ON DOMINATION IN GRAPHS

Frank Göring
Department of Mathematics
Chemnitz University of Technology
D-09107 Chemnitz, Germany
e-mail: frank.goering@mathematik.tu-chemnitz.de
AND
Jochen Harant
Department of Mathematics
Technical University of Ilmenau
D-98684 Ilmenau, Germany
e-mail: harant@mathematik.tu-ilmenau.de

Abstract

For a finite undirected graph G on n vertices two continuous optimization problems taken over the n-dimensional cube are presented and it is proved that their optimum values equal the domination number γ of G. An efficient approximation method is developed and known upper bounds on γ are slightly improved.

Keywords: graph, domination.
2000 Mathematics Subject Classification: 05C69.

1. Introduction and Results

For terminology and notation not defined here we refer to [3]. Let $V=$ $V(G)=\{1, \ldots, n\}$ be the vertex set of an undirected graph G, and for $i \in V$, $N(i)$ be the neighbourhood of i in $G, N_{2}(i)=\left\{k \in V \mid k \in \bigcup_{j \in N(i)} N(j) \backslash\right.$ $(\{i\} \cup N(i))\}, d_{i}=|N(i)|, t_{i}=\left|N_{2}(i)\right|, \delta=\min _{i \in V} d_{i}$, and $\Delta=\max _{i \in V} d_{i}$.

A set $D \subseteq V(G)$ is a dominating set of G if $(\{i\} \cup N(i)) \cap D \neq \emptyset$ for every $i \in V$. The minimum cardinality of a dominating set of G is the domination
number γ of G. In $[7] \gamma=\min _{x_{1}, \ldots, x_{n} \in[0,1]} \sum_{i \in V}\left(x_{i}+\left(1-x_{i}\right) \prod_{j \in N(i)}\left(1-x_{j}\right)\right)$ was proved. With $x_{1}=\ldots=x_{n}=x$ we have $\gamma \leq\left(x+(1-x)^{\delta+1}\right) n \leq$ $\left(x+e^{-(\delta+1) x}\right) n$ for every $x \in[0,1]$. Minimizing $x+(1-x)^{\delta+1}$ and $x+e^{-(\delta+1) \bar{x}}$, the well-known inequalities $\gamma \leq\left(1-\frac{1}{(\delta+1)^{\frac{1}{\delta}}}+\frac{1}{(\delta+1)^{\frac{\delta+1}{\delta}}}\right) n \leq \frac{1+\ln (\delta+1)}{\delta+1} n$ (see [4, 8]) follow. Obviously, it is easily checked whether $\gamma=1$ or not. Thus, we will assume $G \in \Gamma$ in the sequel, where Γ is the set of graphs G such that each component of G has domination number greater than 1 . Without mentioning in each case, we will use $d_{i}, t_{i} \geq 1$ for $i=1, \ldots, n$ if $G \in \Gamma$. For $x_{1}, \ldots, x_{n} \in[0,1]$ let

$$
\begin{aligned}
f_{G}\left(x_{1}, \ldots, x_{n}\right)= & \sum_{i \in V}\left(x_{i}\left(1-\left(\prod_{j \in N(i)} x_{j}\right)\left(1-\prod_{k \in N_{2}(i)} x_{k}\right)\right)+\left(1-x_{i}\right) \prod_{j \in N(i)}\left(1-x_{j}\right)\right) \\
g_{G}\left(x_{1}, \ldots, x_{n}\right)= & f_{G}\left(x_{1}, \ldots, x_{n}\right) \\
& -\sum_{i \in V}\left(\frac{1}{1+d_{i}}\left(1-x_{i}\right)\left(\prod_{j \in N(i)}\left(1-x_{j}\right)\right)\left(\prod_{k \in N_{2}(i)}\left(1-x_{k}\right)\right)\right) .
\end{aligned}
$$

Theorem 1. If $G \in \Gamma$ then

$$
\begin{aligned}
\gamma & =\min _{x_{1}, \ldots, x_{n} \in[0,1]} f_{G}\left(x_{1}, \ldots, x_{n}\right)=\min _{x_{1}, \ldots, x_{n} \in[0,1]} g_{G}\left(x_{1}, \ldots, x_{n}\right) \\
& \leq \min _{x \in[0,1]} \sum_{i \in V}\left(x\left(1-x^{d_{i}}\left(1-x^{t_{i}}\right)\right)+(1-x)^{d_{i}+1}\left(1-\frac{1}{1+d_{i}}(1-x)^{t_{i}}\right)\right) \\
& \leq \min _{x \in[0,1]}\left(x\left(1-x^{\Delta}(1-x)\right)+(1-x)^{\delta+1}\left(1-\frac{1}{1+\Delta}(1-x)^{\Delta(\Delta-1)}\right)\right) n .
\end{aligned}
$$

Since DOMINATING SET is an NP-complete decision problem ([5]), it is difficult to solve the continuous optimization problem \mathcal{P} :

$$
\min _{x_{1}, \ldots, x_{n} \in[0,1]} g_{G}\left(x_{1}, \ldots, x_{n}\right) .
$$

However, if $\left(x_{1}, \ldots, x_{n}\right)$ is the solution of any approximation method for \mathcal{P}, then (see Theorem 2) we can easily find a dominating set of G of cardinality at most $g_{G}\left(x_{1}, \ldots, x_{n}\right)$.

Theorem 2. Given a graph $G \in \Gamma$ on $V=\{1, \ldots, n\}$ with maximum degree $\Delta, x_{1}, \ldots, x_{n} \in[0,1]$, there is an $O\left(\Delta^{4} n\right)$-algorithm finding a dominating set D of G with $|D| \leq g_{G}\left(x_{1}, \ldots, x_{n}\right)$.

2. Proofs

Proof of Theorem 1. For events A and B and for a random variable Z of an arbitrary random space, $P(A), P(A \mid B)$, and $E(Z)$ denote the probability of A, the conditional probability of A given B, and the expectation of Z, respectively. Let \bar{A} be the complementary event of A. We will use the well-known facts that $P(B) P(A \mid B)=P(A \cap B)=P(B)-P(\bar{A} \cap B)=$ $P(B)(1-P(\bar{A} \mid B))$ and $E\left(\left|S^{\prime}\right|\right)=\sum_{s \in S} P\left(s \in S^{\prime}\right)$ for a random subset S^{\prime} of a given finite set $S . I \subset V$ is an independent set if $N(i) \cap I=\emptyset$ for all $i \in I$. Consider fixed $x_{1}, \ldots, x_{n} \in[0,1] . X \subseteq V$ is formed by random and independent choice of $i \in V$, where $P(i \in X)=x_{i}$. Let $X^{\prime}=\{i \in X \mid N(i) \subseteq X\}$, $X^{\prime \prime}=\left\{i \in X^{\prime} \mid N(i) \cap\left(X \backslash X^{\prime}\right) \neq \emptyset\right\}, Y=\{i \in V \mid i \notin X \wedge N(i) \cap X=\emptyset\}$, $Y^{\prime}=\{i \in Y \mid N(i) \cap Y \neq \emptyset\}$, and I be a maximum independent set of the subgraph of G induced by Y^{\prime}.

Lemma 3. $\left(X \backslash X^{\prime \prime}\right) \cup(Y \backslash I)$ is a dominating set of G.
Proof. Obviously, $X^{\prime \prime} \subseteq X^{\prime} \subseteq X$ and $\left(X \backslash X^{\prime}\right) \subseteq\left(X \backslash X^{\prime \prime}\right)$. If $i \in V \backslash(X \cup Y)$ then $N(i) \cap\left(X \backslash X^{\prime}\right) \neq \emptyset$, if $i \in X^{\prime \prime}$ then again $N(i) \cap\left(X \backslash X^{\prime}\right) \neq \emptyset$, and if $i \in I$ then $N(i) \cap(Y \backslash I) \neq \emptyset$.

Lemma 4. $\gamma \leq E(|X|)-E\left(\left|X^{\prime \prime}\right|\right)+E(|Y|)-E(|I|)$.
Proof. Let D be a random dominating set of G. Because of the property of the expectation to be an average value we have $\gamma \leq E(|D|)$. With Lemma 3 and linearity of the expectation, $\gamma \leq E\left(\left|\left(X \backslash X^{\prime \prime}\right) \cup(Y \backslash I)\right|\right)=E\left(|X|-\left|X^{\prime \prime}\right|+\right.$ $|Y|-|I|)=E(|X|)-E\left(\left|X^{\prime \prime}\right|\right)+E(|Y|)-E(|I|)$ since $\left(X \backslash X^{\prime \prime}\right) \cap(Y \backslash I)=\emptyset$ 。

Lemma 5. $E(|X|)=\sum_{i \in V} x_{i}, E\left(\left|X^{\prime \prime}\right|\right)=\sum_{i \in V} x_{i}\left(\prod_{j \in N(i)} x_{j}\right)\left(1-\prod_{k \in N_{2}(i)} x_{k}\right)$,

$$
\begin{aligned}
& E(|Y|)=\sum_{i \in V}\left(1-x_{i}\right) \prod_{j \in N(i)}\left(1-x_{j}\right), \text { and } \\
& E(|I|) \geq \sum_{i \in V} \frac{1}{1+d_{i}}\left(1-x_{i}\right)\left(\prod_{j \in N(i)}\left(1-x_{j}\right)\right)\left(\prod_{k \in N_{2}(i)}\left(1-x_{k}\right)\right)
\end{aligned}
$$

Proof. $E(|X|)=\sum_{i \in V} P(i \in X)=\sum_{i \in V} x_{i}$.

$$
\begin{aligned}
& E\left(\left|X^{\prime \prime}\right|\right)=\sum_{i \in V} P\left(i \in X^{\prime \prime}\right)=\sum_{i \in V} P\left(i \in X \wedge N(i) \subseteq X \wedge N(i) \cap\left(X \backslash X^{\prime}\right) \neq \emptyset\right) \\
& =\sum_{i \in V} P(i \in X) P(N(i) \subseteq X) P\left(N(i) \cap\left(X \backslash X^{\prime}\right) \neq \emptyset \mid i \in X \wedge N(i) \subseteq X\right) \\
& =\sum_{i \in V} x_{i}\left(\prod_{j \in N(i)} x_{j}\right)\left(1-P\left(N(i) \subseteq X^{\prime} \mid i \in X \wedge N(i) \subseteq X\right)\right) \\
& =\sum_{i \in V} x_{i}\left(\prod_{j \in N(i)} x_{j}\right)\left(1-P\left(N_{2}(i) \subseteq X\right)\right)=\sum_{i \in V} x_{i}\left(\prod_{j \in N(i)} x_{j}\right)\left(1-\prod_{k \in N_{2}(i)} x_{k}\right) . \\
& E(|Y|)=\sum_{i \in V} P(i \in Y)=\sum_{i \in V} P(i \notin X) P(N(i) \cap X=\emptyset) \\
& =\sum_{i \in V}\left(1-x_{i}\right) \prod_{j \in N(i)}\left(1-x_{j}\right) .
\end{aligned}
$$

A lower bound on $|I|$ (see $[1,9,2,6]$) is given by the following inequality $|I| \geq \sum_{i \in Y^{\prime}} \frac{1}{1+d_{i}}$. For $i \in V(G)$ define the random variable Z_{i} with $Z_{i}=\frac{1}{1+d_{i}}$ if $i \in Y^{\prime}$ and $Z_{i}=0$ if $i \notin Y^{\prime}$. Hence,

$$
\begin{aligned}
& E(|I|) \geq E\left(\sum_{i \in V} Z_{i}\right)=\sum_{i \in V} E\left(Z_{i}\right)=\sum_{i \in V} \frac{1}{1+d_{i}} P\left(i \in Y^{\prime}\right) \\
& =\sum_{i \in V} \frac{1}{1+d_{i}} P(i \notin X \wedge N(i) \cap X=\emptyset \wedge N(i) \cap Y \neq \emptyset) .
\end{aligned}
$$

Because $d_{i} \geq 1, N_{2}(i) \cap X=\emptyset$ implies $N(i) \cap Y \neq \emptyset$. Hence,

$$
\begin{aligned}
& E(|I|) \geq \sum_{i \in V} \frac{1}{1+d_{i}} P\left(i \notin X \wedge N(i) \cap X=\emptyset \wedge N_{2}(i) \cap X=\emptyset\right) \\
& =\sum_{i \in V} \frac{1}{1+d_{i}} P(i \notin X) P(N(i) \cap X=\emptyset) P\left(N_{2}(i) \cap X=\emptyset\right) \\
& =\sum_{i \in V} \frac{1}{1+d_{i}}\left(1-x_{i}\right)\left(\prod_{j \in N(i)}\left(1-x_{j}\right)\right)\left(\prod_{k \in N_{2}(i)}\left(1-x_{k}\right)\right) .
\end{aligned}
$$

From Lemma 4 and Lemma 5 we have $\gamma \leq g_{G}\left(x_{1}, \ldots, x_{n}\right) \leq f_{G}\left(x_{1}, \ldots, x_{n}\right)$. Let D^{*} be a minimum dominating set of G and let $y_{i}=1$ if $i \in D^{*}$ and $y_{i}=0$ if $i \notin D^{*}$. Then $y_{i} \prod_{j \in N(i)} y_{j}=0$ and $\left(1-y_{i}\right) \prod_{j \in N(i)}\left(1-y_{j}\right)=0$ for every $i \in V, \gamma=\left|D^{*}\right|=\sum_{i \in V} y_{i}=g_{G}\left(y_{1}, \ldots, y_{n}\right)=f_{G}\left(y_{1}, \ldots, y_{n}\right)$, and the proof of Theorem 1 is complete.

Proof of Theorem 2. Given a graph H on n_{H} vertices with m_{H} edges, there is an $O\left(n_{H}+m_{H}\right)$-algorithm \mathcal{A} finding an independent set of H with cardinality at least $\sum_{y \in V(H)} \frac{1}{1+d_{H}(y)}$, where $d_{H}(y)$ is the degree of $y \in V(H)$ in H (see [2]).

First we present an algorithm that constructs a set $D \subseteq V$.

Algorithm

INPUT: a graph $G \in \Gamma$ on $V=\{1, \ldots, n\}, x_{1}, \ldots, x_{n} \in[0,1]$
OUTPUT: D
(1) For $l=1, \ldots, n$ do if $\frac{\partial g_{G}\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{l}} \geq 0$ then $x_{l}:=0$ else $x_{l}:=1$.
(2) $X:=\left\{l \in\{1, \ldots, n\} \mid x_{l}=1\right\}$. Calculate $X^{\prime \prime}, Y, Y^{\prime}$, and I using \mathcal{A}.
(3) $D:=\left(X \backslash X^{\prime \prime}\right) \cup(Y \backslash I)$.

END
Let $g^{*}=g_{G}\left(x_{1}, \ldots, x_{n}\right)$, where $\left(x_{1}, \ldots, x_{n}\right)$ is the input vector. Note that the function g_{G} is linear in each variable. Thus, in step (1), for fixed $x_{1}, \ldots, x_{l-1}, x_{l+1}, \ldots, x_{n}$ we always choose x_{l} in such a way that the value of $g_{G}\left(x_{1}, \ldots, x_{n}\right)$ is not increased. Hence, $x_{l} \in\{0,1\}$ for $l=1, \ldots, n$ and $g_{G}\left(x_{1}, \ldots, x_{n}\right) \leq g^{*}$ after step (1) of the algorithm. With Lemma 3, D is a dominating set, and with $|S|=E(|S|)$ for a deterministic set S and Lemma $5,|D| \leq g^{*}$. It is easy to see that $\frac{\partial g_{G}\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{l}}$ can be calculated in $O\left(\Delta^{4}\right)$ time. Since G has $O(\Delta n)$ edges, the algorithm runs in $O\left(\Delta^{4} n\right)$ time.

References

[1] Y. Caro, New results on the independence number (Technical Report, Tel-Aviv University, 1979).
[2] Y. Caro and Zs. Tuza, Improved lower bounds on k-independence, J. Graph Theory 15 (1991) 99-107.
[3] R. Diestel, Graph Theory, Graduate Texts in Mathematics (Springer, 1997).
[4] N. Alon, J.H. Spencer and P. Erdös, The Probabilistic Method (John Wiley and Sons, Inc. 1992), page 6.
[5] M.R. Garey and D.S. Johnson, Computers and Intractability, A Guide to the Theory of NP-Completeness (W.H. Freeman and Company, San Francisco, 1979).
[6] J. Harant, Some news about the independence number of a graph, Discuss. Math. Graph Theory 20 (2000) 71-79.
[7] J. Harant, A. Pruchnewski and M. Voigt, On dominating sets and independent sets of graphs, Combinatorics, Probability and Computing 8 (1999) 547-553.
[8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, N.Y., 1998), page 52.
[9] V.K. Wei, A lower bound on the stability number of a simple graph (Bell Laboratories Technical Memorandum 81-11217-9, Murray Hill, NJ, 1981).

Received 23 September 2003
Revised 15 June 2004

