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Abstract

For a finite undirected graph G on n vertices two continuous op-
timization problems taken over the n-dimensional cube are presented
and it is proved that their optimum values equal the domination num-
ber v of G. An efficient approximation method is developed and known
upper bounds on « are slightly improved.
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1. Introduction and Results

For terminology and notation not defined here we refer to [3]. Let V =
V(G) ={1,...,n} be the vertex set of an undirected graph G, and for i € V,
N(7) be the neighbourhood of i in G, Na(i) ={k € V | k € Ujen(i) NVU) \
({i} UN(i)}, di = [N(3)|, t; = [N2(i)], 6 = minjev d;, and A = max;ey d;.
A set D C V(QG) is a dominating set of G if ({i}UN(i))ND #  for every
1 € V. The minimum cardinality of a dominating set of G is the domination
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number y of G. In [7] v = ming, . z,e0,1] Yiev(@i+(1—m) HjEN(i)(l —x;))

was proved. With 1 = ... = x, = z we have v < (v + (1 — )% )n <
(z+e~OtD2)p for every x € [0,1]. Minimizing z+4(1—xz)°*! and z+e~ 0+,
the well-known inequalities v < (1 — —1+ + —L1)n < ngﬁﬂ)n (see

(6+1)% (0+1)75
[4, 8]) follow. Obviously, it is easily checked whether v = 1 or not. Thus,
we will assume G € I in the sequel, where I' is the set of graphs G such
that each component of G has domination number greater than 1. Without
mentioning in each case, we will use d;,t; > 1fori=1,... nif G €. For
x1,...,%y € [0,1] let

foterse) = X (1= (T o)1= T ) + 0= TL 1 - )

eV JEN(1) keNa(3) JEN(3)
ga(x1, ... xn) = fa(zl, ... xn)
1
-y (1-z)( [T a==n)( IT a-=0)).
: 1+d; el 4
ev JEN(4) keN> (i)
Theorem 1. If G € T" then
L P fa(zi,... zn) = p, i 961, Tn)

< min (x(l — a1 at)) (1 -2yt (1 1(1—;6)%))

z€l01) ey 1+d;

1
; A R O S SRRV .
< xlgl[%)l’ll] (w(l x2(1 ac)) +(1—2) (1 T (1—2x) ))n

Since DOMINATING SET is an NP-complete decision problem ([5]), it is
difficult to solve the continuous optimization problem P :

min Ti,...,Tp).
1,en€[0,1] gG( 1 n)
However, if (z1,...,x,) is the solution of any approximation method for P,

then (see Theorem 2) we can easily find a dominating set of G of cardinality
at most gg(z1,...,Ty).
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Theorem 2. Given a graph G € T on'V = {1,...,n} with mazimum degree
A, z1,...,2, € [0,1], there is an O(A*n)-algorithm finding a dominating
set D of G with |D| < ga(z1,...,2n).

2. Proofs

Proof of Theorem 1. For events A and B and for a random variable Z
of an arbitrary random space, P(A), P(A|B), and E(Z) denote the prob-
ability of A, the conditional probability of A given B, and the expectation
of Z, respectively. Let A be the complementary event of A. We will use
the well-known facts that P(B)P(A|B) = P(ANB) = P(B) — P(ANB) =
P(B)(1—P(A|B)) and E(|S’]) = Y ,eq P(s € ) for a random subset S’ of
a given finite set S. I C V' is an independent set if N(i)NI = for all i € I.
Consider fixed x1,...,z, € [0,1]. X C V is formed by random and indepen-
dent choice of i € V', where P(i € X) =z;. Let X' ={ie X | N(i) C X},
X'=LieX' | NONX\X)#£0LY={ieV|i¢g X ANGENX =0},
Y'={ieY | Ni)NY # 0}, and I be a maximum independent set of the
subgraph of G induced by Y.

Lemma 3. (X \ X")U (Y \ I) is a dominating set of G.

Proof. Obviously, X” C X' C X and (X\X') C (X\X"). If i € V\(XUY)
then N (i) N (X \ X') #0, if i € X” then again N(2) N (X \ X') # 0, and if
i €I then N(i) N (Y \I) # 0. ]

Lemma 4. v < E(|X|) — E(|X"]) + E(|Y]) — E(/1)).

Proof. Let D be a random dominating set of G. Because of the property of
the expectation to be an average value we have v < E(|D|). With Lemma 3
and linearity of the expectation, v < E(|(X\X")U(Y'\I)|) = E(|X|—|X"|+
Y| =[1]) = E(IX]) = E(IX"]) + E(IY]) = E(|]) since (X\ X")N(Y'\[]) =

|
Lemma 5. E(|X]|) = Zajz, (1X")) —Z ( H ajj)( H xk),
eV eV JEN(3) k€N (i)
BE(Y)) = (1-z) [] (1—2)), and
i€V JEN(3)

B1) =Y =) IT a-o)( I] a-w).

i€V JEN(5) k€ Na (i)
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Proof. E(|X|) =X ,cy Pi € X) =3 cy @i

E(X")=) PieX")=> Pic X AN(@E) CXANGEN(X\X)#0)
eV eV

— Y P(i € X)P(N(i) € X)P(N(i) (X \ X') #0 | i € X AN(i) C X)
i€V

=Y @i II =)0 - P(NG) S X'|i€XAN()C X))
eV JEN(i)

=S I #)0=peam <20 =S a( I1 w)(i- I ).

i€V JEN(3) 1% JEN(7) kEN2(3)

E(Y) =Y _PicY)=> P(i¢ X)P(N({i)nX =0)

eV eV

—S -2 I] -2y

eV FEN(i)

A lower bound on |I| (see [1, 9, 2, 6]) is given by the following inequality
I > Y ey ﬁ. For i € V(G) define the random variable Z; with Z; = ﬁ
ifieY and Z; =01if i ¢ Y'. Hence,

E(|I|)2E(ZZ> N E(Z Zlidip(iey’)

eV eV eV

(g XANGHNX=DAN®GE) NY #£0).

1+d

Because d; > 1, No(i) N X = () implies N (i) NY # (). Hence,

E(\I\)Zzljd.P(igéX/\N()ﬁX DA Na(i) N X = 0)
1% v

X)P(N(i) N X = 0)P(N2(i) N X = 0)

zeV

Vljdim—xi)( T a-2)( I a-a).

JEN() kEN,(4) -
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From Lemma 4 and Lemma 5 we have v < gg(x1,...,z,) < fa(z1,...,Zn).
Let D* be a minimum dominating set of G and let y; = 1 if i« € D* and
yi =01ifi ¢ D*. Then y; [[;ene) v = 0 and (1 —y;) [Ljen() (1 —y;) = 0 for
every i € V, v = [D*| = Xicvvi = 961, - - -, Un) = fa(y1, ..., yn), and the
proof of Theorem 1 is complete. [

Proof of Theorem 2. Given a graph H on njy vertices with my edges,
there is an O(ng + mpy)-algorithm A finding an independent set of H with
cardinality at least >3, cy (g where dg(y) is the degree of y € V(H)
in H (see [2]).

First we present an algorithm that constructs a set D C V.

1
1+du (y)’

Algorithm

INPUT: a graph GeT on V ={1,...,n}, x1,...,2, € [0,1]
OuTPUT: D

(1) For I =1, .. nd01fw>0thenxl—()elsexl—l
(2) X :={l € {1, Ln} o= 1} Calculate XYY’ and I using A.
(3) D= (X\ X" U(Y\ 1),

END

Let ¢* = gg(z1,...,zy), where (z1,...,x,) is the input vector. Note that
the function gg is linear in each variable. Thus, in step (1), for fixed
Ty T]—1,Ti+1,-- -, Tn We always choose z; in such a way that the value
of gg(x1,...,2,) is not increased. Hence, z; € {0,1} for [ = 1,...,n and
ga(x1,...,x,) < g* after step (1) of the algorithm. With Lemma 3, D is a
dominating set, and with |S| = E(|S]) for a deterministic set S and Lemma
5, |D| < g*. It is easy to see that %ﬂ;;“’m can be calculated in O(A?)
time. Since G has O(An) edges, the algorithm runs in O(A*n) time. |
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