gamma_{w}(G)$.

References

[1] T. Haynes, S. Hedetniemi and P. Slater, Fundamentals of domination in graphs (Marcel Dekker, Inc. 1998).
[2] J. Topp, Domination, independence and irredundance in graphs, Dissertationes Mathematicae 342 (PWN, Warszawa, 1995).

