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Abstract

In a graph G, a vertex dominates itself and its neighbors. A subset
S C V(G) is a double dominating set of G if S dominates every vertex
of G at least twice. The minimum cardinality of a double dominating
set of G is the double domination number v42(G). If G # Cs is a
connected graph of order n with minimum degree at least 2, then we
show that v42(G) < 3n/4 and we characterize those graphs achieving
equality.
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1. Introduction

In this paper we continue the study of double domination in graphs started
by Harary and Haynes [5] and studied further in [1, 2, 3, 4, 8, 9] and
elsewhere.

Domination in graphs is now well studied in graph theory and the lit-
erature on this subject has been surveyed and detailed in the two books by
Haynes, Hedetniemi, and Slater [6, 7]. For a graph G = (V, E), the open
neighborhood of a vertex v € V is N(v) = {u € V | wv € E} and the closed
neighborhood is N[v] = N(v) U {v}. A set S C V is a dominating set if
each vertex in V' — S is adjacent to at least one vertex of S. Equivalently,
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S is a dominating set of G if for every vertex v € V, [N[v] N S| > 1. The
domination number ~(G) is the minimum cardinality of a dominating set.

In [5] Harary and Haynes defined a generalization of domination as
follows: a subset S of V' is a k-tuple dominating set of G if for every vertex
v eV, |NwNS| >k, that is, v is in S and has at least k£ — 1 neighbors in S
or v isin V — S and has at least k neighbors in S. The k-tuple domination
number v« (G) is the minimum cardinality of a k-tuple dominating set of G,
if such a set exists. Clearly, 7(G) = vx1(G) < vxk(G), while 1(G) < yx2(G)
where 7:(G) denotes the total domination number of G (see [6, 7]). For a
graph to have a k-tuple dominating set, its minimum degree is at least k—1.
Hence for trees, £ < 2. A k-tuple dominating set where k£ = 2 is called a
double dominating set (DDS). A DDS of cardinality yx2(G) we call a yx2(G)-
set. The redundancy involved in k-tuple domination makes it useful in many
applications.

For notation and graph theory terminology we in general follow [6].
Specifically, let G = (V, E) be a graph with vertex set V of order n and edge
set E. The minimum degree among the vertices of G is denoted by 6(G). A
support vertex is a vertex adjacent to a vertex of degree one.

A daisy with k > 2 petals is a connected graph that can be constructed
from k > 2 disjoint cycles by identifying a set of k vertices, one from each cy-
cle, into one vertex. In particular, if the k cycles have lengths ny,ns, ..., ng,
we denote the daisy by D(ny,na,...,ng).

2. Known Results

The value of v4x2(Cy,) for a cycle C,, is established in [5].
Proposition 1 (Harary, Haynes [5]). Forn > 3, vx2(Cy) = P?”-‘

As an immediate consequence of a result of Blidia et al. [2], we obtain the
following upper bound on the double domination number of a connected
graph in terms of the order of the graph, the number of vertices of degree
one and the number of support vertices in the graph.

Theorem 2 ([2]). If G is a connected graph of order n > 3 with £ vertices
of degree one and s support vertices, then vx2(G) < (2n+ £+ s)/3.

In particular, we have the following upper bound on the double domination
number of a connected graph in terms of its order.
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Corollary 3 ([2]). If G is a connected graph of order n > 2, then vx2(G) <
n with equality if and only if every vertex of G has degree one or is a support
verter.

If we restrict the minimum degree to be at least two, then Blidia et al.
[1] showed that the upper bound in Corollary 3 on the double domination
number can be improved to eleven-thirteens its order.

Theorem 4 ([1]). If G is a graph of order n with 6(G) > 2, then yx2(G) <
11n/13.

3. Main Result

Our aim in this paper is to improve the upper bound in Theorem 4 on the
double domination number from eleven-thirteens its order to three-fourths
its order when G # (5, and to characterize those graphs achieving equality.

In order to characterize the connected graphs with minimum degree
at least two that have maximum possible double domination number we
introduce a family H of graphs as follows. We define a unit to be a graph
that is isomorphic to a cycle Cy. By attaching a unit to a vertex v of a graph,
we mean adding a path P to that graph and joining v to both end-vertices
of the P3;. The resulting 4-cycle containing v we call a unit of the graph and
we call v the link vertex of the unit. Let H be the family of a graphs that
can be obtained from a connected graph by attaching a unit to every vertex
of that graph. A graph in the family H with four units is shown in Figure 1.

RIS

Figure 1. A graph in the family H

Let F7 be the graph obtained from an 8-cycle by adding an edge between
two vertices at maximum distance 4 apart on the cycle. The graph F} is

shown in Figure 2.

Figure 2. The graph F}
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Our main result establishes an upper bound on the double domination num-
ber of a connected graph with minimum degree at least two that is not a
5-cycle and characterizes those graphs achieving this upper bound. A proof
of Theorem 5 is given in Section 1.

Theorem 5. If H # C5 is a connected graph of order n with 6(H) > 2,
then vxo(H) < 3n/4 with equality if and only if H € {F1,Cs} U H.

4. %-Minimal Graphs

The key to our proof of Theorem 5 is a characterization of what we call
%—minimal graphs. We will refer to a graph G as a %—mz’nimal graph if G is
edge-minimal with respect to satisfying the following three conditions:

(i) 0(G) = 2,

(ii) G is connected, and
(iii) vx2(G) > 3n/4, where n is the order of G.

As a consequence of Proposition 1, we can establish which cycles are
%—minimal graphs.

Corollary 6. A cycle G is a %—mim’mal graph if and only if G € {C4, C5,Cg}.
Next we establish which daisies are %—minimal graphs.
Proposition 7. If G is a daisy of order n, then yx2(G) < (2n+1)/3.

Proof. We proceed by induction on the order n of the daisy. If n = 5,
then G = D(3,3) and 7vyx2(G) = 3, while if n = 6, then G = D(3,4) and
vx2(G) = 4. Hence if n € {5,6}, 7x2(G) < (2n+ 1)/3. This establishes the
base cases. Assume, then, that n > 7 and that if G’ is a daisy of order n’,
where n’ < n, then v42(G’) < (2n/+1)/3. Let G be a daisy of order n and let
v denote the vertex of maximum degree in G. Let F:v,v1,v2,...,v,,,v be
a cycle containing v. Thus, F = Cy,+1. Let S1 = {v; | i = 0 or 2 (mod 3)}.
Then, |S1] < 2n1/3. Let G' = G — (V(F) — {v}) and let G’ have order n/,
and son' =n —n.

Suppose first that G’ is a cycle, i.e., G’ = Cpr. Let S" be a yx2(G')-set
that contains v. By Proposition 1, |S'| < 2(n’ +1)/3 = 2(n —n1 +1)/3.
Since S1 U S" is a DDS of G, vx2(G) < [S1 US| <2(n+1)/3.
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Suppose secondly that G’ is a daisy. Applying the inductive hypothesis
to G, vx2(G") < (2n' +1)/3 = (2n — 2n1 + 1)/3. Let S’ be a yx2(G’)-set.
The restriction of S’ to the vertices of at least one cycle in G’ must be a
DDS in that cycle. Hence we may choose S’ to contain the vertex v. Then,
S1U S is a DDS, and so yx2(G) < |S1 US| < (2n+1)/3. (]

Since (2n+1)/3 < 3n/4 for n > 5, we have the following immediate conse-
quence of Proposition 7.

Corollary 8. No daisy is a %—mim’mal graph.

Let G be the collection of graphs that can be obtained from a tree by attach-
ing a unit to every vertex of the tree. Hence the family G is a subfamily of
the family H. The following observation about graphs in the family G will
prove to be useful.

Observation 9. Each graph in the family G has double domination number
three-fourths its order and is a %—minimal graph. Further, there is a yx2(G)-
set that contains any specified vertex of G.

The following key result, a proof of which is given in Section 1, characterizes
%—minimal graphs.

Theorem 10. A graph G is a %—mz’nimal graph if and only if
G e {05708} ug.

5. Proof of Theorem 5

Theorem 5, our main result, is simply a corollary of Theorem 10. Since the
double domination number of a graph cannot decrease if edges are removed,
it follows from Observation 9 and Theorem 10 that the double domination
number of H is at most three-fourths its order. Further suppose H has dou-
ble domination number exactly three-fourths its order. Then by removing
edges of H, if necessary, we produce a %—minimal graph H'. If H = Cj,
then H = Cf, a contradiction. Hence by Theorem 10, H' = Cs or H' € §G.
If H = Cg, then H € {F1,08}.

Suppose H' € G. We show that each vertex of H’ that is not a link
vertex must have degree 2 in H, whence H € ‘H. If n = 4, then H = Cjy.
Hence we may assume n > 8. Let Cy:v,w,z,y,v be a unit of H' with link
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vertex v and let vv’ € E(H') where v’ is a link vertex of H' different from
v. If x2’ € E(H) where 2’ is a vertex not in the unit C,, (possibly, v = /),
then the set {v,v'} U {z,2'} can easily be extended to a DDS of H that
contains three vertices from every unit different from C, and two vertices
from the unit C,, and so vx2(H) < 3n/4, a contradiction. If vz € E(H),
then the set {v,z} can be extended to a DDS of H that contains three
vertices from every unit different from C, and two vertices from the unit
C,, a contradiction. Hence each vertex of H’ that is neither a link vertex
nor adjacent to a link vertex has degree 2 in H. If ww’' € E(H) where w' is
a vertex not in the unit C, (possibly, v = w’), then the set {z,y,v'} U {w'}
can easily be extended to a DDS of H that contains three vertices from every
unit different from C, and two vertices from the unit C),, a contradiction.
If wy € E(H), then the set {w,y} can be extended to a DDS of H that
contains three vertices from every unit different from C),, and two vertices
from the unit C,, a contradiction. It follows that every vertex of H' that is
not a link vertex has degree 2 in H. Thus, H € 'H.

6. Proof of Theorem 10

The sufficiency follows from Corollary 6 and Observation 9. To prove the
necessary, we proceed by induction on the order n > 3 of a %—minimal
graph. If G is a %—minimal graph of order n, 3 <n <5, then G € {C4,C5}.
This establishes the base case. For our inductive hypothesis, let n > 6 and
assume that for n’ < n, a graph G’ is a %-minimal graph if and only if
G’ € {C5,Cs} U G. This implies (see the proof of Theorem 5) the following

result.

Observation 11. If H # C5 is a connected graph of order n’ < n with
d(H) > 2, then yx2(H) <3n’/4 with equality if and only if H € {F},Cs} U'H.

Let G = (V,E) be a %—minimal graph of order n. Before proceeding further,
we prove a few results that will be useful in what follows. If e is an edge of
G, then v4x2(G — €) > vx2(G). Hence, by the minimality of G, we have the
following observation.

Observation 12. If e € E, then either e is a bridge of G or §(G —e) = 1.

The next result is a consequence of the inductive hypothesis.
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Observation 13. If G’ is a connected subgraph of G of order n’ < n with
d(G') > 2, then either G’ € {C5,Cs} U G or vx2(G') < 3n//4.

Suppose G = C), (and still n > 6). Then, by Corollary 6, G = Cs. So we
may assume that G is not a cycle. Hence, G contains at least one vertex of
degree at least 3. Let S = {v € V | deg(v) > 3}. Each vertex of V — §
therefore has degree 2 in G. If |S| = 1, then G is a daisy, contradicting
Corollary 8. Hence, |S| > 2.

For each v € S, we define the 2-graph of v to be the component of
G — (S — {v}) that contains v. So each vertex of the 2-graph of v has
degree 2 in G, except for v. Furthermore, the 2-graph of v consists of edge-
disjoint cycles through v, which we call 2-graph cycles, and paths emanating
from v, which we call 2-graph paths.

We show next that there in no long path in G whose internal vertices
have degree 2 in G. A proof of the following result is given in Subsection 6..1

Lemma 14. There is no path on six vertices the internal vertices of which
have degree 2 in G.

For integers ny > no > 3 and k > 0, we define a dumb-bell Dy(nq,ne, k) to
be the graph of order n = n; +na + k obtained from the cycles C),, and Cy,,
by joining a vertex of Cy, to a vertex of C,, and subdividing the resulting
edge k times.

By Lemma 14, every 2-graph path in G has length one, two or three,
while every 2-graph cycle has length at most five. Hence it now a simple
exercise to verify the following result.

Observation 15. If G is a dumb-bell, then G = Dy(4,4,0) € G.

By Observation 15, we may assume that G is not a dumb-bell. Using the
inductive hypothesis, we shall prove the following lemma, a proof of which
is given in Subsection 6.2 to Subsection 6.6.

Lemma 16. If S is an independent set, then the graph G has the following
five properties:

(a) There is no 2-graph cycle in G.

(b) Every 2-graph path in G has length one or two.

(c) [S]=3.
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(d) Each vertex of S is within distance 3 from at least two other vertices
of S.

(e) Let u and v be two vertices of S that are joined by a path the internal
vertices of which are in V. — S. Then, u has exactly one neighbor that
does not belong to any 2-graph path of v or v has exactly one neighbor
that does not belong to any 2-graph path of .

Using Lemma 16, we prove the following result, a proof of which is presented
in Subsection 6..7

Lemma 17. The set S is not an independent set.

As a consequence of Lemma 17, we have the following result, a proof of
which is given in Subsection 6.8, which completes the proof of Theorem 10.

Lemma 18. G € G.

6..1 Proof of Lemma 14

Suppose that vi,ve,...,vs is a path in G where degq(v;) = 2 for 2 <1 < 5.
Let G’ be the graph of order n’ = n—3 obtained from G by deleting the three
vertices v3, v4 and v and adding the edge vovg, i.e., G' = (G—{vs, v4,v5})U
{vavg}. By assumption G # Cs, and so G’ # Cs. By Observation 11,
vx2(G") < 3n’ /4. Let D' be a yx2(G')-set. If ve ¢ D', let D = D" U{vs,v4}.
If {v1,v2} C D', let D = D'"U{vg,v5}. If {vo,v6} C D', let D = D'U{vs,vs}.
In all cases, the set D is a DDS of G, and s0 vx2(G) < |D| = yx2(G’') +2 <

3n'/4+2 = (3n —1)/4, contradicting the fact that G is a 3-minimal graph.

6..2 Proof of Lemma 16(a)

Suppose, to the contrary, that there is a 2-graph cycle in G. Let v € S and
suppose that C), is a 2-graph cycle of v of length n; + 1. By Lemma 14,
2 < ny < 4. We consider two possibilities.

Case 1. degg(v) > 4. Let Go = G — (V(Cy) — {v}). Then, G is a
connected graph with minimum degree at least 2 and of order ny = n — n;.
Since |S| > 2, G4 is not a cycle. By our assumption that S is an independent
set, G2 ¢ G. Hence by Observation 13, yx2(G2) < 3n2/4 = 3(n —ny)/4. If
v belongs to some vyx2(G2)-set, then such a DDS of G5 can be extended to
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a DDS of G by adding at most 2n; /3 vertices from the path C, — v, whence
Yx2(G) < 2n1/34+7x2(G2) < 2n1/343n2/4 < 3n/4, a contradiction. Hence
the vertex v belongs to no yyx2(G2)-set.

Since S is an independent set, every neighbor of v has degree 2. Since v
belongs to no yx2(G2)-set, it follows that every vyx2(G3)-set contains every
neighbor of v in G9 and every vertex at distance 2 from v in G3. Further it
follows that there is no 4-cycle or 5-cycle in Gy containing v. Let G’ be the
graph of order n’ = ny — 1 obtained from G5 — v by joining a neighbor of
v in G2 to every other neighbor of v in G3. Then G’ is a connected graph
with §(G’) > 2. Since G5 is not a cycle, neither is G’. Since v belongs to no
vx2(G2)-set, G’ # Fy. Since v belongs to neither a 4-cycle nor a 5-cycle in
Go, no vertex in N(v) in G’ belongs to a 4-cycle. Hence, G’ ¢ H. Thus by
Observation 11, yx2(G’) < 3n'/4 =3(n —ny — 1) /4.

If ny = 2, then a vx2(G’)-set can be extended to a DDS of G by adding
to it the vertex v and one of its two neighbors in C,. Hence, yx2(G) <
24+ vx2(G") <24 3(n—3)/4 < 3n/4, a contradiction.

If ny = 3, then a yx2(G’)-set can be extended to a DDS of G by adding to
it the vertex v and its two neighbors in C,. Hence, 7x2(G) < 3+ vx2(G') <
3+3(n—4)/4 = 3n/4, a contradiction.

If ny = 4, then a yx2(G2)-set can be extended to a DDS of G by adding
to it the vertex v and the two vertices in C), that are not adjacent to v.
Hence, 7x2(G) < 3+ vx2(G2) <3+ 3(n —4)/4 = 3n/4, a contradiction.

Case 2. degg(v) = 3. Let P:v,v1,..., v, w be the path from v to the
vertex w of S — {v} every internal vertex of which belongs to V' — S. Since
S is independent, £ > 1. Furthermore, by Lemma 14, £ < 3.

Let G =G —V(C,) — [V(P) — {w}]. Then, G’ is a connected graph of
order n’ =n —ny —k — 1 with §(G’) > 2. By our assumption that G is not
a dumb-bell, G’ is not a cycle. Thus by Observation 11, vyx2(G’) < 3n//4.

Let G* be the graph of order n* = n’ — 1 obtained from G’ — w by
joining a neighbor of w in G’ to every other neighbor of w in G’. Then,
G* is a connected graph with 6(G*) > 2. It follows from our assumption
that G is not a dumb-bell that G* is not a cycle. Thus by Observation 11,
vx2(G*) < 3n*/4. Since all neighbors of w in G have degree 2, it follows
that every DDS of G* must contain at least one neighbor of w.

Case 2.1. k = 3. Let F = (G — {v1,v2,v3}) U {vw}. Then, F is a
connected graph of order n — 3 with §(F) > 2. Since F' is not a cycle,
vx2(F) < 3(n—3)/4 by Observation 11. Let Sp be a yxo(F)-set. If ny = 2,
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we can choose Sg to contain v and a neighbor of v in C,,, while if n; = 3, we
can choose S to contain v and its two neighbors in C),. Thus if n; € {2,3},
then Sp U {va,v3} is a DDS of G, and so yx2(G) < 3(n —3)/4+4 2 < 3n/4,
a contradiction. If n; = 4, then we can clearly choose Sg to contain the
two vertices in C, that are not adjacent to v and the two vertices v and w.
Thus, Sp U {v1,v3} is a DDS of G, and so 7x2(G) < 3n//4+ 2 < 3n/4, a

contradiction.

Case2.2. k =2 and n; = 4. Any yx2(G’)-set can be extended to a DDS
of G by adding to it the two vertices in C,, that are not adjacent to v and the
three vertices v, v1 and vy. Hence, 7x2(G) < 5+79x2(G') <5+43(n—"7)/4 <
3n/4, a contradiction.

Case2.3. k=2 and ny € {2,3}. If n; = 2, then any yx2(G*)-set can be
extended to a DDS of G by adding to it a neighbor of v in C), and the vertices
in the set {v, vy, w}. Hence, 7x2(G) < 4+vx2(G*) <4+3(n—6)/4 < 3n/4,
a contradiction. If ny; = 3, then any vx2(G*)-set can be extended to a DDS
of G by adding to it the two neighbors of v in C, and the vertices in the
set {v,vo,w}. Hence, 7x2(G) < 54 yx2(G*) < 54+ 3(n—7)/4 < 3n/4, a
contradiction.

Case 2.4. k =1 and ny € {2,4}. If ny = 4, then any yx2(G’)-set can
be extended to a DDS of G by adding to it the two vertices in C, that
are not adjacent to v and the two vertices v and v;. Hence, vx2(G) <
4+ vx2(G') <44 3(n—6)/4 < 3n/4, a contradiction. Suppose n; = 2. If
w belongs to some vyx2(G’)-set, then such a vx2(G’)-set can be extended to
a DDS of G by adding to it v and a neighbor of v in C,, whence vx2(G) <
24+ 9x2(G') <2+43(n—4)/4 < 3n/4, a contradiction. On the other hand, if
w belongs to no yx2(G’)-set, then it follows from Observations 9 and 13 that
vx2(G') < 3n' /4. Now any yx2(G’)-set can be extended to a DDS of G by
adding to it v, v1 and a neighbor of v in C,, whence yx2(G) < 34+7x2(G') <
3+43(n—4)/4=3n/4, a contradiction.

Case 2.5. k =1 and n; = 3. Any ~x2(G*)-set can be extended to a
DDS of G by adding to it the two neighbors of v in C),, and the two vertices
in the set {v, w}, whence yx2(G) < 4+ vx2(G*) <4+ 3(n—6)/4 < 3n/4, a
contradiction.
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6..3 Proof of Lemma 16(b)

By Lemma 14, every 2-graph path in G has length one, two or three. Suppose
there is a 2-graph path of length three. Let v € S and suppose v, vy, v, v3
is a 2-graph path of v. Let w be the vertex of S adjacent to vs. Then,
degg(vi) =2 fori =1,2,3.

Let FF = G — {v1,v2,v3}. Then, 6(F) > 2. If F = Cs, then n = 8
and vx2(G) < 5 < 3n/4, a contradiction. Hence, F' # C5. Further since
there is no 2-graph cycle in G by Lemma 16(a), if F' is disconnected, then
neither component of F' is a cycle. Hence by Observation 11 applied to
F, if F' is connected, or to the two components of F', if F' is disconnected,
vx2(F) < 3(n — 3)/4. If there exists a yx2(F)-set that contains w, then
such a set can be extended to a DDS of G by adding to it the vertices in
the set {vi,v2}, whence vx2(G) < 24+ yx2(F) < 2+ 3(n —3)/4 < 3n/4,
a contradiction. Hence no yyx2(F')-set contains w. Similarly, no yxa(F')-set
contains v.

Let F’ be the graph of order n’ = n —4 obtained from F' —w by joining
a neighbor w’ of w in V(F) to every other neighbor of w in V(F). Then,
S(F') > 2. If F/ = (5, then vx2(G) < 3n/4, a contradiction. Hence,
F' # Cs. If F' is disconnected, then since there is no 2-graph cycle in G,
neither component of F’ is a cycle. Hence it follows by Observation 11 that
Yx2(F") < 3n'/4 (irrespective of whether F” is connected or disconnected).
Since all neighbors of w in G have degree 2, every DDS of F’ must contain
at least one neighbor of w. Hence any 7x2(F”)-set can be extended to a
DDS of G by adding to it the vertices in the set {v1, v2, w}, whence 3n/4 =
Yx2(G) < 3+7x2(F') <34+3(n—4)/4 = 3n/4. Thus we must have equality
throughout this inequality chain. In particular, vyx2(F’) = 3n’/4.

Suppose F’ is disconnected. Then each component of F’ has double
domination number three-fourths its order. As observed earlier, neither
component of F’ is a cycle. Further since S is an independent set, the
component of F’ containing v cannot be in G. But then by Observation 13,
the component of F’ containing v has double domination number less than
three-fourths its order, a contradiction. Hence, F’ is connected.

As observed earlier, F’ # C5. Thus by Observation 11, F' € {Cg, F}} U
‘H. By our assumption that S is an independent set in G, and since there
is no 2-graph cycle in G by Lemma 16(a), it follows that F’ ¢ H. Suppose
F' = Fy;. Since S is an independent set in G, it follows from the way in
which F’ is constructed that w’ is one of the two vertices of degree 3 in F’
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and that the new edges added to F' — w to produce F’ are the two edges
joining w’ to its two neighbors of degree 2 in F’. Thus, F' is obtained from
Fy by subdividing once the edge joining the two vertices of degree three in
F (where w is one of the resulting two vertices of degree 3 in F'). But then
there exists a yxo(F')-set that contains w, a contradiction. Hence, F’ # F},
and so F’ = Cg. But then F' = Cy and once again there exists a yx2(F')-set
that contains w, a contradiction. We deduce, therefore, that there is no
2-graph path of length 3 in G.

6..4 Proof of Lemma 16(c)

Suppose |S| = 2. Let S = {u,v}. By Lemma 16(b), every 2-graph path in
G has length one or two, and so G — S = /1K1 U {5 Ky where ¢ + 5 > 3.
If /o = 0, then n > 5 and adding a vertex of V' — S to the set S produces
a DDS of G, and so 7x2(G) = 3 < 3n/4, a contradiction. If ¢ = 1, then
n > 6 and adding the two vertices of the Ps-component of G — S to the
set S produces a DDS of G, and so vx2(G) = 4 < 3n/4, a contradiction.
Hence, ¢ > 2. Adding to the set S one vertex from each P»-component of
G — S in such a way that both u and v are adjacent to at least one added
vertex produces a DDS of G, and so vx2(G) <2+ ls < 3(1+42)/2 < 3n/4,
a contradiction. Hence, |S| > 3.

6..5 Proof of Lemma 16(d)

Suppose some vertex v € S is within distance 3 from only one other vertex
w of S. Thus, w is adjacent to an end-vertex from every 2-graph path
emanating from v. Since |S| > 3 and G is connected, at least one neighbor
of w does not belong to any 2-graph path of v.

Suppose w has at least two neighbors that do not belong to any 2-graph
path of v. Let G, be the subgraph of G induced by w and the vertices on
all 2-graph paths of v. Then, G, — v — w = £1 K1 U{ls Ko where {1 + {5 > 3.
An identical proof to that of Lemma 16(c) shows that there exists a DDS
D,, of Gy, that contains v and w and such that |D,| < 3|V(Gy)|/4. Let
G’ be the graph of order n’ = n — |V(Gy)| obtained from G — V(G,,) by
joining a neighbor w’ of w in V(G) — V(Gy) to every other neighbor of w
in V(G) — V(Gy). Then, G’ is a connected graph with 6(G’) > 2. The
degree of each vertex of S — {v,w} is unchanged in G and G’, and so G’
has at least one vertex of degree at least 3 in G’. In particular, G’ is not
a cycle. By Observation 11, vx2(G') < 3n’/4. Any DDS of G’ can be
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extended to a DDS of G by adding to it the vertices in the set D,,. Hence,
Yx2(G) < |Dy| + vx2(G") < 3(n —n’)/4 4+ 3n’/4 = 3n/4, a contradiction.
Thus exactly one neighbor of w does not belong to any 2-graph path of v.
Let x denote such a neighbor of w.

Let P be the 2-graph path of w that contains . Suppose that P is a 2-graph
path of length 2. Let w,x,y denote this path, and let z denote the vertex
of S adjacent to y. Let G; and G2 be the two components of G — yz, where
y € V(Gy). For i = 1,2, let |V(G;)| = n;. The graph Gs is connected
with §(G2) > 2. Since G has no 2-graph cycle, Go is not a cycle. Hence by
Observation 11, yx2(G2) < 3ng/4. We now consider the component G1. Let
X = {v,w,z,y}. The graph G; — X = {1 K; Ul Ky where {1 + {y > 3. If
fy =0, then n > 7 and adding a common neighbor of v and w to the set X
produces a DDS of G, and so vx2(G1) <5 < 3ny/4. If o =1, then n > 8
and adding the neighbor of v on the 2-graph path of v of length 2 to the set X
produces a DDS of G1, and so yx2(G1) < 5 < 3ny/4. If f3 > 2, then adding
to the set X a neighbor of v from each 2-graph path of v of length 2 produces
a DDS of Gy, and 80 vx2(G1) < 4+ /5. In this case, n; = 4+/¢1 420, whence
it follows that vx2(G1) < 3n1/4. Hence in all cases, vx2(G1) < 3n1/4. Thus,
Tx2(G) < vx2(G1) + vx2(G2) < 3n1/4 + 3n2/4 = 3n/4, a contradiction.
Hence P is a 2-graph path of length 1, i.e., P is the path w,x. An almost
identical proof used when P has length 2 (here we take X = {v, w, z}) shows
that vx2(G) < 3n/4, once again a contradiction.

6..6 Proof of Lemma 16(e)

Suppose that v has at least two neighbors that do not belong to any 2-graph
path of v and v has at least two neighbors that do not belong to any 2-graph
path of u. Let F' be the subgraph of G induced by u and v and the vertices
on all u—v paths every internal vertex of which isin V' — §.

Let G’ be the graph of order n’ = n — |V (F)| obtained from G — V(F)
by joining a neighbor " of v in V(G) — V(F) to every other neighbor of u in
V(@) — V(F) and joining a neighbor v of v in V(G) — V(F) to every other
neighbor of v in V(G) — V(F). Then, 6(G’) > 2 and either G’ is connected
or G’ has exactly two components, namely one component containing u’
and the other v/. The degree of each vertex of S — {u,v} is unchanged
in G and G’. Since S is an independent set, and since G' has no 2-graph
cycle (by Lemma 16(a)) and since |S| > 3 (by Lemma 16(c)), it follows
readily that no component of G’ is a cycle or belongs to the family H and
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that if G’ is connected, then G’ # F,. If G’ is disconnected and has a
component isomorphic to Fij, then we would contradict Lemma 16(b) and
Lemma 16(d). Hence no component of G’ is isomorphic to Fj. Thus it
follows by Observation 11 that vx2(G’') < 3n'/4.

Since all neighbors of u (respectively, v) in G have degree 2, every DDS of
G’ must contain at least one neighbor of v and at least one neighbor of v.
Hence any vx2(G')-set can be extended to a DDS of G by adding to it the
vertices u and v, and one vertex from each P,-component of F —u — v if
any. Thus, vx2(G) < 3|V(F)|/4 + vx2(G") < 3(n—n')/4+3n' /4 =3n/4, a

contradiction.

6..7 Proof of Lemma 17

Suppose, to the contrary, that S is an independent set. Let u and v be two
vertices of S that are joined by a path the internal vertices of which are in
V — 5. By Lemma 16(e), we may assume that u has exactly one neighbor
u’ that does not belong to any 2-graph path of v. Thus, v is adjacent to the
end-vertex of every 2-graph path of u except for the 2-graph path of u that
contains «'. By Lemma 16(d), v has a neighbor v’ that does not belong to
any 2-graph path of u.

Let F' be the subgraph of GG induced by u and v and the vertices on all
u—v paths every internal vertex of which is in V' — S. Let G’ be the graph of
order n' = n — |V (F)| obtained from G — V(F') by joining v" to every other
neighbor of v in V(G) — V(F') and joining v’ to the vertex «’. Then, G’ is
a connected graph with §(G’) > 2. The degree of each vertex of S — {u, v}
is unchanged in G and G’, and so at least one vertex of G’ different from v’
has degree at least 3 in G’. Since S is an independent set, and since G has
no 2-graph cycle (by Lemma 16 (a)) and since |S| > 3 (by Lemma 16(c)),
it follows readily that G’ is neither a cycle nor isomorphic to F; nor in the
family H. Thus by Observation 11, vx2(G’) < 3n’/4.

Let Dp C V(F) — {u,v} be defined as follows. If every vertex of F' —
{u,v} is isolated, let Dp = {u'}; otherwise, let Dp consist of a neighbor of
u from every Py-component in F'— {u,v}. Since all neighbors of v in G have
degree 2, every DDS of G’ must contain at least one neighbor of v. Hence
any yx2(G’)-set can be extended to a DDS of G by adding to it the set
Dp U{u,v}. Thus, yx2(G) < 3|V (F)|/4+ vx2(G") < 3(n—n')/4+3n' /4 =
3n/4.
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6..8 Proof of Lemma 18

By Lemma 17, there is an edge e = uv where u,v € S. By Observation 12,
e must be a bridge of G. Let G; = (V4,E;1) and Gy = (Va, E2) be the
two components of G — e where uw € Vi. For ¢ = 1,2, let |V;| = n;. Each
G; satisfies §(G;) > 2 and is connected. Hence by Observation 13, G; €
{C5,Cs} U G or vx2(G;) < 3n;/4 for i =1, 2.

Suppose vx2(G1) < 3ni/4. If Go # C5, then vx2(G2) < 3ny/4, and so
Yx2(G) < vx2(G1) + vx2(G2) < 3n/4, a contradiction. Hence, Gy = Cs.
If v4x2(G1) < (3ny — 1)/4, then yx2(G) < 3n/4, a contradiction. Hence,
vx2(G1) = (3n1 — 1)/4 = 3n/4 — 4 (and so, n; = 3 (mod 4)). If u is in some
vx2(G1)-set, then such a set can be extended to a DDS of G by adding to it
v and the two vertices at distance 2 from v in Ga, and so yx2(G) < 3n/4—1,
a contradiction. Hence, u belongs to no yx2(G1)-set. Let G be the graph
obtained from GG; —u by adding all edges between neighbors of v in G;. Then
G is a connected graph with §(G}) > 2. Since u is in no yx2(G1)-set, it
follows that G, and therefore G/, is not a cycle. Hence, by Observation 11,
vx2(GY) < 3n'/4 = 3(n—6)/4. Any vx2(G')-set can be extended to a DDS
of G by adding to it both u and v and the two vertices at distance 2 from
v in Gg, and so yx2(G) < 3(n — 6)/4 + 4 < 3n/4, a contradiction. Hence,
vx2(G1) > 3ni/4. Similarly, vx2(G2) > 3n2/4. Hence, by Observation 13,
G; € {C5,Cg} Ugfori=1,2.

If G; € {C5,Cs} for i = 1,2, then v42(G) < 3n/4, a contradiction.
Hence we may assume G; € G. Let Dy be a vx2(G1)-set that contains the
vertex u (such a set exists by Observation 9). If now Gy € {C5,Cs}, then
Dy can be extended to a DDS of G by adding to it yx2(G2) — 1 vertices of
G2, and so vx2(G) < 3n/4, a contradiction. Hence, G2 € G.

Suppose G ¢ G. Then we may assume that G; contains at least two
units and that v is not a link vertex of G;. By Observation 12, u is the vertex
at distance 2 from the link vertex in its unit in G (for otherwise the edge
joining u and the link vertex in its unit does not satisfy Observation 12).
But then the set {u,v} can easily be extended to a DDS of G that contains
two vertices from the unit of G; containing u (namely, u and the link vertex
of the unit) and three vertices from every other unit of G; and Go, whence
vx2(G) < 3n/4, a contradiction. Hence, G € G.
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