CYCLE-PANCYCLISM IN BIPARTITE TOURNAMENTS II

Hortensia Galeana-Sánchez
Instituto de Matemáticas, UNAM
Universidad Nacional Autónoma de México
Ciudad Universitaria
04510, México, D.F. MÉXICO
e-mail: hgaleana@matem.unam.mx

Abstract

Let T be a hamiltonian bipartite tournament with n vertices, γ a hamiltonian directed cycle of T, and k an even number. In this paper the following question is studied: What is the maximum intersection with γ of a directed cycle of length k contained in $T[V(\gamma)]$? It is proved that for an even k in the range $\frac{n+6}{2} \leq k \leq n-2$, there exists a directed cycle $\mathcal{C}_{h(k)}$ of length $h(k), h(k) \in\{k, k-2\}$ with $\left|A\left(\mathcal{C}_{h(k)}\right) \cap A(\gamma)\right| \geq$ $h(k)-4$ and the result is best possible. In a previous paper a similar result for $4 \leq k \leq \frac{n+4}{2}$ was proved.

Keywords: bipartite tournament, pancyclism.
2000 Mathematic Subject Classification: 05C20.

1. Introduction

The subject of pancyclism has been studied by several authors (e.g. [1, 2, 3, $5,13,15]$). Three types of pancyclism have been considered. A digraph D is: pancyclic if it has directed cycles of all the possible lengths; vertex-pancyclic if given any vertex v there are directed cycles of every length containing v; and arc-pancyclic if given any arc e there are directed cycles of every length containing e.

It is well known that a hamiltonian bipartite tournament is pancyclic, and vertex-pancyclic (with only very few exceptions) but not necessarily
arc-pancyclic (see for example $[3,12,14]$). The concept of cycle-pancyclism studies the following question: Given a directed cycle γ of a digraph D, find the maximum number of arcs which a directed cycle of length k, (if such a directed cycle exists) contained in $D[V(\gamma)]$ (the subdigraph of D induced by $V(\gamma)$) has in common with γ. Cycle-pancyclism in tournaments has been studied in $[6,7,8,9]$. In a previous paper [10] it was attempted to study cycle-pancyclism in bipartite tournaments; in fact it was proved that for an even $k, 4 \leq k \leq \frac{n+4}{2}$ there exists a directed cycle $\mathcal{C}_{h(k)}$ of length $h(k), h(k) \in$ $\{k, k-2\}$ with $\left|A\left(\mathcal{C}_{h(k)}\right) \cap A(\gamma)\right| \geq h(k)-3$ and the result is best possible. In this paper, the study of cycle-pancyclism in bipartite tournaments is completed. To study this question it is sufficient to consider a hamiltonian bipartite tournament where γ is a hamiltonian directed cycle (because we are looking for directed cycles of length k contained in $D[V(\gamma)]$ whose arcs intersect the arcs of γ the must possible). We will assume (without saying it explicitly in Lemmas, Theorems or Corollaries) that we are working in a hamiltonian bipartite tournament with a vertex set $V=\{0,1, \ldots, n-1\}$ and arc set A. Also we assume without loss of generality that $\gamma=(0,1, \ldots, n-$ $1,0)$ is a hamiltonian directed cycle of $T ; k$ will be an even number; $\mathcal{C}_{h(k)}$ will denote a directed cycle of length $h(k)$ with $h(k) \in\{k, k-2\}$ and $\mathcal{J}\left(\mathcal{C}_{h(k)}\right)=$ $\left|A\left(\mathcal{C}_{h(k)}\right) \cap A(\gamma)\right|$. This paper is the second part of the study on the existence of a directed cycle $\mathfrak{C}_{h(k)}$ where $\mathcal{J}\left(\mathcal{C}_{h(k)}\right)$ is the maximum. For general concepts we refer the reader to [4].

2. Preliminaries

A chord of a cycle C is an arc not in C with both terminal vertices in C. The length of a chord $g=(u, v)$ of C, denoted $\ell(g)$, is equal to the length of $\langle u, C, v\rangle$ where $\langle u, C, v\rangle$ denotes the $u v$-directed path contained in C. We say that g is a c-chord if $\ell(g)=c$ and $g=(u, v)$ is a $-c$-chord if $\ell\langle v, C, u\rangle=c$. Observe that if g is a c-chord then it is also a $-(n-c)$-chord. All the chords considered in this paper are chords of γ, also observe that since T is bipartite all the the chords of γ have odd lengths. We will denote by \mathcal{C}_{k} a directed cycle of length k. In what follows all notation is taken modulo n. In what follows we assume $k \geq 10$ (In [10] it was proved that for $k=4,6,8$ there exists a directed cycle $\mathcal{C}_{h(k)}$ with $\left.\mathcal{J}\left(\mathcal{C}_{h(k)}\right) \geq h(k)-3\right)$.

Observation 2.1. If $n=2 k-6$, then there exists a directed cycle \mathcal{C}_{k-2} with $\mathcal{J}\left(\mathcal{C}_{k-2}\right)=k-3$.

Proof. Consider the arc between 0 and $k-3$; when $(0, k-3) \in A$ we have $\mathcal{C}_{k-2}=(0, k-3) \cup\langle k-3, \gamma, 0\rangle$ a directed cycle with $\mathcal{J}\left(\mathcal{C}_{k-2}\right)=k-3$; when $(k-3,0) \in A$ we obtain $\mathfrak{C}_{k-2}=\langle 0, \gamma, k-3\rangle \cup(k-3,0)$ a directed cycle with $\mathcal{J}\left(\mathrm{C}_{k-2}\right)=k-3$.

In view of Observation 2.1 we will assume in what follows that $k+2 \leq n \leq$ $2 k-8$.

Lemma 2.2. At least one of the following properties holds:
(i) There exists a directed cycle $\mathfrak{C}_{h(k)}$ with $\mathcal{J}\left(\mathfrak{C}_{h(k)}\right) \geq h(k)-1(h(k) \in$ $\{k, k-2\})$.
(ii) All the following arcs are in A: (a) Every ($k-1$)-chord; (b) Every ($k-3$)-chord.

Proof. Suppose that (i) is not true. (a) If $(k-1,0)$ is a $-(k-1)$-chord, then $\mathfrak{C}_{k}=\langle 0, \gamma, k-1\rangle \cup(k-1,0)$ is a directed cycle with $\mathcal{J}\left(\mathrm{C}_{k}\right)=k-1$. (b) If $(k-3,0)$ is a $-(k-3)$-chord, then $\mathfrak{C}_{k-2}=\langle 0, \gamma, k-3\rangle \cup(k-3,0)$ is a directed cycle with $\mathcal{J}\left(\mathrm{C}_{k-2}\right)=k-3$

Lemma 2.3. Let $P=(x, x+1, \ldots, \ell), x, \ell$ even, $\ell \geq x+4$, be a directed path contained in γ, let z be odd, $x \in V-V(P)$, and $\{(x, z),(x+2, z),(z, \ell)$, $(z, \ell-2), \ldots,(z, \ell-(a-1))\} \subseteq A$ with a odd, $1 \leq a \leq \ell-x-3$. Then there exists an index $i, x+2 \leq i \leq \ell-(a+1)$, such that $\{(i, z),(z, i+a+1)\} \subseteq A$.

Proof. Let $i \in V(P)$ be the maximum vertex in P such that $(i, z) \in A$ clearly $x+2 \leq i \leq \ell-(a+1)$ and $\{(i, z),(z, i+a+1)\} \subseteq A$.

Lemma 2.4. If all the $(k-3),(k-1), \ldots, p$-chords, p is odd, $k-1 \leq p<n-3$ are in T, then at least one of the two following properties holds.
(i) There exists a directed cycle \mathfrak{C}_{k} with $\mathcal{J}\left(\mathfrak{C}_{k}\right) \geq k-3$.
(ii) Every $(p+2)$-chord is in T.

Proof. We show that if (ii) is false, then (i) holds. Let $\left(s_{1}, s_{2}\right)$ be $a-(p+2)$ chord and let z be odd in $\left\langle s_{1}, \gamma, s_{2}\right\rangle-\left\{s_{1}, s_{2}\right\}$. Assume w.l.o.g. that $s_{2}=0$. Let $x=z+n-p(\bmod n)$. Observe that

$$
\begin{equation*}
\{(x, z),(x+2, z), \ldots,(x+p-(k-3), z)\} \subseteq A \tag{1}
\end{equation*}
$$

since these are the $p, p-2, \ldots,(k-3)$-chords of γ ending in z. Similarly

$$
\begin{equation*}
\{(z, z+p),(z, z+p-2), \ldots,(z, z+k-3)\} \subseteq A \tag{2}
\end{equation*}
$$

Observe that the start points of the arcs in set (1) are consecutive inneighbors of z in γ and less than the endpoints of the arcs in set (2), which are consecutive out-neighbors of z in γ. This is because the largest start point of an arc in (1) is $z+n-(k-3)$ and the last endpoint of an arc in (2) is $z+(k-3)$ and $z+(k-3)>z+n-(k-3)$ (as $n \leq 2 k-8)$.

Now, consider the directed path $\langle x, \gamma, z+p\rangle$. Since $x=z+n-p(\bmod n)$ and $2 p>n$ it is obvious that $z \notin V(\langle x, \gamma, z+p\rangle)$. Note that the cardinality of (1) is at least 2 and the cardinality of (2) is $\frac{p-k+5}{2}$. Thus letting $a=$ $p-k+4$ and $\ell=z+p$ it follows from Lemma 2.3 that there exists j, $x \leq j<z+(k-3)$ such that $\{(j, z),(z, j+a+1)\} \subseteq A$. And then $C=\left(s_{1}, s_{2}\right) \cup\left\langle s_{2}, \gamma, j\right\rangle \cup(j, z, j+a+1) \cup\left\langle j+a+1, \gamma, s_{1}\right\rangle$ is a directed cycle. In order to see that $\ell(C)=k$ note that $\ell\left\langle s_{1}, \gamma, s_{2}\right\rangle=n-(p+2)$, and thus $\ell\left\langle s_{2}, \gamma, s_{1}\right\rangle=p+2$. Clearly, $\ell\langle j, \gamma, j+a+1\rangle=a+1$, therefore $\ell(C)=p+2-(a+1)+3=k$ and $\mathcal{J}(C)=k-3$.
It follows directly from Lemmas 2.2 and 2.4 the following
Theorem 2.5. At least one of the following conditions holds.
(i) There exists a directed cycle $\mathfrak{C}_{h(k)}$ with $\mathcal{J}\left(\mathfrak{C}_{h(k)}\right) \geq h(k)-3$.
(ii) For each p odd, $k-3 \leq p \leq n-3$, every p-chord of γ is in T.

3. The Main Result

In this section we prove the following
Theorem 3.1. For every k such that $\frac{n+6}{2} \leq k \leq n-2$, there exists a directed cycle $\mathfrak{C}_{h(k)}$ with $\mathcal{J}\left(\mathfrak{C}_{h(k)}\right) \geq h(k)-4$.

Proof. In view of Observation 2.1 we will assume $k \geq \frac{n+8}{2}$. It follows from Theorem 2.5 that we can assume that for each odd $p, k-3 \leq p \leq n-3$, every p-chord is in T; i.e., for each odd $q 3 \leq q \leq n-(k-3)$, every $(-q)$-chord is in T. This assumption will be maintained in the whole proof. Let s be
the minimum integer such that γ has an s-chord. Note that $s \geq n-k+5$ (s is odd), and thus $-s \leq k-5$. This is because for each odd $p, k-3 \leq p \leq$ $n-3$, every p-chord is in T, and therefore for each $3 \leq n-p \leq n-k+3$, every $(n-p)$-chord is not in T. Let $g=(u, v)$ be an s-chord of γ.

Denote by w the last vertex of $\langle v+1, \gamma, u-1\rangle$ such that there exists an $\operatorname{arc}(w, z)$ with $z \in\langle u+1, \gamma, v-1\rangle$. Notice that $\ell\langle u, \gamma, v\rangle \geq 7$ (because $\ell\langle u, \gamma, v\rangle=s \geq n-k+5$ and $n \geq k+2)$, and thus $\langle u+1, \gamma, v-1\rangle$ has at least one vertex. Also, the vertex w is well defined because $(v+2, v-1)$ is a (-3) chord and hence it is in A. Hence for every vertex $x \in\langle w+1, \gamma, u-1\rangle$, every $\left(x^{\prime}, x\right)$ arc with $x^{\prime} \in\langle u+1, \gamma, v-1\rangle$ and $x \not \equiv x^{\prime}(\bmod 2)$, is in A; by Definition of w. Also for any x, x^{\prime} such that: $x \not \equiv x^{\prime}(\bmod 2), 2 \leq \ell\left\langle x, \gamma, x^{\prime}\right\rangle<s$, and $\left\{x, x^{\prime}\right\} \subseteq V(\langle u, \gamma, v-1\rangle)$ the $\operatorname{arc}\left(x^{\prime}, x\right)$ is in A because of the definition of s. Therefore we have the following Claims:

Claim 1. (a) For every $z_{1} \in\langle z, \gamma, v-1\rangle$ and $u_{1} \in\langle u, \gamma, z-1\rangle$ such that $u_{1} \not \equiv z_{1}(\bmod 2)$ and $\ell\left\langle u_{1}, \gamma, z_{1}\right\rangle \geq 2$, it holds $\left(z_{1}, u_{1}\right) \in A$.
(b) For every $u_{2} \in\langle u+1, \gamma, v-1\rangle$ and $w_{1} \in\langle w+1, \gamma, u\rangle$ such that $w_{1} \not \equiv u_{2}(\bmod 2)$ and $\ell\left\langle w_{1}, \gamma, u_{2}\right\rangle \geq 2$, it holds $\left(u_{2}, w_{1}\right) \in A$.

As a direct consequence we have the following Claim.
Claim 2. (a) If $z_{1} \in\langle z, \gamma, v-1\rangle$ and $w_{1} \in\langle w+1, \gamma, u\rangle$ such that $z_{1} \not \equiv$ $w_{1}(\bmod 2)$ and $\ell\left\langle w_{1}, \gamma, z_{1}\right\rangle \geq 2$, then

$$
\mathfrak{C}^{1}=\left(z_{1}, w_{1}\right) \cup\left\langle w_{1}, \gamma, u\right\rangle \cup(u, v) \cup\langle v, \gamma, w\rangle \cup(w, z) \cup\left\langle z, \gamma, z_{1}\right\rangle
$$

is a directed cycle of T of length m with $\mathcal{J}\left(\mathcal{C}^{1}\right)=m-3$.
(b) If $z_{1} \in\langle z, \gamma, v-1\rangle, w_{1} \in\langle w+1, \gamma, u\rangle, u_{1} \in\langle u+1, \gamma, z-1\rangle$ and $u_{2} \in$ $\left\langle u_{1}, \gamma, z-1\right\rangle$ such that: $u_{1} \not \equiv z_{1}(\bmod 2) ; \ell\left\langle u_{1}, \gamma, z_{1}\right\rangle \geq 2, w_{1} \not \equiv u_{2}(\bmod 2)$ and $\ell\left\langle w_{1}, \gamma, u_{2}\right\rangle \geq 2$, then

$$
\begin{aligned}
\mathcal{C}^{2}= & \left(z_{1}, u_{1}\right) \cup\left\langle u_{1}, \gamma, u_{2}\right\rangle \cup\left(u_{2}, w_{1}\right) \cup\left\langle w_{1}, \gamma, u\right\rangle \\
& \cup(u, v) \cup\langle v, \gamma, w\rangle \cup(w, z) \cup\left\langle z, \gamma, z_{1}\right\rangle
\end{aligned}
$$

is a directed cycle of length q with $\mathcal{J}\left(\mathrm{C}^{2}\right)=q-4$.
Observe that \mathcal{C}^{2} is a directed cycle because $\langle u+1, \gamma, v-1\rangle$ is non-empty, and because $z \neq u_{2}, u \neq u_{1}, w \neq w_{1}$ and $v \neq z_{1}$. A similar observation holds for \mathcal{C}^{1}.

We proceed to prove the existence of a directed cycle of length k intersecting γ in at least $k-4$ arcs. We split the problem into several cases according to the position of z in $\langle u+1, \gamma, v-1\rangle$ and according to $\ell\langle u+1, \gamma, v-1\rangle$. We are able to use constructions equal or similar to \mathcal{C}^{1} or \mathcal{C}^{2}. Consider the path $\alpha=(u, v) \cup\langle v, \gamma, w\rangle \cup(w, z)$, and let $r=k-\ell(\alpha)$. We now extend α to a directed cycle $\mathcal{C}_{h(k)}$ with $\mathcal{J}\left(\mathcal{C}_{h(k)}\right) \geq h(k)-4$. Observe that since $\ell\langle v, \gamma, u\rangle=n-s \leq k-5$ (because $s \geq n-k+5$) it follows that $\ell\langle v, \gamma, u-1\rangle \leq k-6$ and $\ell(\alpha) \leq k-4$; hence $r \geq 4$.

Case 1. $\ell\langle w, \gamma, u\rangle-1+\ell\langle z, \gamma, v\rangle-1 \geq r-1>0$.
Let r_{1} and r_{2} be such that $r_{1}+r_{2}=r-1,0 \leq r_{1} \leq \ell\langle w, \gamma, u\rangle-1,0 \leq r_{2} \leq$ $\ell\langle z, \gamma, v\rangle-1, w_{1}=u-r_{1}$ and $z_{1}=z+r_{2}$.

The proof that $\left(z_{1}, w_{1}\right) \in A$ is as follows:
First, we prove that $\ell\left\langle w_{1}, \gamma, z_{1}\right\rangle \geq 2$. We have that $\ell\left\langle w_{1}, \gamma, z_{1}\right\rangle=z+r_{2}-$ $\left(u-r_{1}\right)=z-u+r-1$, since $r_{1}+r_{2}=r-1$; the definition of z implies $z-u \geq 1$, and therefore $z-u+r-1 \geq r \geq 4$.

Now we prove that $z_{1} \not \equiv w_{1}(\bmod 2)$ by considering two possible cases: When $\ell(\alpha)$ is odd we have: r is odd (because $r=k-\ell(\alpha)$, and k even), $r-1$ is even, $r_{1}=r_{2}(\bmod 2)\left(\right.$ because $\left.r_{1}+r_{2}=r-1\right)$, and consecuently $r_{2}=-r_{1}(\bmod 2)\left(\right.$ Notice $\left.r_{1} \equiv-r_{1}(\bmod 2)\right)$; moreover, $\ell\langle v, \gamma, w\rangle$ is odd which implies $\ell\langle z, \gamma, v\rangle$ is even (Notice that since (w, z) is a chord we have $\ell\langle w, \gamma, z\rangle$ is odd and $\ell\langle z, \gamma, w\rangle$ is odd and therefore $\ell\langle u, \gamma, z\rangle$ is odd (because $\ell\langle u, \gamma, v\rangle$ is odd $)$; so we have $u \not \equiv z(\bmod 2)$, we conclude $u-r_{1} \not \equiv z+$ $r_{2}(\bmod 2)$ (because $u-r_{1} \equiv z+r_{2}(\bmod 2)$ implies $u \equiv z(\bmod 2)$ as $r_{2} \equiv$ $\left.-r_{1}(\bmod 2)\right)$. When $\ell(\alpha)$ is even we have: r is even, $r-1$ is odd, $r_{1} \not \equiv$ $r_{2}(\bmod 2), r_{2} \not \equiv-r_{1}(\bmod 2) ;$ moreover, $\ell\langle v, \gamma, w\rangle$ is even, $\ell\langle z, \gamma, v\rangle$ is odd, $\ell\langle u, \gamma, z\rangle$ is even; so we have $u \equiv z(\bmod 2)$ and since $r_{2} \not \equiv-r_{1}$ we conclude $u-r_{1} \not \equiv z+r_{2}(\bmod 2)$. So in any case we have $u-r_{1} \not \equiv z+r_{2}(\bmod 2)$.

It follows from Claim 2 that \mathcal{C}^{1} is a directed cycle of length $\ell(\alpha)+r_{1}+$ $r_{2}+1=\ell(\alpha)+r=k$ with $\mathcal{J}\left(\mathrm{C}^{1}\right)=k-3$.

Case 2. $\ell\langle w, \gamma, u\rangle-1+\ell\langle z, \gamma, v\rangle-1<r-1$.
Observe that $\ell\langle w, \gamma, u\rangle-1+\ell\langle z, \gamma, v\rangle-1+\ell\langle u, \gamma, z\rangle-1=n-\ell(\alpha)-1>$ $k-\ell(\alpha)=r$. Thus $\ell\langle u, \gamma, z\rangle-1 \geq r-(\ell\langle w, \gamma, u\rangle-1+\ell\langle z, \gamma, v\rangle-1)+1$

From the hyphotesis of Case $2, \ell\langle u, \gamma, z\rangle \geq 4$.
Let $r_{3}=r-(\ell\langle w, \gamma, u\rangle-1+\ell\langle z, \gamma, v\rangle-1)-2$. It follows from the hyphotesis of Case 2 that $0 \leq r_{3}<\ell\langle u, \gamma, z\rangle-1$.

Denote: $w_{1}=w+1, u_{1}=u+1, u_{2}=u+r_{3}+1=u_{1}+r_{3}$ and $z_{1}=v-1$.

We have that $\ell\left\langle u_{1}, \gamma, z_{1}\right\rangle=v-1-u-1=v-u-2 \geq 2$. The last equality follows because $\ell\langle u, \gamma, v\rangle=s \geq n-k+5$ and $k \leq n-2$, and hence $\ell\langle u, \gamma, v\rangle \geq 7$. So $\ell\left\langle u_{1}, \gamma, z_{1}\right\rangle \geq 2$ and the fact $u_{1} \not \equiv z_{1}(\bmod 2)$ (because $(u, v) \in A$ implies $u+1 \not \equiv v-1(\bmod 2)($ as $1 \equiv-1(\bmod 2))$.

Hence $\left(z_{1}, u_{1}\right) \in A$.
Now $\ell\left\langle w_{1}, \gamma, u_{2}\right\rangle=u+r_{3}+1-w-1=u-w+r_{3}$. Since by Definition $u-w \geq 1$ and $r_{3} \geq 0$; it is sufficient to consider two possibilities: $u_{2}-w_{1} \geq 2$ and $u_{2}-w_{1}=1$.

Case 2.a. $\ell\left\langle w_{1}, \gamma, u_{2}\right\rangle \geq 2$.
In this case we only need to prove that $w_{1} \not \equiv u_{2}(\bmod 2)$ in order to have $\left(u_{2}, w_{1}\right) \in A$. Since $w \not \equiv z(\bmod 2)($ because $(w, z) \in A)$, and $w_{1}=w+1$ it suffices to prove $\ell\left\langle u_{2}, \gamma, z\right\rangle$ is odd. We proceed by contradiction; suppose $\ell\left\langle u_{2}, \gamma, z\right\rangle$ is even and consider the two possible cases: When $\ell(\alpha)$ is odd we have r is odd, $r-2$ is odd, and $\ell\langle v, \gamma, w\rangle$ is odd. Moreover, since $\ell\langle v, \gamma, w\rangle$ is odd we have $\ell\left\langle z, \gamma, z_{1}\right\rangle$ is odd (because $z_{1}=v-1$ and $\ell\langle z, \gamma, w\rangle$ is odd as $(w, z) \in A$); now $\ell\left\langle u_{1}, \gamma, u_{2}\right\rangle$ is even (Notice $\ell\left\langle u_{1}, \gamma, z_{1}\right\rangle$ is odd because $\left(z_{1}, u_{1}\right) \in A$) and $\ell\left\langle w_{1}, \gamma, u\right\rangle$ is odd (Notice $\ell\langle w, \gamma, z\rangle$ is odd and $\ell\left\langle u_{1}, \gamma, z\right\rangle$ is even), so we obtain $\ell\left\langle w_{1}, \gamma, u\right\rangle+\ell\left\langle u_{1}, \gamma, u_{2}\right\rangle+\ell\left\langle z, \gamma, z_{1}\right\rangle$ is even. Also we have $\ell\left\langle w_{1}, \gamma, u\right\rangle+\ell\left\langle u_{1}, \gamma, u_{2}\right\rangle+\ell\left\langle z, \gamma, z_{1}\right\rangle=\ell\langle w, \gamma, u\rangle-1+r_{3}+\ell\langle z, \gamma, v\rangle-1=r-2$ is odd; a contradiction. The case when $\ell(\alpha)$ is even is completely analogous (by interchanging even with odd).

We conclude $\left(u_{2}, w_{1}\right) \in A$ and by Claim $2 \mathfrak{C}_{q}=\mathfrak{C}^{2}$ is a directed cycle with $\mathcal{J}\left(\mathrm{C}^{2}\right)=q-4$. Furthermore, $q=k$ since by construction $\ell\left(\mathrm{C}^{2}\right)=$ $\ell(\alpha)+r=k$.

We now divide the remaining case of $u_{2}-w_{1}=1$ into two subcases. In both the following holds: $u-w+r_{3}=1$ (because $u_{2}-w_{1}=1$), $w=$ $u-1, r_{3}=0, u=w_{1}$ and $u_{2}=u_{1}=u+1$. Also, by Definition of r_{3}, $r=\ell\langle w, \gamma, u\rangle+\ell\langle z, \gamma, v\rangle$.

Case 2.b.1. $u_{2}-w_{1}=1$ and $z \leq z_{1}-1$.
Notice that $\ell\left\langle u, \gamma, z_{1}-1\right\rangle=\ell\langle u, \gamma, v\rangle-2 \geq 3$. (because $s \geq 5$). Moreover, since $u \not \equiv v(\bmod 2)($ as $(u, v) \in A)$ we have $u \not \equiv z_{1}-1=v-2(\bmod 2)$. Thus $\left(z_{1}-1, u\right) \in A$, and the fact $z \leq z_{1}-1$ implies $C_{q}=\alpha \cup\left\langle z, \gamma, z_{1}-1\right\rangle \cup\left(z_{1}-1, u\right)$ is a directed cycle of length q with $\mathcal{J}\left(C_{q}\right)=q-3$.

Now we prove $q=k-2$; observe that $r=u-w+v-z$, and since $w=u-1$ and $v=z_{1}+1$ we obtain $r=z_{1}-z+2$ and $z_{1}-1-z=r-3$. Thus $\ell\left(C_{q}\right)=\ell(\alpha)+r-3+1=\ell(\alpha)+r-2=k-2$.

We conclude the proof of Theorem with the next subcase.

Case 2.b.2. $u_{2}-w_{1}=1$ and $z=z_{1}=v-1$.
From $r_{3}=0, w=u-1, z=v-1$ and $r=\ell\langle w, \gamma, u\rangle+\ell\langle z, \gamma, v\rangle$ it follows that $r=2$, thus $\ell(\alpha)=k-r=k-2$. Since $\ell\langle v, \gamma, w\rangle=\ell(\alpha)-2=k-4$ and $w=u-1$ we have $\ell\langle v, \gamma, u\rangle=k-3$ and hence $\mathcal{C}_{k-2}=\langle v, \gamma, u\rangle \cup(u, v)$ is a directed cycle of length $k-2$ with $\mathcal{J}\left(\mathcal{C}_{k-2}\right)=k-3$.

4. Remarks

In this section it is proved that the hyphotesis of Theorem 3.1 are tight, and the result is best possible.

Definition 4.1 [10]. A digraph D with vertex set V is called cyclically p partite complete ($p \geq 3$) provided one can partition $V=V_{0} \cup V_{1} \cup \cdots \cup V_{p-1}$ so that (u, v) is an arc of D if and only if $u \in V_{i}, v \in V_{i+1}$ (notation modulo p).

Remark 4.2 [10]. The cyclically 4 -partite complete digraph T_{4} is a bipartite tournament and clearly, every directed cycle of T_{4} has length $\equiv 0(\bmod 4)$. So for $k=4 m+2, T_{4}$ has no directed cycles of length k and for $k=4 m, T_{4}$ has no directed cycles of length $k-2$.

Remark 4.3. For $n \geq 6, k \geq 6$, such that $n \leq 2 k-8$, there exits a bipartite hamiltonian tournament T_{n} with no directed cycles $\mathcal{C}_{h(k)}$ with $\mathcal{J}\left(\mathcal{C}_{h(k)}\right) \geq$ $h(k)-3$. (recall $h(k) \in\{k, k-2\})$.

Proof. Define T_{n} as follows:

$$
\begin{aligned}
A\left(T_{n}\right)= & \{(i, i+1) \mid i \in\{0,1, \ldots, n-1\}\} \\
& \cup\left\{(i, i+j) \left\lvert\, j \in\left\{\frac{n}{2}+1, \frac{n}{2}+3, \dot{s}, n-3\right\}\right.\right\}
\end{aligned}
$$

Notice that $n \equiv 0(\bmod 4)$, otherwise the $\operatorname{arc}(i, i+j)$ is not defined.
Consider a directed cycle $\mathcal{C}_{h(k)}$ of length $h(k), h(k) \in\{k, k-2\}$. Observe that the definition of T_{n} and the fact $n \leq 2 k-8$ imply $\mathcal{J}\left(\mathcal{C}_{h(k)}\right)<h(k)-2$. We prove that $\mathcal{J}\left(\mathcal{C}_{h(k)}\right)<h(k)-3$ by showing that for any directed cycle \mathcal{C} with $\mathcal{J}(\mathcal{C})=k-3$, it holds $\ell(\mathcal{C}) \leq k-4$.

Let $f_{1}=\left(x_{1}, x_{2}\right), f_{2}=\left(x_{3}, x_{4}\right)$, and $f_{3}=\left(x_{5}, x_{6}\right)$ be the three arcs of \mathcal{C} not in γ. Hence without loss of generality

$$
\mathcal{C}=\left(x_{1}, x_{2}\right) \cup\left\langle x_{2}, \gamma, x_{3}\right\rangle \cup\left(x_{3}, x_{4}\right) \cup\left\langle x_{4}, \gamma, x_{5}\right\rangle \cup\left(x_{5}, x_{6}\right) \cup\left\langle x_{6}, \gamma, x_{1}\right\rangle
$$

By the definition of T_{n} it follows that $\ell\left(f_{i}\right) \geq \frac{n}{2}+1$, for each $i \in\{1,2,3\}$. On the other hand,

$$
\begin{aligned}
\ell(\mathrm{C}) & =\ell\left\langle x_{2}, \gamma, x_{1}\right\rangle+\ell\left\langle x_{6}, \gamma, x_{5}\right\rangle-\ell\left\langle x_{3}, \gamma, x_{4}\right\rangle+3 \\
& =n-\ell\left(f_{1}\right)+n-\ell\left(f_{3}\right)-\ell\left(f_{2}\right)+3 \\
& \leq \frac{n}{2}-1+\frac{n}{2}-1-\frac{n}{2}-1+3 \\
& =\frac{n}{2}
\end{aligned}
$$

Therefore $\ell(\mathcal{C}) \leq k-4$, since $n \leq 2 k-8$.

Acknowledgement

The author whishes to thank the anonymous referees for a through review and useful suggestions.

References

[1] B. Alspach, Cycles of each length in regular tournaments, Canadian Math. Bull. 10 (1967) 283-286.
[2] L.W. Beineke, A tour through tournaments or bipartite and ordinary tournaments: A comparative survey. J. London Math. Soc. Lect. Notes Ser. 52 (1981) 41-55.
[3] L.W. Beineke and V. Little, Cycles in bipartite tournaments, J. Combin. Theory (B) 32 (1982) 140-145.
[4] C. Berge, Graphs and hypergraphs (North-Holland, Amsterdam, 1976).
[5] J.C. Bermond and C. Thomasen, Cycles in digraphs, A survey, J. Graph Theory 5 (1981) 145-147.
[6] H. Galeana-Sánchez and S. Rajsbaum, Cycle-Pancyclism in Tournaments I, Graphs and Combinatorics 11 (1995) 233-243.
[7] H. Galeana-Sánchez and S. Rajsbaum, Cycle-Pancyclism in Tournaments II, Graphs and Combinatorics 12 (1996) 9-16.
[8] H. Galeana-Sánchez and S. Rajsbaum, Cycle-Pancyclism in Tournaments III, Graphs and Combinatorics 13 (1997) 57-63.
[9] H. Galeana-Sánchez and S. Rajsbaum, A Conjecture on Cycle-Pancyclism in Tournaments, Discuss. Math. Graph Theory 18 (1998) 243-251.
[10] H. Galeana-Sanchez, Cycle-Pancyclism in Bipartite Tournaments I, Discuss. Math. Graph Theory 24 (2004) 277-290.
[11] G. Gutin, Cycles and paths in semicomplete multipartite digraphs, theorems and algorithms: A survey, J. Graph Theory 19 (1995) 481-505.
[12] R. Häggkvist and Y. Manoussakis, Cycles and paths in bipartite tournaments with spanning configurations, Combinatorica 9 (1989) 33-38.
[13] L. Volkmann, Cycles in multipartite tournaments, results and problems, Discrete Math. 245 (2002) 19-53.
[14] C.Q. Zhang, Vertex even-pancyclicity in bipartite tournaments, J. Nanjing Univ. Math. Biquart 1 (1981) 85-88.
[15] K.M. Zhang and Z.M. Song, Cycles in digraphs, a survey, J. Nanjing Univ., Nat. Sci. Ed. 27 (1991) 188-215.

Received 10 September 2003
Revised 30 April 2004

