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Abstract

The planar Ramsey number PR(G, H) is defined as the smallest
integer n for which any 2-colouring of edges of Kn with red and blue,
where red edges induce a planar graph, leads to either a red copy of
G, or a blue H. In this note we study the weak induced version of the
planar Ramsey number in the case when the second graph is complete.
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1. Introduction

The 2-colouring (say red and blue) of edges of any graph is said to be
planar if the graph induced by the first (red) colour is planar. Let the
planar Ramsey number PR(G, H) be the smallest integer n such that any
planar 2-colouring of Kn guarantees a red copy of G or a blue copy of H.
This is the usual definition of the Ramsey number with the restriction to
the set of allowed colourings. The planar Ramsey numbers were introduced
independently by Walker [14] and Steinberg and Tovey [13]. They calculated
all planar Ramsey numbers for pairs of complete graphs, and showed that
they increase only linearly with the number of vertices.

Theorem 1 [13].

(i) PR(K2,Kn) = n; PR(Kk, K2) = k, for k ≤ 4,
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(ii) PR(K3,Kn) = 3n− 3,

(iii) PR(Kk,Kn) = 4n− 3, for k ≥ 4 and (k, n) 6= (4, 2).

We remark that to prove the above theorem the authors used very strong
tools, namely the Four Colour Theorem [1, 2, 11] and the generalization of
Grötzsch’s Theorem [9] known as Grünbaum’s Theorem [10]. Each of them
describes deep structural properties of planar graphs. As an easy collorary
from Theorem 1 we can formulate the following observation.

Proposition 1. If |V (G)| ≥ 5 and G is connected, then PR(G,Kn) = 4n−3.

Proof. The upper bound follows from Theorem 1(iii). To get the lower
bound we consider the graph K4n−4, colour the edges of (n− 1)K4 red and
the remaining edges blue.

2. Induced Planar Ramsey Numbers

The induced Ramsey number IR(G,H) is the least n such that there exists
a graph F on n vertices with the property that any 2-colouring of its edges
with red and blue results in either a red copy of G induced in F , or an
induced blue H. The existence of IR(G,H) for each pair of graphs G and H
was proved independently by Deuber [3], Erdős, Hajnal and Pósa [4] and
Rödl [12]. One of the few known exact values of the induced Ramsey number
is the following one.

Theorem 2 [5]. For arbitrary k ≥ 1 and n ≥ 2 we have

IR(K1,k,Kn) = (k − 1)
n(n− 1)

2
+ n.

A modification of this number was introduced in [7]. Consider an arbitrary
2-colouring of edges of a certain graph F . It partitions graph F into two
monochromatic subgraphs: red Fr and blue Fb. If a graph G is induced in
Fr then we say that G is induced in red . Similarly, if G is induced in Fb, we
say that G is induced in blue. The weak induced Ramsey number IRw(G,H)
is the smallest integer n for which there exists a graph Fw on n vertices such
that any 2-colouring of its edges with red and blue leads to either a copy
of G induced in red, or a copy of H induced in blue. The existence of a
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graph Fw is a consequence of the fact that if a given monochromatic copy
of a graph is induced in the graph then it is induced in its colour as well.
Typically, the values of induced Ramsey numbers are very hard to find.
Similarly as in the non-induced case we consider their planar versions. The
induced planar Ramsey number IPR(G,H) [the weak induced planar Ramsey
number IPRw(G,H)] is defined in the same way as IR(G, H) [IRw(G,H)],
but in this case we allow only 2-colourings for which the subgraph induced
by the first (red) colour is planar.

We show here that for each graph G containing a connected non-complete
induced subgraph on at least three vertices we have IPRw(G,Kn) = 4n− 3.

Theorem 3. For arbitrary graph G and for arbitrary n ≥ 2 we have
IPRw(G, Kn) ≤ 4n− 3.

Proof. The assertion is a strightforward consequence of the Four Colour
Theorem. The complement of an arbitrary planar graph on 4n− 3 vertices
contains a complete graph on d4n−3

4 e = n vertices. So K4n−3 is the graph
from the definition of the weak induced planar Ramsey number.

To show the opposite inequality we need some definitions and lemmas. Each
of the graphs K4, K3 ∪K1, 2K2, K2 ∪ 2K1, K4 we call a pseudoclique. By
covering the graph G with pseudocliques we mean a division of the vertex-
set of the graph G into pairwise disjoint subsets V1, V2, . . . , Vt such that
V (G) = V1 ∪ V2 ∪ · · · ∪ Vt and G[Vi] is a pseudoclique for i = 1, 2, . . . , t.

Lemma 1. Each graph on 4m, m ≥ 1, vertices containing a clique K3m+1

can be covered by a union of m disjoint pseudocliques.

Proof. We use induction on m. The assertion is trivial for m = 1. Consider
an arbitrary graph G on 4m, m ≥ 2, vertices containing a clique K3m+1 = K.
Note that each vertex of G\K forms a pseudoclique K4 or K3∪K1 together
with certain three vertices of K. Fix a pseuduclique K∗ isomorphic to K4

consisting of a vertex of G \ K and any three vertices of K. The graph
G\K∗ satisfies the induction hypothesis and so it can be covered by a union
of m − 1 disjoint pseudocliques. This covering together with K∗ gives the
required covering of G.

Lemma 2. Each graph on at least 18 vertices contains a pseudoclique.

Proof. The assertion follows from the fact that R(K4,K4) = 18 [8].
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Lemma 3. Each graph on 4n, n ≥ 51, vertices containing a clique Kn+1

can be covered by a union of n disjoint pseudocliques.

Proof. Consider an arbitrary graph G on 4n, n ≥ 51, vertices containing
a clique Kn+1 = K. Let H = G \ K. By Lemma 2 all but at most 17
vertices of H can be covered with disjoint pseudocliques. Let S, |S| ≤
17, be the set of vertices of H which are not covered and let F be the
subgraph induced in G by V (K) ∪ S. Certainly |V (F )| = n + 1 + |S|
is divisible by 4, so |V (F )| = 4m for a certain integer m. If n ≥ 54 ≥
3|S|+ 3 then n + 1 ≥ 3m + 1. It can be checked by hand that also for n =
51, 52, 53 the last inequality holds (|S| = 16, 15, 14 respectively). Therefore
F fulfils the assumptions of Lemma 1, so it can be covered with disjoint
pseudocliques.

Theorem 4. Let G be a graph containing a connected non-complete induced
subgraph on at least three vertices. Then IPRw(G,Kn) = 4n− 3 for n ≥ 52.

Proof. The upper bound follows from Theorem 3. Let F be an arbitrary
graph on 4n − 4 vertices. If F does not contain any clique Kn then we
colour all edges of F blue, otherwise by Lemma 3, we can cover F with n−1
disjoint pseudocliques, colour the edges of them red and all the remaining
edges blue. There is no G induced in red and no blue clique Kn in such a
colouring, so IPRw(G, Kn) > 4n− 4.

It occurs that in most cases we can improve the bound n ≥ 52 to n ≥ 3. We
need, however, the following lemma.

Lemma 4. Let G be one of the graphs K4− e, K4−P3, C4, P4, K1,3. Then
IPRw(G, K3) > 8.

The proof of the lemma is somewhat technical and not very exciting so we
refer the reader to [6].

Theorem 5. Let G be a graph containing a connected non-complete induced
subgraph on at least four vertices. Then IPRw(G,Kn) = 4n− 3 for n ≥ 3.

Proof. Let F be an arbitrary graph on 4n−4 vertices. We can assume that
F contains K4, otherwise we could colour the whole graph blue. We colour
this clique K4 red. Now we can assume that the rest of the graph contains
K4 (n > 4), otherwise we could use the blue colour on the uncoloured edges.
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Analogously we can assume that F contains (n−3)K4 and we colour all these
cliques K4 red. Now there are 8 vertices with all incident edges uncoloured.
If G contains a component on at least 5 vertices then we colour red any
two disjoint subgraphs on 4 vertices and the remaining edges blue. In other
cases the assertion follows from Lemma 4.

In the above proof we actually reduce the colouring of a graph on 4n − 4
vertices to an appropriate colouring of a graph on 8 vertices. This method
fails for the smallest non-complete graph, i.e., for the star K1,2. From The-
orem 2 it follows that IR(K1,2,K3) = 6. This implies that we could not be
able to colour the remaining eight-vertex graph with no star K1,2 induced
in red and with no blue triangle. Theorem 2 gives an upper bound which is
better than 4n − 3 for small n, i.e., IPRw(K1,2,Kn) ≤ n(n+1)

2 for n ≤ 6. It
is easy to observe that actually IPRw(K1,2, Kn) = n(n+1)

2 for n = 2, 3, 4.
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[7] I. Gorgol and T. ÃLuczak, On induced Ramsey numbers, Discrete Math. 251
(2002) 87–96.



50 I. Gorgol

[8] R.E. Greenwood and A.M. Gleason, Combinatorial relations and chromatic
graphs, Canad. J. Math. 7 (1955) 1–7.

[9] H. Grötzsch, Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel, Wiss.
Z. Martin-Luther-Univ. Halle-Wittenberg Math. Natur. Reihe 8 (1958/1959)
109–120.
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