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Abstract

Several of the best known problems and conjectures in graph theory
arise in studying the behavior of a graphical invariant on a graph prod-
uct. Examples of this are Vizing’s conjecture, Hedetniemi’s conjecture
and the calculation of the Shannon capacity of graphs, where the in-
variants are the domination number, the chromatic number and the
independence number on the Cartesian, categorical and strong prod-
uct, respectively. In this paper we begin an investigation of the total
domination number on the categorical product of graphs. In particular,
we show that the total domination number of the categorical product
of a nontrivial tree and any graph without isolated vertices is equal
to the product of their total domination numbers. In the process we
establish a packing and covering equality for trees analogous to the
well-known result of Meir and Moon. Specifically, we prove equality
between the total domination number and the open packing number
of any tree of order at least two.
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1. Introduction

For notation and graph theory terminology we follow [3] and for graph prod-
ucts we refer the reader to [8]. Specifically, let G = (V, E) be a finite, simple
undirected graph. The open neighborhood of a vertex v is NG(v) = {u ∈
V | uv ∈ E }, while its closed neighborhood is NG[v] = N(v) ∪ {v}. For a
set S ⊆ V , NG(S) =

⋃
v∈S NG(v) and NG[S] = NG(S) ∪ S. If the graph is

clear from the context, then we omit the subscript on these neighborhood
names. For a set S ⊆ V , the subgraph of G induced by S is denoted by
〈S〉G or simply 〈S〉. A family {Sk}k∈I of subsets of vertices in G is a cover
of (or covers) G if V (G) = ∪k∈ISk. The family is a packing if the subsets are
pairwise disjoint. The maximum order of a complete subgraph is denoted
ω(G), and the vertex independence number of G, β0(G), is the cardinality of
a largest independent set of vertices in G.

A subset D of vertices is a dominating set of G if every vertex x in
V either belongs to D or is adjacent to a vertex in D. The domination
number γ(G) is the minimum cardinality of a dominating set of G. Hence,
γ(G) is the minimum cardinality of a set D of vertices such that the family
{N [x]}x∈D of closed neighborhoods covers G. The set D is a total dominating
set of the graph G if every vertex x in V is adjacent to a vertex of D.
Equivalently, a set D is a total dominating set if the collection of open
neighborhoods {N(x)}x∈D covers G. The total domination number of G,
denoted by γt(G), is the minimum cardinality of a total dominating set.
If G has minimum degree at least one, then G has a total dominating set
and it is clear that γ(G) ≤ γt(G). Unless specifically stated otherwise, all
graphs considered in this paper are assumed not to have isolated vertices,
and hence the total domination number is defined. The set A ⊆ V (G)
is called a 2-packing if the family of closed neighborhoods {N [u]}u∈A is a
packing. The 2-packing number ρ(G) is the maximum cardinality of a 2-
packing. For any graph G, ρ(G) ≤ γ(G) since every dominating set of G
must intersect each closed neighborhood. In 1975 Meir and Moon established
the following result that in the language of packings and coverings says the
minimum number of closed neighborhoods in a covering of a tree is the same
as the maximum number of closed neighborhoods in a packing of that tree.
This result has proved to be useful in studying domination — especially in
Cartesian products.

Theorem 1 ([10]). For any tree T , γ(T ) = ρ(T ).
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A subset A of vertices in G is called an open packing if {NG(x)}x∈A is a
packing. As in [3], the maximum cardinality, ρo(G), of an open packing in
G is the open packing number of G. It can easily be verified that S is an
open packing if and only if |N(x) ∩ S| ≤ 1 for every vertex x ∈ V (G). The
open packing number was studied in [5] and [7]. In this paper we establish
a result similar to Theorem 1 for total domination and open packings and
use this to investigate total domination in categorical products.

2. Graphical Invariants on Graph Products

Let G and H be finite, simple graphs. By a graph product G⊗H with G and
H as factors we mean the graph that has vertex set V (G⊗H) = V (G)×V (H)
(the Cartesian product of the vertex sets of G and H) and edge set that is
determined entirely by the adjacency relations of G and H. See [11]. For
a given graphical invariant σ and given graph product ⊗ it is natural to
investigate the behavior of σ on ⊗. It is often the case that the value
σ(G ⊗ H) depends directly on the two values σ(G) and σ(H) for all pairs
of graphs G and H. We say that σ is supermultiplicative (respectively,
submultiplicative) on ⊗ if σ(G⊗H) ≥ σ(G)σ(H) (respectively, σ(G⊗H) ≤
σ(G)σ(H)) for all pairs G and H. A class of graphs C is called a universal
multiplicative class for σ on ⊗ if for every graph H it follows that σ(G⊗H) =
σ(G)σ(H) whenever G is from the class C. (We only require the given
inequality or equality to hold for those graphs for which the invariant is
defined.)

Nowakowski and Rall studied the “multiplicative” behavior of twelve
graphical invariants related to domination and coloring on nine of the ten
associative graph products whose edge sets depend on the adjacency relation
of both factors. In [11] they cited many of the known multiplicative rela-
tionships and established several new ones. Perhaps the most well-known,
outstanding problem in this area is the nearly four-decade-old conjecture of
Vizing, stated here in multiplicative language.

Conjecture 2 (V.G. Vizing). The domination number γ is supermulti-
plicative on the Cartesian graph product.

We are concerned primarily with the categorical product. Two vertices
(u1, v1) and (u2, v2) are adjacent in the categorical product G×H if and only
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if u1u2 is an edge of G and v1v2 is an edge of H. For u ∈ V (G) we let Hu

denote the set of vertices {(u, v) | v ∈ V (H)} in the product graph G⊗H.
The set Gv is defined similarly. Note that Hu and Gv are independent sets
in G×H.

Nowakowski and Rall observed that if ⊗ is any graph product such that
the categorial product G×H is a spanning subgraph of G⊗H for all graphs
G and H, then the (set) Cartesian product of total dominating sets of G
and H is a total dominating set of G ⊗ H. An immediate consequence of
this is the following result that established that γt is submultiplicative on
the categorical product.

Theorem 3 [11]. If G and H have no isolated vertices, then γt(G×H) ≤
γt(G)γt(H).

The total domination number of the categorical product can be strictly
smaller than the product of the total domination numbers. The smallest
such example is γt(K3 × K3) = 3 < γt(K3)γt(K3). The existence of a
nontrivial universal multiplicative class for an invariant on a product is un-
usual. In [2] the authors show that if G is either a tree having a vertex
adjacent to at least two leaves or a path of order a multiple of three, then
γ(G2H) > γ(G)γ(H) for any graph H of order at least two. An immedi-
ate consequence is that the only universal multiplicative class for γ on the
Cartesian product is the trivial class C = {K1}. In this paper we use open
packings to establish a lower bound for γt(G×H). In doing so we show that
the class of nontrivial trees is a universal multiplicative class for γt on ×.
That is, we shall prove the following theorem.

Theorem 4. If T is any tree of order at least two and H is a graph without
isolated vertices, then γt(T ×H) = γt(T )γt(H).

3. Total Domination and Open Packings

Any dominating set in a graph must have a nonempty intersection with
every closed neighborhood. Total domination is defined in terms of open
neighborhoods. Hence we have the following result.

Lemma 5. If G has no isolated vertices, then γt(G) ≥ ρo(G).
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Proof. Let B be an open packing of cardinality ρo(G) in G, and let D be
a minimum total dominating set of G. Then, D contains at least one vertex
from every open neighborhood. Since there are |B| pairwise disjoint open
neighborhoods, it follows that γt(G) = |D| ≥ |B| = ρo(G).

Fix a vertex v in H and let D be a total dominating set of the graph G×H
of minimum cardinality. For u ∈ V (G) the open neighborhood of (u, v) in
G × H is given by N((u, v)) = NG(u) × NH(v). Then, D must contain a
vertex (x, y) adjacent to (u, v) and (x, y) ∈ ∪w∈N(v)Gw. Let Dv = {x |
(x, y) ∈ D ∩ (∪w∈N(v)Gw)}. It follows that Dv is a total dominating set of
G. Let S be an open packing in H such that |S| = ρo(H). Then,

D ⊇
⋃

v∈S


D ∩


 ⋃

w∈N(v)

Gw





 ,

and so

γt(G×H) = |D| ≥
∑

v∈S

∣∣∣∣∣∣
D ∩


 ⋃

w∈N(v)

Gw




∣∣∣∣∣∣
≥

∑

v∈S

|Dv| ≥ ρo(H)γt(G).

Interchanging the roles of G and H yields the following result.

Lemma 6. For any graphs G and H with no isolated vertices,

γt(G×H) ≥ max{ρo(G)γt(H), ρo(H)γt(G)}.

By combining Lemma 6 with Theorem 3 we obtain the following result.

Theorem 7. Let G be a graph such that γt(G) = ρo(G). For any graph H
that has no isolated vertices, γt(G×H) = γt(G)γt(H).

For example, for any pair of positive integers m and n, γt(Km,n) = 2 =
ρo(Km,n). To construct an infinite class of graphs satisfying the condition
γt = ρo in Theorem 7, one can start with any connected graph F and attach
at least one vertex of degree one (a leaf) to each vertex of F . In the resulting
graph G, the set V (F ) is a minimum total dominating set. Any subset of
vertices consisting of precisely one leaf from the neighborhood of each vertex
of F is an open packing, and so it is clear that γt(G) = ρo(G). Hence we
have proved the following result.
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Theorem 8. The class of connected graphs for which each vertex is either
a leaf or is adjacent to at least one leaf is a universal multiplicative class for
γt on ×.

For any graph G without isolated vertices let No(G) be the open neighbor-
hood intersection graph of G. That is, No(G) is the graph with the same
vertex set as G such that distinct vertices x and y are adjacent in No(G) if
and only if NG(x) ∩NG(y) 6= ∅. Independent sets and complete subgraphs
in No(G) are related to total domination of G as the following proposition
shows. Part (ii) of Proposition 9 is a special case of a result of Acharya [1].
We prove the weaker form here for the sake of completeness.

Proposition 9. Let G be any graph without isolated vertices.

(i) ρo(G) = β0(No(G)).
(ii) (Acharya [1]) For any complete subgraph M of No(G) there exists a

vertex a of G such that M ⊆ NG(a) if G has girth at least 7.
(iii) If G has girth at least 7, then γt(G) is the minimum number of complete

subgraphs of No(G) that cover No(G).

Proof. By the definition of No(G) it follows immediately that a subset A
of V (G) is an open packing of G exactly when A is independent in No(G).
Consequently, the open packing number of G is equal to β0(No(G)), the
vertex independence number of No(G) and (i) follows. Assume now that G
has no cycles of order less than 7 and let M be a complete subgraph of No(G).
If |M | = 2, say M = {v1, v2}, then the conclusion follows directly from the
definition of adjacency in No(G). Assume then that M = {v1, v2, . . . , vr} for
r ≥ 3. Let i, j and k be three distinct indices from {1, 2, . . . , r}. Since M is
complete there exist vertices a, b, c ∈ V (G) such that a ∈ NG(vi) ∩NG(vj),
b ∈ NG(vj) ∩ NG(vk), and c ∈ NG(vk) ∩ NG(vi). Assume a 6= b. Then G
has the path vi, a, vj , b, vk. If c 6= a and c 6= b, then G contains the cycle
vi, a, vj , b, vk, c, vi contradicting the assumption that G has girth at least 7.
Therefore, c = a or c = b. In both cases G contains a 4-cycle, contradicting
the girth condition. Hence, a = b. Since i and j were arbitrary, every
vertex in M is adjacent in G to a, and as a result M ⊆ NG(a). Hence
(ii) is established. For any G without isolated vertices the total domination
number is the same as the minimum number of open neighborhoods that
cover G. But by (ii), when the girth of G is at least 7 the complete subgraphs
of No(G) are subsets of open neighborhoods of G. In addition, every open



Total Domination in Categorical Products ... 41

neighborhood of G is a complete subgraph of No(G). Consequently, (iii)
holds.

The bound on girth in parts (ii) and (iii) of Proposition 9 is sharp, but the
girth restriction is not a necessary condition. In fact, No(C6) = 2C3 and
γt(C6) = 4, whereas γt(C5) = 3 and three complete subgraphs of No(C5)
are needed to cover No(C5) = C5.

We now prove Theorem 4 by establishing the following lemma, which is
perhaps interesting in its own right, because of its similarity to Theorem 1.

Lemma 10. If T is any tree of order at least two, then γt(T ) = ρo(T ).

Proof. Let T = (V,E) have order at least two, and let V1 ∪ V2 be the
unique bipartition of V . Note that since T is bipartite, the condition for
uv to be an edge in No(T ) is equivalent to requiring the distance between u
and v in T to be exactly two. So, in particular, if u and v belong to different
parts of the bipartition, then {u, v} is independent in No(T ). As a result,
No(T ) is a disconnected graph with two components whose vertex sets are
V1 and V2. Let C : v1, v2, . . . , vn, v1, where n ≥ 4, be a cycle in No(T ), say
in 〈V1〉. Assume C has no chords. For each 1 ≤ i ≤ n there exists a vertex
wi ∈ NT (vi)∩NT (vi+1), where the subscripts are computed modulo n. Since
C has no chords, NT (wi) ∩ ({v1, . . . , vn} − {vi, vi+1}) = ∅, for each i. But
then

v1, w1, v2, w2, . . . , vn−1, wn−1, vn, wn, v1

is a cycle in the tree T . This contradiction shows that the graph No(T ) is a
chordal graph and hence is a perfect graph. By the perfect graph theorem of
Lovász [9], the complement of No(T ), No(T ), is also perfect. Consequently,

ρo(T ) = β0(No(T )) = ω(No(T )) = χ(No(T )).

The chromatic number of the complement of No(T ) is equal to the smallest
number of complete subgraphs of No(T ) that cover V (No(T )) = V (T ). By
Proposition 9 it follows that γt(T ) = ρo(T ).

Proof of Theorem 4. Let T be any tree of order at least two and let H
be a graph without isolated vertices. By Lemma 10 γt(T ) = ρo(T ), and so
by Theorem 7 γt(T ×H) = γt(T )γt(H).
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For any graph G of girth at least seven that has the property that the
chromatic number of the complement of No(G) is the same as its maximum
clique size it follows as in the proof of Lemma 10 that γt(G) = ρo(G).
Therefore, for any such graph G, Theorem 7 implies that

γt(G×H) = γt(G)γt(H)

for any H with no isolates.
For example, No(C4n) = 2C2n, which is bipartite and hence is a perfect

graph. This verifies the following corollary.

Corollary 11. The class of cycles whose order is a multiple of four is a
universal multiplicative class for γt on ×. For any positive integer n and
any H with no isolated vertices,

γt(C4n ×H) = γt(C4n)γt(H) = 2nγt(H).

In contrast to the domination number or the total domination number of
the Cartesian product of two paths, the total domination number of the
categorical product of paths is easily computed. The graph Pn×Pm has two
connected components, each of which is a subgraph of the Cartesian product
Pn2Pm. If n is a multiple of 4, then γt(Pn) = n

2 ; otherwise γt(Pn) = dn+1
2 e.

Using this and Theorem 4 we can now compute the total domination number
of “categorical grids” of any dimension. The exact value is not given here
because of the large number of cases involved.

Corollary 12. For any collection of positive integers n1, n2, . . . , nk each at
least two,

γt(Pn1 × Pn2 × · · · × Pnk
) =

∏

i

γt(Pni).

4. Domination in Categorical Products

In contrast to the situation with total domination, the domination invariant
γ is neither submultiplicative nor supermultiplicitive on categorical prod-
ucts. For example, γ(K3 ×K3) = 3 > γ(K3)γ(K3), while if G is a complete
graph of even order at least six with a perfect matching removed, then
γ(G × G) = 3 < γ(G)γ(G). However, using Theorem 3 and the fact that
the total domination number of a graph without isolates is no larger than
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twice its domination number, it is easy to verify the following bound for the
domination number of the categorical product.

Theorem 13. For any graph G and H without isolated vertices,

γ(G×H) ≤ 4γ(G)γ(H).

Next we show, using an argument similar to that given in [11], that dominat-
ing a categorical product of two graphs with no isolates is actually related
to the total domination number of these graphs.

Lemma 14. Let G and H be graphs with no isolated vertices. Then

γ(G×H) ≥ max{ρ(G)γt(H), ρ(H)γt(G)}.

Proof. Let x be any vertex of H and let S be any subset of V (G×H) such
that S dominates Gx. Assume first that S ∩ Gx = ∅. Then, for every u ∈
V (G) the vertex (u, x) must be adjacent to some vertex (v, y) in S such that
v ∈ NG(u) and y ∈ NH(x). Let S′ = {v | (v, y) ∈ S for some y ∈ NH(x)}.
It is clear that S′ is a total dominating set of G, so

γt(G) ≤ |S′| ≤ |S ∩ (V (G)×NH(x))| ≤ |S ∩ (V (G)×NH [x])|.

Now assume that S ∩ Gx 6= ∅. Replace each (u, x) ∈ S by a vertex (w, y)
for any w ∈ NG(u) and any y ∈ NH(x). This modified set dominates Gx

and does not intersect Gx, so by the previous case it once again follows that
γt(G) ≤ |S ∩ (V (G)×NH [x])|.

If A is any maximum 2-packing of H and D is any minimum dominating
set of G × H, it follows from above that |D| ≥ |A|γt(G) = ρ(H)γt(G).
Interchanging the roles of G and H establishes the lemma.

Corollary 15. Let H be any graph with no isolated vertices and let T be
any tree.

• Then γ(T ×H) ≥ γ(T )γt(H) ≥ γ(T )γ(H).
• If γt(T ) = γ(T ), then γ(T ×H) = γt(T )γt(H) = γt(T ×H).

Proof. The first statement follows from Lemma 14, Theorem 1 and the fact
that γt(H) ≥ γ(H). If γt(T ) = γ(T ) then applying Theorem 4 we obtain
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γt(T )γt(H) = γt(T ×H) ≥ γ(T ×H) ≥ γ(T )γt(H) = γt(T )γt(H),

and the result follows.

The conclusion of Corollary 15 also holds for graphs more general than trees
as long as the 2-packing number and the domination number are equal.
For example, any connected graph G with the property that every vertex
is either a leaf or is adjacent to a leaf and to a non-leaf vertex will in fact
satisfy γ(G×H) = γt(G×H) = γt(G)γt(H).
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