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Abstract

In a graph G, a vertex dominates itself and its neighbors. A subset
S ⊆ V (G) is a double dominating set of G if S dominates every vertex
of G at least twice. The minimum cardinality of a double dominating
set of G is the double domination number γ×2(G). If G 6= C5 is a
connected graph of order n with minimum degree at least 2, then we
show that γ×2(G) ≤ 3n/4 and we characterize those graphs achieving
equality.
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1. Introduction

In this paper we continue the study of double domination in graphs started
by Harary and Haynes [5] and studied further in [1, 2, 3, 4, 8, 9] and
elsewhere.

Domination in graphs is now well studied in graph theory and the lit-
erature on this subject has been surveyed and detailed in the two books by
Haynes, Hedetniemi, and Slater [6, 7]. For a graph G = (V, E), the open
neighborhood of a vertex v ∈ V is N(v) = {u ∈ V | uv ∈ E} and the closed
neighborhood is N [v] = N(v) ∪ {v}. A set S ⊆ V is a dominating set if
each vertex in V − S is adjacent to at least one vertex of S. Equivalently,
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S is a dominating set of G if for every vertex v ∈ V , |N [v] ∩ S| ≥ 1. The
domination number γ(G) is the minimum cardinality of a dominating set.

In [5] Harary and Haynes defined a generalization of domination as
follows: a subset S of V is a k-tuple dominating set of G if for every vertex
v ∈ V , |N [v]∩S| ≥ k, that is, v is in S and has at least k−1 neighbors in S
or v is in V − S and has at least k neighbors in S. The k-tuple domination
number γ×k(G) is the minimum cardinality of a k-tuple dominating set of G,
if such a set exists. Clearly, γ(G) = γ×1(G) ≤ γ×k(G), while γt(G) ≤ γ×2(G)
where γt(G) denotes the total domination number of G (see [6, 7]). For a
graph to have a k-tuple dominating set, its minimum degree is at least k−1.
Hence for trees, k ≤ 2. A k-tuple dominating set where k = 2 is called a
double dominating set (DDS). A DDS of cardinality γ×2(G) we call a γ×2(G)-
set. The redundancy involved in k-tuple domination makes it useful in many
applications.

For notation and graph theory terminology we in general follow [6].
Specifically, let G = (V, E) be a graph with vertex set V of order n and edge
set E. The minimum degree among the vertices of G is denoted by δ(G). A
support vertex is a vertex adjacent to a vertex of degree one.

A daisy with k ≥ 2 petals is a connected graph that can be constructed
from k ≥ 2 disjoint cycles by identifying a set of k vertices, one from each cy-
cle, into one vertex. In particular, if the k cycles have lengths n1, n2, . . . , nk,
we denote the daisy by D(n1, n2, . . . , nk).

2. Known Results

The value of γ×2(Cn) for a cycle Cn is established in [5].

Proposition 1 (Harary, Haynes [5]). For n ≥ 3, γ×2(Cn) =
⌈

2n
3

⌉
.

As an immediate consequence of a result of Blidia et al. [2], we obtain the
following upper bound on the double domination number of a connected
graph in terms of the order of the graph, the number of vertices of degree
one and the number of support vertices in the graph.

Theorem 2 ([2]). If G is a connected graph of order n ≥ 3 with ` vertices
of degree one and s support vertices, then γ×2(G) ≤ (2n + ` + s)/3.

In particular, we have the following upper bound on the double domination
number of a connected graph in terms of its order.
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Corollary 3 ([2]). If G is a connected graph of order n ≥ 2, then γ×2(G) ≤
n with equality if and only if every vertex of G has degree one or is a support
vertex.

If we restrict the minimum degree to be at least two, then Blidia et al.
[1] showed that the upper bound in Corollary 3 on the double domination
number can be improved to eleven-thirteens its order.

Theorem 4 ([1]). If G is a graph of order n with δ(G) ≥ 2, then γ×2(G) ≤
11n/13.

3. Main Result

Our aim in this paper is to improve the upper bound in Theorem 4 on the
double domination number from eleven-thirteens its order to three-fourths
its order when G 6= C5, and to characterize those graphs achieving equality.

In order to characterize the connected graphs with minimum degree
at least two that have maximum possible double domination number we
introduce a family H of graphs as follows. We define a unit to be a graph
that is isomorphic to a cycle C4. By attaching a unit to a vertex v of a graph,
we mean adding a path P3 to that graph and joining v to both end-vertices
of the P3. The resulting 4-cycle containing v we call a unit of the graph and
we call v the link vertex of the unit. Let H be the family of a graphs that
can be obtained from a connected graph by attaching a unit to every vertex
of that graph. A graph in the family H with four units is shown in Figure 1.
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Figure 1. A graph in the family H
Let F1 be the graph obtained from an 8-cycle by adding an edge between
two vertices at maximum distance 4 apart on the cycle. The graph F1 is
shown in Figure 2.
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Figure 2. The graph F1
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Our main result establishes an upper bound on the double domination num-
ber of a connected graph with minimum degree at least two that is not a
5-cycle and characterizes those graphs achieving this upper bound. A proof
of Theorem 5 is given in Section 1.

Theorem 5. If H 6= C5 is a connected graph of order n with δ(H) ≥ 2,
then γ×2(H) ≤ 3n/4 with equality if and only if H ∈ {F1, C8} ∪ H.

4. 3
4-Minimal Graphs

The key to our proof of Theorem 5 is a characterization of what we call
3
4 -minimal graphs. We will refer to a graph G as a 3

4 -minimal graph if G is
edge-minimal with respect to satisfying the following three conditions:

(i) δ(G) ≥ 2,
(ii) G is connected, and
(iii) γ×2(G) ≥ 3n/4, where n is the order of G.

As a consequence of Proposition 1, we can establish which cycles are
3
4 -minimal graphs.

Corollary 6. A cycle G is a 3
4 -minimal graph if and only if G ∈ {C4, C5, C8}.

Next we establish which daisies are 3
4 -minimal graphs.

Proposition 7. If G is a daisy of order n, then γ×2(G) ≤ (2n + 1)/3.

Proof. We proceed by induction on the order n of the daisy. If n = 5,
then G = D(3, 3) and γ×2(G) = 3, while if n = 6, then G = D(3, 4) and
γ×2(G) = 4. Hence if n ∈ {5, 6}, γ×2(G) < (2n + 1)/3. This establishes the
base cases. Assume, then, that n ≥ 7 and that if G′ is a daisy of order n′,
where n′ < n, then γ×2(G′) ≤ (2n′+1)/3. Let G be a daisy of order n and let
v denote the vertex of maximum degree in G. Let F : v, v1, v2, . . . , vn1 , v be
a cycle containing v. Thus, F ∼= Cn1+1. Let S1 = {vi | i ≡ 0 or 2 (mod 3)}.
Then, |S1| ≤ 2n1/3. Let G′ = G − (V (F ) − {v}) and let G′ have order n′,
and so n′ = n− n1.

Suppose first that G′ is a cycle, i.e., G′ = Cn′ . Let S′ be a γ×2(G′)-set
that contains v. By Proposition 1, |S′| ≤ 2(n′ + 1)/3 = 2(n − n1 + 1)/3.
Since S1 ∪ S′ is a DDS of G, γ×2(G) ≤ |S1 ∪ S′| ≤ 2(n + 1)/3.
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Suppose secondly that G′ is a daisy. Applying the inductive hypothesis
to G′, γ×2(G′) ≤ (2n′ + 1)/3 = (2n − 2n1 + 1)/3. Let S′ be a γ×2(G′)-set.
The restriction of S′ to the vertices of at least one cycle in G′ must be a
DDS in that cycle. Hence we may choose S′ to contain the vertex v. Then,
S1 ∪ S′ is a DDS, and so γ×2(G) ≤ |S1 ∪ S′| ≤ (2n + 1)/3.

Since (2n + 1)/3 < 3n/4 for n ≥ 5, we have the following immediate conse-
quence of Proposition 7.

Corollary 8. No daisy is a 3
4 -minimal graph.

Let G be the collection of graphs that can be obtained from a tree by attach-
ing a unit to every vertex of the tree. Hence the family G is a subfamily of
the family H. The following observation about graphs in the family G will
prove to be useful.

Observation 9. Each graph in the family G has double domination number
three-fourths its order and is a 3

4 -minimal graph. Further, there is a γ×2(G)-
set that contains any specified vertex of G.

The following key result, a proof of which is given in Section 1, characterizes
3
4 -minimal graphs.

Theorem 10. A graph G is a 3
4 -minimal graph if and only if

G ∈ {C5, C8} ∪ G.

5. Proof of Theorem 5

Theorem 5, our main result, is simply a corollary of Theorem 10. Since the
double domination number of a graph cannot decrease if edges are removed,
it follows from Observation 9 and Theorem 10 that the double domination
number of H is at most three-fourths its order. Further suppose H has dou-
ble domination number exactly three-fourths its order. Then by removing
edges of H, if necessary, we produce a 3

4 -minimal graph H ′. If H ′ = C5,
then H = C5, a contradiction. Hence by Theorem 10, H ′ = C8 or H ′ ∈ G.
If H ′ = C8, then H ∈ {F1, C8}.

Suppose H ′ ∈ G. We show that each vertex of H ′ that is not a link
vertex must have degree 2 in H, whence H ∈ H. If n = 4, then H = C4.
Hence we may assume n ≥ 8. Let Cv: v, w, x, y, v be a unit of H ′ with link
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vertex v and let vv′ ∈ E(H ′) where v′ is a link vertex of H ′ different from
v. If xx′ ∈ E(H) where x′ is a vertex not in the unit Cv (possibly, v′ = x′),
then the set {v, v′} ∪ {x, x′} can easily be extended to a DDS of H that
contains three vertices from every unit different from Cv and two vertices
from the unit Cv, and so γ×2(H) < 3n/4, a contradiction. If vx ∈ E(H),
then the set {v, x} can be extended to a DDS of H that contains three
vertices from every unit different from Cv and two vertices from the unit
Cv, a contradiction. Hence each vertex of H ′ that is neither a link vertex
nor adjacent to a link vertex has degree 2 in H. If ww′ ∈ E(H) where w′ is
a vertex not in the unit Cv (possibly, v′ = w′), then the set {x, y, v′} ∪ {w′}
can easily be extended to a DDS of H that contains three vertices from every
unit different from Cv and two vertices from the unit Cv, a contradiction.
If wy ∈ E(H), then the set {w, y} can be extended to a DDS of H that
contains three vertices from every unit different from Cv and two vertices
from the unit Cv, a contradiction. It follows that every vertex of H ′ that is
not a link vertex has degree 2 in H. Thus, H ∈ H.

6. Proof of Theorem 10

The sufficiency follows from Corollary 6 and Observation 9. To prove the
necessary, we proceed by induction on the order n ≥ 3 of a 3

4 -minimal
graph. If G is a 3

4 -minimal graph of order n, 3 ≤ n ≤ 5, then G ∈ {C4, C5}.
This establishes the base case. For our inductive hypothesis, let n ≥ 6 and
assume that for n′ < n, a graph G′ is a 3

4 -minimal graph if and only if
G′ ∈ {C5, C8} ∪ G. This implies (see the proof of Theorem 5) the following
result.

Observation 11. If H 6= C5 is a connected graph of order n′ < n with
δ(H) ≥ 2, then γ×2(H)≤3n′/4 with equality if and only if H∈{F1, C8} ∪ H.

Let G = (V, E) be a 3
4 -minimal graph of order n. Before proceeding further,

we prove a few results that will be useful in what follows. If e is an edge of
G, then γ×2(G− e) ≥ γ×2(G). Hence, by the minimality of G, we have the
following observation.

Observation 12. If e ∈ E, then either e is a bridge of G or δ(G− e) = 1.

The next result is a consequence of the inductive hypothesis.
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Observation 13. If G′ is a connected subgraph of G of order n′ < n with
δ(G′) ≥ 2, then either G′ ∈ {C5, C8} ∪ G or γ×2(G′) < 3n′/4.

Suppose G = Cn (and still n ≥ 6). Then, by Corollary 6, G = C8. So we
may assume that G is not a cycle. Hence, G contains at least one vertex of
degree at least 3. Let S = {v ∈ V | deg (v) ≥ 3}. Each vertex of V − S
therefore has degree 2 in G. If |S| = 1, then G is a daisy, contradicting
Corollary 8. Hence, |S| ≥ 2.

For each v ∈ S, we define the 2-graph of v to be the component of
G − (S − {v}) that contains v. So each vertex of the 2-graph of v has
degree 2 in G, except for v. Furthermore, the 2-graph of v consists of edge-
disjoint cycles through v, which we call 2-graph cycles, and paths emanating
from v, which we call 2-graph paths.

We show next that there in no long path in G whose internal vertices
have degree 2 in G. A proof of the following result is given in Subsection 6..1

Lemma 14. There is no path on six vertices the internal vertices of which
have degree 2 in G.

For integers n1 ≥ n2 ≥ 3 and k ≥ 0, we define a dumb-bell Db(n1, n2, k) to
be the graph of order n = n1 +n2 +k obtained from the cycles Cn1 and Cn2

by joining a vertex of Cn1 to a vertex of Cn2 and subdividing the resulting
edge k times.

By Lemma 14, every 2-graph path in G has length one, two or three,
while every 2-graph cycle has length at most five. Hence it now a simple
exercise to verify the following result.

Observation 15. If G is a dumb-bell, then G = Db(4, 4, 0) ∈ G.

By Observation 15, we may assume that G is not a dumb-bell. Using the
inductive hypothesis, we shall prove the following lemma, a proof of which
is given in Subsection 6.2 to Subsection 6.6.

Lemma 16. If S is an independent set, then the graph G has the following
five properties:

(a) There is no 2-graph cycle in G.
(b) Every 2-graph path in G has length one or two.
(c) |S| ≥ 3.
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(d) Each vertex of S is within distance 3 from at least two other vertices
of S.

(e) Let u and v be two vertices of S that are joined by a path the internal
vertices of which are in V − S. Then, u has exactly one neighbor that
does not belong to any 2-graph path of v or v has exactly one neighbor
that does not belong to any 2-graph path of u.

Using Lemma 16, we prove the following result, a proof of which is presented
in Subsection 6..7

Lemma 17. The set S is not an independent set.

As a consequence of Lemma 17, we have the following result, a proof of
which is given in Subsection 6.8, which completes the proof of Theorem 10.

Lemma 18. G ∈ G.

6..1 Proof of Lemma 14

Suppose that v1, v2, . . . , v6 is a path in G where degG(vi) = 2 for 2 ≤ i ≤ 5.
Let G′ be the graph of order n′ = n−3 obtained from G by deleting the three
vertices v3, v4 and v5 and adding the edge v2v6, i.e., G′ = (G−{v3, v4, v5})∪
{v2v6}. By assumption G 6= C8, and so G′ 6= C5. By Observation 11,
γ×2(G′) ≤ 3n′/4. Let D′ be a γ×2(G′)-set. If v2 /∈ D′, let D = D′ ∪{v3, v4}.
If {v1, v2} ⊆ D′, let D = D′∪{v4, v5}. If {v2, v6} ⊆ D′, let D = D′∪{v3, v5}.
In all cases, the set D is a DDS of G, and so γ×2(G) ≤ |D| = γ×2(G′) + 2 ≤
3n′/4 + 2 = (3n− 1)/4, contradicting the fact that G is a 3

4 -minimal graph.

6..2 Proof of Lemma 16(a)

Suppose, to the contrary, that there is a 2-graph cycle in G. Let v ∈ S and
suppose that Cv is a 2-graph cycle of v of length n1 + 1. By Lemma 14,
2 ≤ n1 ≤ 4. We consider two possibilities.

Case 1. degG(v) ≥ 4. Let G2 = G − (V (Cv) − {v}). Then, G2 is a
connected graph with minimum degree at least 2 and of order n2 = n− n1.
Since |S| ≥ 2, G2 is not a cycle. By our assumption that S is an independent
set, G2 /∈ G. Hence by Observation 13, γ×2(G2) < 3n2/4 = 3(n− n1)/4. If
v belongs to some γ×2(G2)-set, then such a DDS of G2 can be extended to
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a DDS of G by adding at most 2n1/3 vertices from the path Cv− v, whence
γ×2(G) ≤ 2n1/3+γ×2(G2) < 2n1/3+3n2/4 < 3n/4, a contradiction. Hence
the vertex v belongs to no γ×2(G2)-set.
Since S is an independent set, every neighbor of v has degree 2. Since v
belongs to no γ×2(G2)-set, it follows that every γ×2(G2)-set contains every
neighbor of v in G2 and every vertex at distance 2 from v in G2. Further it
follows that there is no 4-cycle or 5-cycle in G2 containing v. Let G′ be the
graph of order n′ = n2 − 1 obtained from G2 − v by joining a neighbor of
v in G2 to every other neighbor of v in G2. Then G′ is a connected graph
with δ(G′) ≥ 2. Since G2 is not a cycle, neither is G′. Since v belongs to no
γ×2(G2)-set, G′ 6= F1. Since v belongs to neither a 4-cycle nor a 5-cycle in
G2, no vertex in N(v) in G′ belongs to a 4-cycle. Hence, G′ /∈ H. Thus by
Observation 11, γ×2(G′) < 3n′/4 = 3(n− n1 − 1)/4.

If n1 = 2, then a γ×2(G′)-set can be extended to a DDS of G by adding
to it the vertex v and one of its two neighbors in Cv. Hence, γ×2(G) ≤
2 + γ×2(G′) < 2 + 3(n− 3)/4 < 3n/4, a contradiction.

If n1 = 3, then a γ×2(G′)-set can be extended to a DDS of G by adding to
it the vertex v and its two neighbors in Cv. Hence, γ×2(G) ≤ 3 + γ×2(G′) <
3 + 3(n− 4)/4 = 3n/4, a contradiction.

If n1 = 4, then a γ×2(G2)-set can be extended to a DDS of G by adding
to it the vertex v and the two vertices in Cv that are not adjacent to v.
Hence, γ×2(G) ≤ 3 + γ×2(G2) < 3 + 3(n− 4)/4 = 3n/4, a contradiction.

Case 2. degG(v) = 3. Let P : v, v1, . . . , vk, w be the path from v to the
vertex w of S − {v} every internal vertex of which belongs to V − S. Since
S is independent, k ≥ 1. Furthermore, by Lemma 14, k ≤ 3.

Let G′ = G− V (Cv)− [V (P )− {w}]. Then, G′ is a connected graph of
order n′ = n− n1 − k − 1 with δ(G′) ≥ 2. By our assumption that G is not
a dumb-bell, G′ is not a cycle. Thus by Observation 11, γ×2(G′) ≤ 3n′/4.

Let G∗ be the graph of order n∗ = n′ − 1 obtained from G′ − w by
joining a neighbor of w in G′ to every other neighbor of w in G′. Then,
G∗ is a connected graph with δ(G∗) ≥ 2. It follows from our assumption
that G is not a dumb-bell that G∗ is not a cycle. Thus by Observation 11,
γ×2(G∗) ≤ 3n∗/4. Since all neighbors of w in G have degree 2, it follows
that every DDS of G∗ must contain at least one neighbor of w.

Case 2.1. k = 3. Let F = (G − {v1, v2, v3}) ∪ {vw}. Then, F is a
connected graph of order n − 3 with δ(F ) ≥ 2. Since F is not a cycle,
γ×2(F ) ≤ 3(n− 3)/4 by Observation 11. Let SF be a γ×2(F )-set. If n1 = 2,
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we can choose SF to contain v and a neighbor of v in Cv, while if n1 = 3, we
can choose SF to contain v and its two neighbors in Cv. Thus if n1 ∈ {2, 3},
then SF ∪ {v2, v3} is a DDS of G, and so γ×2(G) ≤ 3(n− 3)/4 + 2 < 3n/4,
a contradiction. If n1 = 4, then we can clearly choose SF to contain the
two vertices in Cv that are not adjacent to v and the two vertices v and w.
Thus, SF ∪ {v1, v3} is a DDS of G, and so γ×2(G) ≤ 3n′/4 + 2 < 3n/4, a
contradiction.

Case 2.2. k = 2 and n1 = 4. Any γ×2(G′)-set can be extended to a DDS
of G by adding to it the two vertices in Cv that are not adjacent to v and the
three vertices v, v1 and v2. Hence, γ×2(G) ≤ 5+γ×2(G′) ≤ 5+3(n−7)/4 <
3n/4, a contradiction.

Case 2.3. k = 2 and n1 ∈ {2, 3}. If n1 = 2, then any γ×2(G∗)-set can be
extended to a DDS of G by adding to it a neighbor of v in Cv and the vertices
in the set {v, v2, w}. Hence, γ×2(G) ≤ 4+γ×2(G∗) ≤ 4+3(n−6)/4 < 3n/4,
a contradiction. If n1 = 3, then any γ×2(G∗)-set can be extended to a DDS
of G by adding to it the two neighbors of v in Cv and the vertices in the
set {v, v2, w}. Hence, γ×2(G) ≤ 5 + γ×2(G∗) ≤ 5 + 3(n − 7)/4 < 3n/4, a
contradiction.

Case 2.4. k = 1 and n1 ∈ {2, 4}. If n1 = 4, then any γ×2(G′)-set can
be extended to a DDS of G by adding to it the two vertices in Cv that
are not adjacent to v and the two vertices v and v1. Hence, γ×2(G) ≤
4 + γ×2(G′) ≤ 4 + 3(n − 6)/4 < 3n/4, a contradiction. Suppose n1 = 2. If
w belongs to some γ×2(G′)-set, then such a γ×2(G′)-set can be extended to
a DDS of G by adding to it v and a neighbor of v in Cv, whence γ×2(G) ≤
2+ γ×2(G′) ≤ 2+3(n− 4)/4 < 3n/4, a contradiction. On the other hand, if
w belongs to no γ×2(G′)-set, then it follows from Observations 9 and 13 that
γ×2(G′) < 3n′/4. Now any γ×2(G′)-set can be extended to a DDS of G by
adding to it v, v1 and a neighbor of v in Cv, whence γ×2(G) ≤ 3+γ×2(G′) <
3 + 3(n− 4)/4 = 3n/4, a contradiction.

Case 2.5. k = 1 and n1 = 3. Any γ×2(G∗)-set can be extended to a
DDS of G by adding to it the two neighbors of v in Cv and the two vertices
in the set {v, w}, whence γ×2(G) ≤ 4 + γ×2(G∗) ≤ 4 + 3(n− 6)/4 < 3n/4, a
contradiction.
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6..3 Proof of Lemma 16(b)

By Lemma 14, every 2-graph path in G has length one, two or three. Suppose
there is a 2-graph path of length three. Let v ∈ S and suppose v, v1, v2, v3

is a 2-graph path of v. Let w be the vertex of S adjacent to v3. Then,
degG(vi) = 2 for i = 1, 2, 3.

Let F = G − {v1, v2, v3}. Then, δ(F ) ≥ 2. If F = C5, then n = 8
and γ×2(G) ≤ 5 < 3n/4, a contradiction. Hence, F 6= C5. Further since
there is no 2-graph cycle in G by Lemma 16(a), if F is disconnected, then
neither component of F is a cycle. Hence by Observation 11 applied to
F , if F is connected, or to the two components of F , if F is disconnected,
γ×2(F ) ≤ 3(n − 3)/4. If there exists a γ×2(F )-set that contains w, then
such a set can be extended to a DDS of G by adding to it the vertices in
the set {v1, v2}, whence γ×2(G) ≤ 2 + γ×2(F ) ≤ 2 + 3(n − 3)/4 < 3n/4,
a contradiction. Hence no γ×2(F )-set contains w. Similarly, no γ×2(F )-set
contains v.

Let F ′ be the graph of order n′ = n− 4 obtained from F −w by joining
a neighbor w′ of w in V (F ) to every other neighbor of w in V (F ). Then,
δ(F ′) ≥ 2. If F ′ = C5, then γ×2(G) < 3n/4, a contradiction. Hence,
F ′ 6= C5. If F ′ is disconnected, then since there is no 2-graph cycle in G,
neither component of F ′ is a cycle. Hence it follows by Observation 11 that
γ×2(F ′) ≤ 3n′/4 (irrespective of whether F ′ is connected or disconnected).
Since all neighbors of w in G have degree 2, every DDS of F ′ must contain
at least one neighbor of w. Hence any γ×2(F ′)-set can be extended to a
DDS of G by adding to it the vertices in the set {v1, v2, w}, whence 3n/4 =
γ×2(G) ≤ 3+γ×2(F ′) ≤ 3+3(n−4)/4 = 3n/4. Thus we must have equality
throughout this inequality chain. In particular, γ×2(F ′) = 3n′/4.

Suppose F ′ is disconnected. Then each component of F ′ has double
domination number three-fourths its order. As observed earlier, neither
component of F ′ is a cycle. Further since S is an independent set, the
component of F ′ containing v cannot be in G. But then by Observation 13,
the component of F ′ containing v has double domination number less than
three-fourths its order, a contradiction. Hence, F ′ is connected.

As observed earlier, F ′ 6= C5. Thus by Observation 11, F ′ ∈ {C8, F1} ∪
H. By our assumption that S is an independent set in G, and since there
is no 2-graph cycle in G by Lemma 16(a), it follows that F ′ /∈ H. Suppose
F ′ = F1. Since S is an independent set in G, it follows from the way in
which F ′ is constructed that w′ is one of the two vertices of degree 3 in F ′
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and that the new edges added to F − w to produce F ′ are the two edges
joining w′ to its two neighbors of degree 2 in F ′. Thus, F is obtained from
F1 by subdividing once the edge joining the two vertices of degree three in
F1 (where w is one of the resulting two vertices of degree 3 in F ). But then
there exists a γ×2(F )-set that contains w, a contradiction. Hence, F ′ 6= F1,
and so F ′ = C8. But then F = C9 and once again there exists a γ×2(F )-set
that contains w, a contradiction. We deduce, therefore, that there is no
2-graph path of length 3 in G.

6..4 Proof of Lemma 16(c)

Suppose |S| = 2. Let S = {u, v}. By Lemma 16(b), every 2-graph path in
G has length one or two, and so G − S = `1K1 ∪ `2K2 where `1 + `2 ≥ 3.
If `2 = 0, then n ≥ 5 and adding a vertex of V − S to the set S produces
a DDS of G, and so γ×2(G) = 3 < 3n/4, a contradiction. If `2 = 1, then
n ≥ 6 and adding the two vertices of the P2-component of G − S to the
set S produces a DDS of G, and so γ×2(G) = 4 < 3n/4, a contradiction.
Hence, `2 ≥ 2. Adding to the set S one vertex from each P2-component of
G − S in such a way that both u and v are adjacent to at least one added
vertex produces a DDS of G, and so γ×2(G) ≤ 2 + `2 < 3(1 + `2)/2 ≤ 3n/4,
a contradiction. Hence, |S| ≥ 3.

6..5 Proof of Lemma 16(d)

Suppose some vertex v ∈ S is within distance 3 from only one other vertex
w of S. Thus, w is adjacent to an end-vertex from every 2-graph path
emanating from v. Since |S| ≥ 3 and G is connected, at least one neighbor
of w does not belong to any 2-graph path of v.

Suppose w has at least two neighbors that do not belong to any 2-graph
path of v. Let Gw be the subgraph of G induced by w and the vertices on
all 2-graph paths of v. Then, Gw − v −w = `1K1 ∪ `2K2 where `1 + `2 ≥ 3.
An identical proof to that of Lemma 16(c) shows that there exists a DDS
Dw of Gw that contains v and w and such that |Dw| < 3|V (Gw)|/4. Let
G′ be the graph of order n′ = n − |V (Gw)| obtained from G − V (Gw) by
joining a neighbor w′ of w in V (G) − V (Gw) to every other neighbor of w
in V (G) − V (Gw). Then, G′ is a connected graph with δ(G′) ≥ 2. The
degree of each vertex of S − {v, w} is unchanged in G and G′, and so G′

has at least one vertex of degree at least 3 in G′. In particular, G′ is not
a cycle. By Observation 11, γ×2(G′) ≤ 3n′/4. Any DDS of G′ can be
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extended to a DDS of G by adding to it the vertices in the set Dw. Hence,
γ×2(G) ≤ |Dw| + γ×2(G′) < 3(n − n′)/4 + 3n′/4 = 3n/4, a contradiction.
Thus exactly one neighbor of w does not belong to any 2-graph path of v.
Let x denote such a neighbor of w.
Let P be the 2-graph path of w that contains x. Suppose that P is a 2-graph
path of length 2. Let w, x, y denote this path, and let z denote the vertex
of S adjacent to y. Let G1 and G2 be the two components of G− yz, where
y ∈ V (G1). For i = 1, 2, let |V (Gi)| = ni. The graph G2 is connected
with δ(G2) ≥ 2. Since G has no 2-graph cycle, G2 is not a cycle. Hence by
Observation 11, γ×2(G2) ≤ 3n2/4. We now consider the component G1. Let
X = {v, w, x, y}. The graph G1 −X = `1K1 ∪ `2K2 where `1 + `2 ≥ 3. If
`2 = 0, then n ≥ 7 and adding a common neighbor of v and w to the set X
produces a DDS of G1, and so γ×2(G1) ≤ 5 < 3n1/4. If `2 = 1, then n ≥ 8
and adding the neighbor of v on the 2-graph path of v of length 2 to the set X
produces a DDS of G1, and so γ×2(G1) ≤ 5 < 3n1/4. If `2 ≥ 2, then adding
to the set X a neighbor of v from each 2-graph path of v of length 2 produces
a DDS of G1, and so γ×2(G1) ≤ 4+`2. In this case, n1 = 4+`1+2`2, whence
it follows that γ×2(G1) < 3n1/4. Hence in all cases, γ×2(G1) < 3n1/4. Thus,
γ×2(G) ≤ γ×2(G1) + γ×2(G2) < 3n1/4 + 3n2/4 = 3n/4, a contradiction.
Hence P is a 2-graph path of length 1, i.e., P is the path w, x. An almost
identical proof used when P has length 2 (here we take X = {v, w, x}) shows
that γ×2(G) < 3n/4, once again a contradiction.

6..6 Proof of Lemma 16(e)

Suppose that u has at least two neighbors that do not belong to any 2-graph
path of v and v has at least two neighbors that do not belong to any 2-graph
path of u. Let F be the subgraph of G induced by u and v and the vertices
on all u–v paths every internal vertex of which is in V − S.

Let G′ be the graph of order n′ = n− |V (F )| obtained from G− V (F )
by joining a neighbor u′ of u in V (G)−V (F ) to every other neighbor of u in
V (G)− V (F ) and joining a neighbor v′ of v in V (G)− V (F ) to every other
neighbor of v in V (G)− V (F ). Then, δ(G′) ≥ 2 and either G′ is connected
or G′ has exactly two components, namely one component containing u′

and the other v′. The degree of each vertex of S − {u, v} is unchanged
in G and G′. Since S is an independent set, and since G has no 2-graph
cycle (by Lemma 16(a)) and since |S| ≥ 3 (by Lemma 16(c)), it follows
readily that no component of G′ is a cycle or belongs to the family H and
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that if G′ is connected, then G′ 6= F1. If G′ is disconnected and has a
component isomorphic to F1, then we would contradict Lemma 16(b) and
Lemma 16(d). Hence no component of G′ is isomorphic to F1. Thus it
follows by Observation 11 that γ×2(G′) < 3n′/4.
Since all neighbors of u (respectively, v) in G have degree 2, every DDS of
G′ must contain at least one neighbor of u and at least one neighbor of v.
Hence any γ×2(G′)-set can be extended to a DDS of G by adding to it the
vertices u and v, and one vertex from each P2-component of F − u − v if
any. Thus, γ×2(G) ≤ 3|V (F )|/4 + γ×2(G′) < 3(n− n′)/4 + 3n′/4 = 3n/4, a
contradiction.

6..7 Proof of Lemma 17

Suppose, to the contrary, that S is an independent set. Let u and v be two
vertices of S that are joined by a path the internal vertices of which are in
V − S. By Lemma 16(e), we may assume that u has exactly one neighbor
u′ that does not belong to any 2-graph path of v. Thus, v is adjacent to the
end-vertex of every 2-graph path of u except for the 2-graph path of u that
contains u′. By Lemma 16(d), v has a neighbor v′ that does not belong to
any 2-graph path of u.

Let F be the subgraph of G induced by u and v and the vertices on all
u–v paths every internal vertex of which is in V −S. Let G′ be the graph of
order n′ = n− |V (F )| obtained from G− V (F ) by joining v′ to every other
neighbor of v in V (G) − V (F ) and joining v′ to the vertex u′. Then, G′ is
a connected graph with δ(G′) ≥ 2. The degree of each vertex of S − {u, v}
is unchanged in G and G′, and so at least one vertex of G′ different from v′

has degree at least 3 in G′. Since S is an independent set, and since G has
no 2-graph cycle (by Lemma 16 (a)) and since |S| ≥ 3 (by Lemma 16(c)),
it follows readily that G′ is neither a cycle nor isomorphic to F1 nor in the
family H. Thus by Observation 11, γ×2(G′) < 3n′/4.

Let DF ⊂ V (F ) − {u, v} be defined as follows. If every vertex of F −
{u, v} is isolated, let DF = {u′}; otherwise, let DF consist of a neighbor of
u from every P2-component in F −{u, v}. Since all neighbors of v in G have
degree 2, every DDS of G′ must contain at least one neighbor of v. Hence
any γ×2(G′)-set can be extended to a DDS of G by adding to it the set
DF ∪ {u, v}. Thus, γ×2(G) ≤ 3|V (F )|/4 + γ×2(G′) < 3(n− n′)/4 + 3n′/4 =
3n/4.
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6..8 Proof of Lemma 18

By Lemma 17, there is an edge e = uv where u, v ∈ S. By Observation 12,
e must be a bridge of G. Let G1 = (V1, E1) and G2 = (V2, E2) be the
two components of G − e where u ∈ V1. For i = 1, 2, let |Vi| = ni. Each
Gi satisfies δ(Gi) ≥ 2 and is connected. Hence by Observation 13, Gi ∈
{C5, C8} ∪ G or γ×2(Gi) < 3ni/4 for i = 1, 2.

Suppose γ×2(G1) < 3n1/4. If G2 6= C5, then γ×2(G2) ≤ 3n2/4, and so
γ×2(G) ≤ γ×2(G1) + γ×2(G2) < 3n/4, a contradiction. Hence, G2 = C5.
If γ×2(G1) < (3n1 − 1)/4, then γ×2(G) < 3n/4, a contradiction. Hence,
γ×2(G1) = (3n1 − 1)/4 = 3n/4− 4 (and so, n1 ≡ 3 (mod 4)). If u is in some
γ×2(G1)-set, then such a set can be extended to a DDS of G by adding to it
v and the two vertices at distance 2 from v in G2, and so γ×2(G) ≤ 3n/4−1,
a contradiction. Hence, u belongs to no γ×2(G1)-set. Let G′

1 be the graph
obtained from G1−u by adding all edges between neighbors of u in G1. Then
G′

1 is a connected graph with δ(G′
1) ≥ 2. Since u is in no γ×2(G1)-set, it

follows that G1, and therefore G′
1, is not a cycle. Hence, by Observation 11,

γ×2(G′
1) ≤ 3n′/4 = 3(n− 6)/4. Any γ×2(G′

1)-set can be extended to a DDS
of G by adding to it both u and v and the two vertices at distance 2 from
v in G2, and so γ×2(G) ≤ 3(n − 6)/4 + 4 < 3n/4, a contradiction. Hence,
γ×2(G1) ≥ 3n1/4. Similarly, γ×2(G2) ≥ 3n2/4. Hence, by Observation 13,
Gi ∈ {C5, C8} ∪ G for i = 1, 2.

If Gi ∈ {C5, C8} for i = 1, 2, then γ×2(G) < 3n/4, a contradiction.
Hence we may assume G1 ∈ G. Let D1 be a γ×2(G1)-set that contains the
vertex u (such a set exists by Observation 9). If now G2 ∈ {C5, C8}, then
D1 can be extended to a DDS of G by adding to it γ×2(G2)− 1 vertices of
G2, and so γ×2(G) < 3n/4, a contradiction. Hence, G2 ∈ G.

Suppose G /∈ G. Then we may assume that G1 contains at least two
units and that u is not a link vertex of G1. By Observation 12, u is the vertex
at distance 2 from the link vertex in its unit in G1 (for otherwise the edge
joining u and the link vertex in its unit does not satisfy Observation 12).
But then the set {u, v} can easily be extended to a DDS of G that contains
two vertices from the unit of G1 containing u (namely, u and the link vertex
of the unit) and three vertices from every other unit of G1 and G2, whence
γ×2(G) < 3n/4, a contradiction. Hence, G ∈ G.
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