CYCLE-PANCYCLISM IN BIPARTITE TOURNAMENTS II

HORTENSIA GALEANA-SÁNCHEZ

Instituto de Matemáticas, UNAM Universidad Nacional Autónoma de México Ciudad Universitaria 04510, México, D.F. MÉXICO

e-mail: hgaleana@matem.unam.mx

Abstract

Let T be a hamiltonian bipartite tournament with n vertices, γ a hamiltonian directed cycle of T, and k an even number. In this paper the following question is studied: What is the maximum intersection with γ of a directed cycle of length k contained in $T[V(\gamma)]$? It is proved that for an even k in the range $\frac{n+6}{2} \leq k \leq n-2$, there exists a directed cycle $\mathcal{C}_{h(k)}$ of length h(k), $h(k) \in \{k, k-2\}$ with $|A(\mathcal{C}_{h(k)}) \cap A(\gamma)| \geq h(k) - 4$ and the result is best possible. In a previous paper a similar result for $4 \leq k \leq \frac{n+4}{2}$ was proved.

Keywords: bipartite tournament, pancyclism.

2000 Mathematic Subject Classification: 05C20.

1. Introduction

The subject of pancyclism has been studied by several authors (e.g. [1, 2, 3, 5, 13, 15]). Three types of pancyclism have been considered. A digraph D is: pancyclic if it has directed cycles of all the possible lengths; vertex-pancyclic if given any vertex v there are directed cycles of every length containing v; and arc-pancyclic if given any arc e there are directed cycles of every length containing e.

It is well known that a hamiltonian bipartite tournament is pancyclic, and vertex-pancyclic (with only very few exceptions) but not necessarily

arc-pancyclic (see for example [3, 12, 14]). The concept of cycle-pancyclism studies the following question: Given a directed cycle γ of a digraph D, find the maximum number of arcs which a directed cycle of length k, (if such a directed cycle exists) contained in $D[V(\gamma)]$ (the subdigraph of D induced by $V(\gamma)$ has in common with γ . Cycle-pancyclism in tournaments has been studied in [6, 7, 8, 9]. In a previous paper [10] it was attempted to study cycle-pancyclism in bipartite tournaments; in fact it was proved that for an even k, $4 \le k \le \frac{n+4}{2}$ there exists a directed cycle $\mathcal{C}_{h(k)}$ of length h(k), $h(k) \in$ $\{k, k-2\}$ with $|A(\mathcal{C}_{h(k)}) \cap A(\gamma)| \geq h(k) - 3$ and the result is best possible. In this paper, the study of cycle-pancyclism in bipartite tournaments is completed. To study this question it is sufficient to consider a hamiltonian bipartite tournament where γ is a hamiltonian directed cycle (because we are looking for directed cycles of length k contained in $D[V(\gamma)]$ whose arcs intersect the arcs of γ the must possible). We will assume (without saying it explicitly in Lemmas, Theorems or Corollaries) that we are working in a hamiltonian bipartite tournament with a vertex set $V = \{0, 1, \dots, n-1\}$ and arc set A. Also we assume without loss of generality that $\gamma = (0, 1, \dots, n - 1)$ (1,0) is a hamiltonian directed cycle of T; k will be an even number; $\mathcal{C}_{h(k)}$ will denote a directed cycle of length h(k) with $h(k) \in \{k, k-2\}$ and $\mathfrak{I}(\mathfrak{C}_{h(k)}) =$ $|A(\mathcal{C}_{h(k)}) \cap A(\gamma)|$. This paper is the second part of the study on the existence of a directed cycle $\mathcal{C}_{h(k)}$ where $\mathcal{I}(\mathcal{C}_{h(k)})$ is the maximum. For general concepts we refer the reader to [4].

2. Preliminaries

A chord of a cycle C is an arc not in C with both terminal vertices in C. The length of a chord g=(u,v) of C, denoted $\ell(g)$, is equal to the length of $\langle u,C,v\rangle$ where $\langle u,C,v\rangle$ denotes the uv-directed path contained in C. We say that g is a c-chord if $\ell(g)=c$ and g=(u,v) is a -c-chord if $\ell(v,C,u)=c$. Observe that if g is a c-chord then it is also a -(n-c)-chord. All the chords considered in this paper are chords of γ , also observe that since T is bipartite all the chords of γ have odd lengths. We will denote by \mathcal{C}_k a directed cycle of length k. In what follows all notation is taken modulo n. In what follows we assume $k \geq 10$ (In [10] it was proved that for k = 4, 6, 8 there exists a directed cycle $\mathcal{C}_{h(k)}$ with $\mathcal{I}(\mathcal{C}_{h(k)}) \geq h(k) - 3$).

Observation 2.1. If n = 2k - 6, then there exists a directed cycle C_{k-2} with $J(C_{k-2}) = k - 3$.

Proof. Consider the arc between 0 and k-3; when $(0,k-3) \in A$ we have $C_{k-2} = (0,k-3) \cup \langle k-3,\gamma,0 \rangle$ a directed cycle with $\mathfrak{I}(C_{k-2}) = k-3$; when $(k-3,0) \in A$ we obtain $C_{k-2} = \langle 0,\gamma,k-3 \rangle \cup (k-3,0)$ a directed cycle with $\mathfrak{I}(C_{k-2}) = k-3$.

In view of Observation 2.1 we will assume in what follows that $k+2 \le n \le 2k-8$.

Lemma 2.2. At least one of the following properties holds:

- (i) There exists a directed cycle $C_{h(k)}$ with $\mathfrak{I}(C_{h(k)}) \geq h(k) 1$ $(h(k) \in \{k, k-2\})$.
- (ii) All the following arcs are in A: (a) Every (k-1)-chord; (b) Every (k-3)-chord.

Proof. Suppose that (i) is not true. (a) If (k-1,0) is a -(k-1)-chord, then $\mathcal{C}_k = \langle 0, \gamma, k-1 \rangle \cup (k-1,0)$ is a directed cycle with $\mathcal{I}(\mathcal{C}_k) = k-1$. (b) If (k-3,0) is a -(k-3)-chord, then $\mathcal{C}_{k-2} = \langle 0, \gamma, k-3 \rangle \cup (k-3,0)$ is a directed cycle with $\mathcal{I}(\mathcal{C}_{k-2}) = k-3$

Lemma 2.3. Let $P = (x, x+1, \ldots, \ell)$, x, ℓ even, $\ell \geq x+4$, be a directed path contained in γ , let z be odd, $x \in V - V(P)$, and $\{(x, z), (x+2, z), (z, \ell), (z, \ell-2), \ldots, (z, \ell-(a-1))\} \subseteq A$ with a odd, $1 \leq a \leq \ell-x-3$. Then there exists an index $i, x+2 \leq i \leq \ell-(a+1)$, such that $\{(i, z), (z, i+a+1)\} \subseteq A$.

Proof. Let $i \in V(P)$ be the maximum vertex in P such that $(i, z) \in A$ clearly $x + 2 \le i \le \ell - (a + 1)$ and $\{(i, z), (z, i + a + 1)\} \subseteq A$.

Lemma 2.4. If all the $(k-3), (k-1), \ldots, p$ -chords, p is odd, $k-1 \le p < n-3$ are in T, then at least one of the two following properties holds.

- (i) There exists a directed cycle C_k with $\mathfrak{I}(C_k) \geq k-3$.
- (ii) Every (p+2)-chord is in T.

Proof. We show that if (ii) is false, then (i) holds. Let (s_1, s_2) be a - (p+2)-chord and let z be odd in $\langle s_1, \gamma, s_2 \rangle - \{s_1, s_2\}$. Assume w.l.o.g. that $s_2 = 0$. Let $x = z + n - p \pmod{n}$. Observe that

$$\{(x,z),(x+2,z),\ldots,(x+p-(k-3),z)\}\subseteq A.$$

since these are the $p, p-2, \ldots, (k-3)$ -chords of γ ending in z. Similarly

(2)
$$\{(z, z+p), (z, z+p-2), \dots, (z, z+k-3)\} \subseteq A$$
.

Observe that the start points of the arcs in set (1) are consecutive inneighbors of z in γ and less than the endpoints of the arcs in set (2), which are consecutive out-neighbors of z in γ . This is because the largest start point of an arc in (1) is z + n - (k - 3) and the last endpoint of an arc in (2) is z + (k - 3) and z + (k - 3) > z + n - (k - 3) (as $n \le 2k - 8$).

Now, consider the directed path $\langle x, \gamma, z+p \rangle$. Since $x=z+n-p \pmod n$ and 2p>n it is obvious that $z \notin V(\langle x, \gamma, z+p \rangle)$. Note that the cardinality of (1) is at least 2 and the cardinality of (2) is $\frac{p-k+5}{2}$. Thus letting a=p-k+4 and $\ell=z+p$ it follows from Lemma 2.3 that there exists j, $x \leq j < z+(k-3)$ such that $\{(j,z),(z,j+a+1)\} \subseteq A$. And then $C=(s_1,s_2)\cup \langle s_2,\gamma,j\rangle \cup (j,z,j+a+1)\cup \langle j+a+1,\gamma,s_1\rangle$ is a directed cycle. In order to see that $\ell(C)=k$ note that $\ell(s_1,\gamma,s_2)=n-(p+2)$, and thus $\ell(s_2,\gamma,s_1)=p+2$. Clearly, $\ell(j,\gamma,j+a+1)=a+1$, therefore $\ell(C)=p+2-(a+1)+3=k$ and $\Im(C)=k-3$.

It follows directly from Lemmas 2.2 and 2.4 the following

Theorem 2.5. At least one of the following conditions holds.

- (i) There exists a directed cycle $\mathcal{C}_{h(k)}$ with $\mathfrak{I}(\mathcal{C}_{h(k)}) \geq h(k) 3$.
- (ii) For each p odd, $k-3 \le p \le n-3$, every p-chord of γ is in T.

3. The Main Result

In this section we prove the following

Theorem 3.1. For every k such that $\frac{n+6}{2} \le k \le n-2$, there exists a directed cycle $\mathfrak{C}_{h(k)}$ with $\mathfrak{I}(\mathfrak{C}_{h(k)}) \ge h(k) - 4$.

Proof. In view of Observation 2.1 we will assume $k \ge \frac{n+8}{2}$. It follows from Theorem 2.5 that we can assume that for each odd p, $k-3 \le p \le n-3$, every p-chord is in T; i.e., for each odd q $3 \le q \le n - (k-3)$, every (-q)-chord is in T. This assumption will be maintained in the whole proof. Let s be

the minimum integer such that γ has an s-chord. Note that $s \ge n-k+5$ (s is odd), and thus $-s \le k-5$. This is because for each odd $p, k-3 \le p \le n-3$, every p-chord is in T, and therefore for each $3 \le n-p \le n-k+3$, every (n-p)-chord is not in T. Let g=(u,v) be an s-chord of γ .

Denote by w the last vertex of $\langle v+1,\gamma,u-1\rangle$ such that there exists an arc (w,z) with $z\in \langle u+1,\gamma,v-1\rangle$. Notice that $\ell\langle u,\gamma,v\rangle\geq 7$ (because $\ell\langle u,\gamma,v\rangle=s\geq n-k+5$ and $n\geq k+2$), and thus $\langle u+1,\gamma,v-1\rangle$ has at least one vertex. Also, the vertex w is well defined because (v+2,v-1) is a (-3)-chord and hence it is in A. Hence for every vertex $x\in \langle w+1,\gamma,u-1\rangle$, every (x',x) arc with $x'\in \langle u+1,\gamma,v-1\rangle$ and $x\not\equiv x'\pmod 2$, is in A; by Definition of w. Also for any x,x' such that: $x\not\equiv x'\pmod 2$, $2\leq \ell\langle x,\gamma,x'\rangle < s$, and $\{x,x'\}\subseteq V(\langle u,\gamma,v-1\rangle)$ the arc (x',x) is in A because of the definition of s. Therefore we have the following Claims:

Claim 1. (a) For every $z_1 \in \langle z, \gamma, v - 1 \rangle$ and $u_1 \in \langle u, \gamma, z - 1 \rangle$ such that $u_1 \not\equiv z_1 \pmod{2}$ and $\ell \langle u_1, \gamma, z_1 \rangle \geq 2$, it holds $(z_1, u_1) \in A$.

(b) For every $u_2 \in \langle u+1, \gamma, v-1 \rangle$ and $w_1 \in \langle w+1, \gamma, u \rangle$ such that $w_1 \not\equiv u_2 \pmod{2}$ and $\ell(w_1, \gamma, u_2) \geq 2$, it holds $(u_2, w_1) \in A$.

As a direct consequence we have the following Claim.

Claim 2. (a) If $z_1 \in \langle z, \gamma, v - 1 \rangle$ and $w_1 \in \langle w + 1, \gamma, u \rangle$ such that $z_1 \not\equiv w_1 \pmod{2}$ and $\ell \langle w_1, \gamma, z_1 \rangle \geq 2$, then

$$\mathfrak{C}^1 = (z_1, w_1) \cup \langle w_1, \gamma, u \rangle \cup (u, v) \cup \langle v, \gamma, w \rangle \cup (w, z) \cup \langle z, \gamma, z_1 \rangle$$

is a directed cycle of T of length m with $\mathfrak{I}(\mathfrak{C}^1) = m - 3$.

(b) If $z_1 \in \langle z, \gamma, v-1 \rangle$, $w_1 \in \langle w+1, \gamma, u \rangle$, $u_1 \in \langle u+1, \gamma, z-1 \rangle$ and $u_2 \in \langle u_1, \gamma, z-1 \rangle$ such that: $u_1 \not\equiv z_1 \pmod{2}$; $\ell \langle u_1, \gamma, z_1 \rangle \geq 2$, $w_1 \not\equiv u_2 \pmod{2}$ and $\ell \langle w_1, \gamma, u_2 \rangle \geq 2$, then

$$\mathfrak{C}^2 = (z_1, u_1) \cup \langle u_1, \gamma, u_2 \rangle \cup (u_2, w_1) \cup \langle w_1, \gamma, u \rangle$$
$$\cup (u, v) \cup \langle v, \gamma, w \rangle \cup (w, z) \cup \langle z, \gamma, z_1 \rangle$$

is a directed cycle of length q with $\mathfrak{I}(\mathfrak{C}^2) = q - 4$.

Observe that \mathcal{C}^2 is a directed cycle because $\langle u+1, \gamma, v-1 \rangle$ is non-empty, and because $z \neq u_2, u \neq u_1, w \neq w_1$ and $v \neq z_1$. A similar observation holds for \mathcal{C}^1 .

We proceed to prove the existence of a directed cycle of length k intersecting γ in at least k-4 arcs. We split the problem into several cases according to the position of z in $\langle u+1,\gamma,v-1\rangle$ and according to $\ell\langle u+1,\gamma,v-1\rangle$. We are able to use constructions equal or similar to \mathfrak{C}^1 or \mathfrak{C}^2 . Consider the path $\alpha=(u,v)\cup\langle v,\gamma,w\rangle\cup(w,z)$, and let $r=k-\ell(\alpha)$. We now extend α to a directed cycle $\mathfrak{C}_{h(k)}$ with $\mathfrak{I}(\mathfrak{C}_{h(k)})\geq h(k)-4$. Observe that since $\ell\langle v,\gamma,u\rangle=n-s\leq k-5$ (because $s\geq n-k+5$) it follows that $\ell\langle v,\gamma,u-1\rangle\leq k-6$ and $\ell(\alpha)\leq k-4$; hence $r\geq 4$.

Case 1. $\ell\langle w, \gamma, u \rangle - 1 + \ell\langle z, \gamma, v \rangle - 1 \ge r - 1 > 0$. Let r_1 and r_2 be such that $r_1 + r_2 = r - 1$, $0 \le r_1 \le \ell\langle w, \gamma, u \rangle - 1$, $0 \le r_2 \le \ell\langle z, \gamma, v \rangle - 1$, $w_1 = u - r_1$ and $z_1 = z + r_2$.

The proof that $(z_1, w_1) \in A$ is as follows:

First, we prove that $\ell\langle w_1, \gamma, z_1 \rangle \geq 2$. We have that $\ell\langle w_1, \gamma, z_1 \rangle = z + r_2 - (u - r_1) = z - u + r - 1$, since $r_1 + r_2 = r - 1$; the definition of z implies $z - u \geq 1$, and therefore $z - u + r - 1 \geq r \geq 4$.

Now we prove that $z_1 \not\equiv w_1 \pmod{2}$ by considering two possible cases: When $\ell(\alpha)$ is odd we have: r is odd (because $r = k - \ell(\alpha)$, and k even), r-1 is even, $r_1 = r_2 \pmod{2}$ (because $r_1 + r_2 = r-1$), and consecuently $r_2 = -r_1 \pmod{2}$ (Notice $r_1 \equiv -r_1 \pmod{2}$); moreover, $\ell\langle v, \gamma, w \rangle$ is odd which implies $\ell\langle z, \gamma, v \rangle$ is even (Notice that since (w, z) is a chord we have $\ell\langle w, \gamma, z \rangle$ is odd and $\ell\langle z, \gamma, w \rangle$ is odd and therefore $\ell\langle u, \gamma, z \rangle$ is odd (because $\ell\langle u, \gamma, v \rangle$ is odd); so we have $u \not\equiv z \pmod{2}$, we conclude $u - r_1 \not\equiv z + r_2 \pmod{2}$ (because $u - r_1 \equiv z + r_2 \pmod{2}$ implies $u \equiv z \pmod{2}$ as $r_2 \equiv -r_1 \pmod{2}$). When $\ell(\alpha)$ is even we have: r is even, r-1 is odd, $r_1 \not\equiv r_2 \pmod{2}$, $r_2 \not\equiv -r_1 \pmod{2}$; moreover, $\ell\langle v, \gamma, w \rangle$ is even, $\ell\langle z, \gamma, v \rangle$ is odd, $\ell\langle u, \gamma, z \rangle$ is even; so we have $u \equiv z \pmod{2}$ and since $r_2 \not\equiv -r_1$ we conclude $u - r_1 \not\equiv z + r_2 \pmod{2}$. So in any case we have $u - r_1 \not\equiv z + r_2 \pmod{2}$.

It follows from Claim 2 that \mathcal{C}^1 is a directed cycle of length $\ell(\alpha) + r_1 + r_2 + 1 = \ell(\alpha) + r = k$ with $\mathfrak{I}(\mathcal{C}^1) = k - 3$.

Case 2. $\ell \langle w, \gamma, u \rangle - 1 + \ell \langle z, \gamma, v \rangle - 1 < r - 1$. Observe that $\ell \langle w, \gamma, u \rangle - 1 + \ell \langle z, \gamma, v \rangle - 1 + \ell \langle u, \gamma, z \rangle - 1 = n - \ell(\alpha) - 1 > 1$

 $k - \ell(\alpha) = r$. Thus $\ell\langle u, \gamma, z \rangle - 1 \ge r - (\ell\langle w, \gamma, u \rangle - 1 + \ell\langle z, \gamma, v \rangle - 1) + 1$ From the hyphotesis of Case 2, $\ell\langle u, \gamma, z \rangle \ge 4$.

Let $r_3 = r - (\ell \langle w, \gamma, u \rangle - 1 + \ell \langle z, \gamma, v \rangle - 1) - 2$. It follows from the hyphotesis of Case 2 that $0 \le r_3 < \ell \langle u, \gamma, z \rangle - 1$.

Denote: $w_1 = w + 1$, $u_1 = u + 1$, $u_2 = u + r_3 + 1 = u_1 + r_3$ and $z_1 = v - 1$.

We have that $\ell\langle u_1, \gamma, z_1 \rangle = v - 1 - u - 1 = v - u - 2 \ge 2$. The last equality follows because $\ell\langle u, \gamma, v \rangle = s \ge n - k + 5$ and $k \le n - 2$, and hence $\ell\langle u, \gamma, v \rangle \ge 7$. So $\ell\langle u_1, \gamma, z_1 \rangle \ge 2$ and the fact $u_1 \not\equiv z_1 \pmod{2}$ (because $(u, v) \in A$ implies $u + 1 \not\equiv v - 1 \pmod{2}$ (as $1 \equiv -1 \pmod{2}$).

Hence $(z_1, u_1) \in A$.

Now $\ell\langle w_1, \gamma, u_2 \rangle = u + r_3 + 1 - w - 1 = u - w + r_3$. Since by Definition $u - w \ge 1$ and $r_3 \ge 0$; it is sufficient to consider two possibilities: $u_2 - w_1 \ge 2$ and $u_2 - w_1 = 1$.

Case 2.a. $\ell\langle w_1, \gamma, u_2 \rangle \geq 2$.

In this case we only need to prove that $w_1 \not\equiv u_2 \pmod{2}$ in order to have $(u_2,w_1) \in A$. Since $w \not\equiv z \pmod{2}$ (because $(w,z) \in A$), and $w_1 = w+1$ it suffices to prove $\ell\langle u_2,\gamma,z\rangle$ is odd. We proceed by contradiction; suppose $\ell\langle u_2,\gamma,z\rangle$ is even and consider the two possible cases: When $\ell(\alpha)$ is odd we have r is odd, r-2 is odd, and $\ell\langle v,\gamma,w\rangle$ is odd. Moreover, since $\ell\langle v,\gamma,w\rangle$ is odd we have $\ell\langle z,\gamma,z_1\rangle$ is odd (because $z_1=v-1$ and $\ell\langle z,\gamma,w\rangle$ is odd as $(w,z)\in A$); now $\ell\langle u_1,\gamma,u_2\rangle$ is even (Notice $\ell\langle u_1,\gamma,z_1\rangle$ is odd because $(z_1,u_1)\in A$) and $\ell\langle w_1,\gamma,u\rangle$ is odd (Notice $\ell\langle w,\gamma,z\rangle$ is odd and $\ell\langle u_1,\gamma,z\rangle$ is even), so we obtain $\ell\langle w_1,\gamma,u\rangle+\ell\langle u_1,\gamma,u_2\rangle+\ell\langle z,\gamma,z_1\rangle=\ell\langle w,\gamma,u\rangle-1+r_3+\ell\langle z,\gamma,v\rangle-1=r-2$ is odd; a contradiction. The case when $\ell(\alpha)$ is even is completely analogous (by interchanging even with odd).

We conclude $(u_2, w_1) \in A$ and by Claim 2 $\mathcal{C}_q = \mathcal{C}^2$ is a directed cycle with $\mathcal{I}(\mathcal{C}^2) = q - 4$. Furthermore, q = k since by construction $\ell(\mathcal{C}^2) = \ell(\alpha) + r = k$.

We now divide the remaining case of $u_2 - w_1 = 1$ into two subcases. In both the following holds: $u - w + r_3 = 1$ (because $u_2 - w_1 = 1$), w = u - 1, $r_3 = 0$, $u = w_1$ and $u_2 = u_1 = u + 1$. Also, by Definition of r_3 , $r = \ell \langle w, \gamma, u \rangle + \ell \langle z, \gamma, v \rangle$.

Case 2.b.1. $u_2 - w_1 = 1$ and $z \le z_1 - 1$.

Notice that $\ell\langle u, \gamma, z_1 - 1 \rangle = \ell\langle u, \gamma, v \rangle - 2 \ge 3$. (because $s \ge 5$). Moreover, since $u \not\equiv v \pmod{2}$ (as $(u, v) \in A$) we have $u \not\equiv z_1 - 1 = v - 2 \pmod{2}$. Thus $(z_1 - 1, u) \in A$, and the fact $z \le z_1 - 1$ implies $C_q = \alpha \cup \langle z, \gamma, z_1 - 1 \rangle \cup (z_1 - 1, u)$ is a directed cycle of length q with $\Im(C_q) = q - 3$.

Now we prove q=k-2; observe that r=u-w+v-z, and since w=u-1 and $v=z_1+1$ we obtain $r=z_1-z+2$ and $z_1-1-z=r-3$. Thus $\ell(C_q)=\ell(\alpha)+r-3+1=\ell(\alpha)+r-2=k-2$.

We conclude the proof of Theorem with the next subcase.

Case 2.b.2. $u_2 - w_1 = 1$ and $z = z_1 = v - 1$.

From $r_3 = 0$, w = u - 1, z = v - 1 and $r = \ell\langle w, \gamma, u \rangle + \ell\langle z, \gamma, v \rangle$ it follows that r = 2, thus $\ell(\alpha) = k - r = k - 2$. Since $\ell\langle v, \gamma, w \rangle = \ell(\alpha) - 2 = k - 4$ and w = u - 1 we have $\ell\langle v, \gamma, u \rangle = k - 3$ and hence $\mathfrak{C}_{k-2} = \langle v, \gamma, u \rangle \cup (u, v)$ is a directed cycle of length k - 2 with $\mathfrak{I}(\mathfrak{C}_{k-2}) = k - 3$.

4. Remarks

In this section it is proved that the hyphotesis of Theorem 3.1 are tight, and the result is best possible.

Definition 4.1 [10]. A digraph D with vertex set V is called cyclically p-partite complete $(p \ge 3)$ provided one can partition $V = V_0 \cup V_1 \cup \cdots \cup V_{p-1}$ so that (u, v) is an arc of D if and only if $u \in V_i$, $v \in V_{i+1}$ (notation modulo p).

Remark 4.2 [10]. The cyclically 4-partite complete digraph T_4 is a bipartite tournament and clearly, every directed cycle of T_4 has length $\equiv 0 \pmod{4}$. So for k = 4m + 2, T_4 has no directed cycles of length k and for k = 4m, T_4 has no directed cycles of length k - 2.

Remark 4.3. For $n \geq 6$, $k \geq 6$, such that $n \leq 2k-8$, there exits a bipartite hamiltonian tournament T_n with no directed cycles $\mathcal{C}_{h(k)}$ with $\mathcal{I}(\mathcal{C}_{h(k)}) \geq h(k) - 3$. (recall $h(k) \in \{k, k-2\}$).

Proof. Define T_n as follows:

$$A(T_n) = \{(i, i+1) \mid i \in \{0, 1, \dots, n-1\}\}\$$

$$\cup \left\{(i, i+j) \mid j \in \left\{\frac{n}{2} + 1, \frac{n}{2} + 3, \dot{s}, n-3\right\}\right\}.$$

Notice that $n \equiv 0 \pmod{4}$, otherwise the arc (i, i + j) is not defined.

Consider a directed cycle $\mathcal{C}_{h(k)}$ of length h(k), $h(k) \in \{k, k-2\}$. Observe that the definition of T_n and the fact $n \leq 2k-8$ imply $\mathfrak{I}(\mathcal{C}_{h(k)}) < h(k)-2$. We prove that $\mathfrak{I}(\mathcal{C}_{h(k)}) < h(k)-3$ by showing that for any directed cycle \mathfrak{C} with $\mathfrak{I}(\mathfrak{C}) = k-3$, it holds $\ell(\mathfrak{C}) \leq k-4$.

Let $f_1 = (x_1, x_2)$, $f_2 = (x_3, x_4)$, and $f_3 = (x_5, x_6)$ be the three arcs of \mathcal{C} not in γ . Hence without loss of generality

$$\mathfrak{C} = (x_1, x_2) \cup \langle x_2, \gamma, x_3 \rangle \cup (x_3, x_4) \cup \langle x_4, \gamma, x_5 \rangle \cup (x_5, x_6) \cup \langle x_6, \gamma, x_1 \rangle.$$

By the definition of T_n it follows that $\ell(f_i) \geq \frac{n}{2} + 1$, for each $i \in \{1, 2, 3\}$. On the other hand,

$$\ell(\mathcal{C}) = \ell\langle x_2, \gamma, x_1 \rangle + \ell\langle x_6, \gamma, x_5 \rangle - \ell\langle x_3, \gamma, x_4 \rangle + 3$$

$$= n - \ell(f_1) + n - \ell(f_3) - \ell(f_2) + 3$$

$$\leq \frac{n}{2} - 1 + \frac{n}{2} - 1 - \frac{n}{2} - 1 + 3$$

$$= \frac{n}{2}$$

Therefore $\ell(\mathcal{C}) \leq k-4$, since $n \leq 2k-8$.

Acknowledgement

The author whishes to thank the anonymous referees for a through review and useful suggestions.

References

- [1] B. Alspach, Cycles of each length in regular tournaments, Canadian Math. Bull. 10 (1967) 283–286.
- [2] L.W. Beineke, A tour through tournaments or bipartite and ordinary tournaments: A comparative survey. J. London Math. Soc. Lect. Notes Ser. **52** (1981) 41–55.
- [3] L.W. Beineke and V. Little, *Cycles in bipartite tournaments*, J. Combin. Theory (B) **32** (1982) 140–145.
- [4] C. Berge, Graphs and hypergraphs (North-Holland, Amsterdam, 1976).
- [5] J.C. Bermond and C. Thomasen, Cycles in digraphs, A survey, J. Graph Theory 5 (1981) 145–147.
- [6] H. Galeana-Sánchez and S. Rajsbaum, *Cycle-Pancyclism in Tournaments* I, Graphs and Combinatorics **11** (1995) 233–243.
- [7] H. Galeana-Sánchez and S. Rajsbaum, *Cycle-Pancyclism in Tournaments* II, Graphs and Combinatorics **12** (1996) 9–16.
- [8] H. Galeana-Sánchez and S. Rajsbaum, *Cycle-Pancyclism in Tournaments* III, Graphs and Combinatorics **13** (1997) 57–63.
- [9] H. Galeana-Sánchez and S. Rajsbaum, A Conjecture on Cycle-Pancyclism in Tournaments, Discuss. Math. Graph Theory 18 (1998) 243–251.

- [10] H. Galeana-Sanchez, Cycle-Pancyclism in Bipartite Tournaments I, Discuss. Math. Graph Theory 24 (2004) 277–290.
- [11] G. Gutin, Cycles and paths in semicomplete multipartite digraphs, theorems and algorithms: A survey, J. Graph Theory 19 (1995) 481–505.
- [12] R. Häggkvist and Y. Manoussakis, Cycles and paths in bipartite tournaments with spanning configurations, Combinatorica 9 (1989) 33–38.
- [13] L. Volkmann, Cycles in multipartite tournaments, results and problems, Discrete Math. 245 (2002) 19–53.
- [14] C.Q. Zhang, Vertex even-pancyclicity in bipartite tournaments, J. Nanjing Univ. Math. Biquart 1 (1981) 85–88.
- [15] K.M. Zhang and Z.M. Song, Cycles in digraphs, a survey, J. Nanjing Univ., Nat. Sci. Ed. 27 (1991) 188–215.

Received 10 September 2003 Revised 30 April 2004