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Abstract

Let T be a hamiltonian bipartite tournament with n vertices, γ a
hamiltonian directed cycle of T , and k an even number. In this paper
the following question is studied: What is the maximum intersection
with γ of a directed cycle of length k contained in T [V (γ)]? It is proved
that for an even k in the range n+6

2 ≤ k ≤ n−2, there exists a directed
cycle Ch(k) of length h(k), h(k) ∈ {k, k − 2} with |A(Ch(k)) ∩ A(γ)| ≥
h(k)− 4 and the result is best possible. In a previous paper a similar
result for 4 ≤ k ≤ n+4

2 was proved.
Keywords: bipartite tournament, pancyclism.
2000 Mathematic Subject Classification: 05C20.

1. Introduction

The subject of pancyclism has been studied by several authors (e.g. [1, 2, 3,
5, 13, 15]). Three types of pancyclism have been considered. A digraph D is:
pancyclic if it has directed cycles of all the possible lengths; vertex-pancyclic
if given any vertex v there are directed cycles of every length containing v;
and arc-pancyclic if given any arc e there are directed cycles of every length
containing e.

It is well known that a hamiltonian bipartite tournament is pancyclic,
and vertex-pancyclic (with only very few exceptions) but not necessarily
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arc-pancyclic (see for example [3, 12, 14]). The concept of cycle-pancyclism
studies the following question: Given a directed cycle γ of a digraph D, find
the maximum number of arcs which a directed cycle of length k, (if such a
directed cycle exists) contained in D[V (γ)] (the subdigraph of D induced by
V (γ)) has in common with γ. Cycle-pancyclism in tournaments has been
studied in [6, 7, 8, 9]. In a previous paper [10] it was attempted to study
cycle-pancyclism in bipartite tournaments; in fact it was proved that for an
even k, 4 ≤ k ≤ n+4

2 there exists a directed cycle Ch(k) of length h(k), h(k) ∈
{k, k − 2} with |A(Ch(k)) ∩A(γ)| ≥ h(k)− 3 and the result is best possible.
In this paper, the study of cycle-pancyclism in bipartite tournaments is
completed. To study this question it is sufficient to consider a hamiltonian
bipartite tournament where γ is a hamiltonian directed cycle (because we
are looking for directed cycles of length k contained in D[V (γ)] whose arcs
intersect the arcs of γ the must possible). We will assume (without saying
it explicitly in Lemmas, Theorems or Corollaries) that we are working in a
hamiltonian bipartite tournament with a vertex set V = {0, 1, . . . , n−1} and
arc set A. Also we assume without loss of generality that γ = (0, 1, . . . , n−
1, 0) is a hamiltonian directed cycle of T ; k will be an even number; Ch(k) will
denote a directed cycle of length h(k) with h(k) ∈ {k, k−2} and I

(
Ch(k)

)
=

|A(Ch(k))∩A(γ)|. This paper is the second part of the study on the existence
of a directed cycle Ch(k) where I(Ch(k)) is the maximum. For general concepts
we refer the reader to [4].

2. Preliminaries

A chord of a cycle C is an arc not in C with both terminal vertices in C.
The length of a chord g = (u, v) of C, denoted `(g), is equal to the length of
〈u,C, v〉 where 〈u,C, v〉 denotes the uv-directed path contained in C. We say
that g is a c-chord if `(g) = c and g = (u, v) is a −c-chord if `〈v, C, u〉 = c.
Observe that if g is a c-chord then it is also a −(n− c)-chord. All the chords
considered in this paper are chords of γ, also observe that since T is bipartite
all the the chords of γ have odd lengths. We will denote by Ck a directed
cycle of length k. In what follows all notation is taken modulo n. In what
follows we assume k ≥ 10 (In [10] it was proved that for k = 4, 6, 8 there
exists a directed cycle Ch(k) with I(Ch(k)) ≥ h(k)− 3).

Observation 2.1. If n = 2k−6, then there exists a directed cycle Ck−2 with
I(Ck−2) = k − 3.



Cycle-Pancyclism in Bipartite Tournaments II 531

Proof. Consider the arc between 0 and k− 3; when (0, k− 3) ∈ A we have
Ck−2 = (0, k − 3) ∪ 〈k − 3, γ, 0〉 a directed cycle with I(Ck−2) = k − 3; when
(k−3, 0) ∈ A we obtain Ck−2 = 〈0, γ, k−3〉∪ (k−3, 0) a directed cycle with
I(Ck−2) = k − 3.

In view of Observation 2.1 we will assume in what follows that k + 2 ≤ n ≤
2k − 8.

Lemma 2.2. At least one of the following properties holds:

(i) There exists a directed cycle Ch(k) with I(Ch(k)) ≥ h(k) − 1 (h(k) ∈
{k, k − 2}).

(ii) All the following arcs are in A: (a) Every (k − 1)-chord; (b) Every
(k − 3)-chord.

Proof. Suppose that (i) is not true. (a) If (k − 1, 0) is a −(k − 1)-chord,
then Ck = 〈0, γ, k− 1〉 ∪ (k− 1, 0) is a directed cycle with I(Ck) = k− 1. (b)
If (k − 3, 0) is a −(k − 3)-chord, then Ck−2 = 〈0, γ, k − 3〉 ∪ (k − 3, 0) is a
directed cycle with I(Ck−2) = k − 3

Lemma 2.3. Let P = (x, x + 1, . . . , `), x, ` even, ` ≥ x + 4, be a directed
path contained in γ, let z be odd, x ∈ V −V (P ), and {(x, z), (x+2, z), (z, `),
(z, `− 2), . . . , (z, `− (a− 1))} ⊆ A with a odd, 1 ≤ a ≤ `−x− 3. Then there
exists an index i, x+2 ≤ i ≤ `−(a+1), such that {(i, z), (z, i+a+1)} ⊆ A.

Proof. Let i ∈ V (P ) be the maximum vertex in P such that (i, z) ∈ A
clearly x + 2 ≤ i ≤ `− (a + 1) and {(i, z), (z, i + a + 1)} ⊆ A.

Lemma 2.4. If all the (k−3), (k−1), . . . , p-chords, p is odd, k−1 ≤ p < n−3
are in T , then at least one of the two following properties holds.

(i) There exists a directed cycle Ck with I(Ck) ≥ k − 3.
(ii) Every (p + 2)-chord is in T .

Proof. We show that if (ii) is false, then (i) holds. Let (s1, s2) be a −(p+2)-
chord and let z be odd in 〈s1, γ, s2〉 − {s1, s2}. Assume w.l.o.g. that s2 = 0.
Let x = z + n− p (modn). Observe that

(1) {(x, z), (x + 2, z), . . . , (x + p− (k − 3), z)} ⊆ A .
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since these are the p, p− 2, . . . , (k − 3)-chords of γ ending in z. Similarly

(2) {(z, z + p), (z, z + p− 2), . . . , (z, z + k − 3)} ⊆ A .

Observe that the start points of the arcs in set (1) are consecutive in-
neighbors of z in γ and less than the endpoints of the arcs in set (2), which
are consecutive out-neighbors of z in γ. This is because the largest start
point of an arc in (1) is z + n − (k − 3) and the last endpoint of an arc in
(2) is z + (k − 3) and z + (k − 3) > z + n− (k − 3) (as n ≤ 2k − 8).

Now, consider the directed path 〈x, γ, z+p〉. Since x = z+n−p(modn)
and 2p > n it is obvious that z 6∈ V (〈x, γ, z + p〉). Note that the cardinality
of (1) is at least 2 and the cardinality of (2) is p−k+5

2 . Thus letting a =
p − k + 4 and ` = z + p it follows from Lemma 2.3 that there exists j,
x ≤ j < z + (k − 3) such that {(j, z), (z, j + a + 1)} ⊆ A. And then
C = (s1, s2) ∪ 〈s2, γ, j〉 ∪ (j, z, j + a + 1) ∪ 〈j + a + 1, γ, s1〉 is a directed
cycle. In order to see that `(C) = k note that `〈s1, γ, s2〉 = n − (p + 2),
and thus `〈s2, γ, s1〉 = p + 2. Clearly, `〈j, γ, j + a + 1〉 = a + 1, therefore
`(C) = p + 2− (a + 1) + 3 = k and I(C) = k − 3.

It follows directly from Lemmas 2.2 and 2.4 the following

Theorem 2.5. At least one of the following conditions holds.

(i) There exists a directed cycle Ch(k) with I(Ch(k)) ≥ h(k)− 3.
(ii) For each p odd, k − 3 ≤ p ≤ n− 3, every p-chord of γ is in T .

3. The Main Result

In this section we prove the following

Theorem 3.1. For every k such that n+6
2 ≤ k ≤ n−2, there exists a directed

cycle Ch(k) with I(Ch(k)) ≥ h(k)− 4.

Proof. In view of Observation 2.1 we will assume k ≥ n+8
2 . It follows from

Theorem 2.5 that we can assume that for each odd p, k−3 ≤ p ≤ n−3, every
p-chord is in T ; i.e., for each odd q 3 ≤ q ≤ n − (k − 3), every (−q)-chord
is in T . This assumption will be maintained in the whole proof. Let s be
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the minimum integer such that γ has an s-chord. Note that s ≥ n − k + 5
(s is odd), and thus −s ≤ k− 5. This is because for each odd p, k− 3 ≤ p ≤
n − 3, every p-chord is in T , and therefore for each 3 ≤ n − p ≤ n − k + 3,
every (n− p)-chord is not in T . Let g = (u, v) be an s-chord of γ.

Denote by w the last vertex of 〈v + 1, γ, u − 1〉 such that there exists
an arc (w, z) with z ∈ 〈u + 1, γ, v − 1〉. Notice that `〈u, γ, v〉 ≥ 7 (because
`〈u, γ, v〉 = s ≥ n−k+5 and n ≥ k+2), and thus 〈u+1, γ, v−1〉 has at least
one vertex. Also, the vertex w is well defined because (v+2, v−1) is a (−3)-
chord and hence it is in A. Hence for every vertex x ∈ 〈w+1, γ, u−1〉, every
(x′, x) arc with x′ ∈ 〈u+1, γ, v−1〉 and x 6≡ x′ (mod 2), is in A; by Definition
of w. Also for any x, x′ such that: x 6≡ x′ (mod 2), 2 ≤ `〈x, γ, x′〉 < s, and
{x, x′} ⊆ V (〈u, γ, v−1〉) the arc (x′, x) is in A because of the definition of s.
Therefore we have the following Claims:

Claim 1. (a) For every z1 ∈ 〈z, γ, v − 1〉 and u1 ∈ 〈u, γ, z − 1〉 such that
u1 6≡ z1 (mod 2) and `〈u1, γ, z1〉 ≥ 2, it holds (z1, u1) ∈ A.

(b) For every u2 ∈ 〈u + 1, γ, v − 1〉 and w1 ∈ 〈w + 1, γ, u〉 such that
w1 6≡ u2 (mod 2) and `〈w1, γ, u2〉 ≥ 2, it holds (u2, w1) ∈ A.

As a direct consequence we have the following Claim.

Claim 2. (a) If z1 ∈ 〈z, γ, v − 1〉 and w1 ∈ 〈w + 1, γ, u〉 such that z1 6≡
w1 (mod 2) and `〈w1, γ, z1〉 ≥ 2, then

C1 = (z1, w1) ∪ 〈w1, γ, u〉 ∪ (u, v) ∪ 〈v, γ, w〉 ∪ (w, z) ∪ 〈z, γ, z1〉

is a directed cycle of T of length m with I(C1) = m− 3.
(b) If z1 ∈ 〈z, γ, v−1〉, w1 ∈ 〈w +1, γ, u〉, u1 ∈ 〈u+1, γ, z−1〉 and u2 ∈

〈u1, γ, z − 1〉 such that: u1 6≡ z1 (mod 2); `〈u1, γ, z1〉 ≥ 2, w1 6≡ u2 (mod 2)
and `〈w1, γ, u2〉 ≥ 2, then

C2 = (z1, u1) ∪ 〈u1, γ, u2〉 ∪ (u2, w1) ∪ 〈w1, γ, u〉
∪ (u, v) ∪ 〈v, γ, w〉 ∪ (w, z) ∪ 〈z, γ, z1〉

is a directed cycle of length q with I(C2) = q − 4.
Observe that C2 is a directed cycle because 〈u+1, γ, v−1〉 is non-empty,

and because z 6= u2, u 6= u1, w 6= w1 and v 6= z1. A similar observation
holds for C1.
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We proceed to prove the existence of a directed cycle of length k intersecting
γ in at least k − 4 arcs. We split the problem into several cases according
to the position of z in 〈u + 1, γ, v − 1〉 and according to `〈u + 1, γ, v − 1〉.
We are able to use constructions equal or similar to C1 or C2. Consider
the path α = (u, v) ∪ 〈v, γ, w〉 ∪ (w, z), and let r = k − `(α). We now
extend α to a directed cycle Ch(k) with I(Ch(k)) ≥ h(k) − 4. Observe that
since `〈v, γ, u〉 = n − s ≤ k − 5 (because s ≥ n − k + 5) it follows that
`〈v, γ, u− 1〉 ≤ k − 6 and `(α) ≤ k − 4; hence r ≥ 4.

Case 1. `〈w, γ, u〉 − 1 + `〈z, γ, v〉 − 1 ≥ r − 1 > 0.
Let r1 and r2 be such that r1 + r2 = r− 1, 0 ≤ r1 ≤ `〈w, γ, u〉 − 1, 0 ≤ r2 ≤
`〈z, γ, v〉 − 1, w1 = u− r1 and z1 = z + r2.

The proof that (z1, w1) ∈ A is as follows:
First, we prove that `〈w1, γ, z1〉 ≥ 2. We have that `〈w1, γ, z1〉 = z + r2 −
(u − r1) = z − u + r − 1, since r1 + r2 = r − 1; the definition of z implies
z − u ≥ 1, and therefore z − u + r − 1 ≥ r ≥ 4.

Now we prove that z1 6≡ w1 (mod 2) by considering two possible cases:
When `(α) is odd we have: r is odd (because r = k − `(α), and k even),
r − 1 is even, r1 = r2 (mod 2) (because r1 + r2 = r − 1), and consecuently
r2 = −r1 (mod 2) (Notice r1 ≡ −r1 (mod 2)); moreover, `〈v, γ, w〉 is odd
which implies `〈z, γ, v〉 is even (Notice that since (w, z) is a chord we have
`〈w, γ, z〉 is odd and `〈z, γ, w〉 is odd and therefore `〈u, γ, z〉 is odd (because
`〈u, γ, v〉 is odd); so we have u 6≡ z (mod 2), we conclude u − r1 6≡ z +
r2 (mod 2) (because u − r1 ≡ z + r2 (mod 2) implies u ≡ z (mod 2) as r2 ≡
−r1 (mod 2)). When `(α) is even we have: r is even, r − 1 is odd, r1 6≡
r2 (mod 2), r2 6≡ −r1 (mod 2); moreover, `〈v, γ, w〉 is even, `〈z, γ, v〉 is odd,
`〈u, γ, z〉 is even; so we have u ≡ z (mod 2) and since r2 6≡ −r1 we conclude
u− r1 6≡ z + r2 (mod 2). So in any case we have u− r1 6≡ z + r2 (mod 2).

It follows from Claim 2 that C1 is a directed cycle of length `(α) + r1 +
r2 + 1 = `(α) + r = k with I(C1) = k − 3.

Case 2. `〈w, γ, u〉 − 1 + `〈z, γ, v〉 − 1 < r − 1.
Observe that `〈w, γ, u〉 − 1 + `〈z, γ, v〉 − 1 + `〈u, γ, z〉 − 1 = n− `(α)− 1 >
k − `(α) = r. Thus `〈u, γ, z〉 − 1 ≥ r − (`〈w, γ, u〉 − 1 + `〈z, γ, v〉 − 1) + 1

From the hyphotesis of Case 2, `〈u, γ, z〉 ≥ 4.
Let r3 = r−(`〈w, γ, u〉−1+`〈z, γ, v〉−1)−2. It follows from the hyphotesis
of Case 2 that 0 ≤ r3 < `〈u, γ, z〉 − 1.

Denote: w1 = w+1, u1 = u+1, u2 = u+r3+1 = u1+r3 and z1 = v−1.
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We have that `〈u1, γ, z1〉 = v − 1 − u − 1 = v − u − 2 ≥ 2. The last
equality follows because `〈u, γ, v〉 = s ≥ n− k + 5 and k ≤ n− 2, and hence
`〈u, γ, v〉 ≥ 7. So `〈u1, γ, z1〉 ≥ 2 and the fact u1 6≡ z1 (mod 2) (because
(u, v) ∈ A implies u + 1 6≡ v − 1 (mod 2) (as 1 ≡ −1 (mod 2)).

Hence (z1, u1) ∈ A.
Now `〈w1, γ, u2〉 = u + r3 + 1−w− 1 = u−w + r3. Since by Definition

u−w ≥ 1 and r3 ≥ 0; it is sufficient to consider two possibilities: u2−w1 ≥ 2
and u2 − w1 = 1.

Case 2.a. `〈w1, γ, u2〉 ≥ 2.
In this case we only need to prove that w1 6≡ u2 (mod 2) in order to have
(u2, w1) ∈ A. Since w 6≡ z (mod 2) (because (w, z) ∈ A), and w1 = w + 1
it suffices to prove `〈u2, γ, z〉 is odd. We proceed by contradiction; suppose
`〈u2, γ, z〉 is even and consider the two possible cases: When `(α) is odd we
have r is odd, r − 2 is odd, and `〈v, γ, w〉 is odd. Moreover, since `〈v, γ, w〉
is odd we have `〈z, γ, z1〉 is odd (because z1 = v − 1 and `〈z, γ, w〉 is odd
as (w, z) ∈ A); now `〈u1, γ, u2〉 is even (Notice `〈u1, γ, z1〉 is odd because
(z1, u1) ∈ A) and `〈w1, γ, u〉 is odd (Notice `〈w, γ, z〉 is odd and `〈u1, γ, z〉 is
even), so we obtain `〈w1, γ, u〉+`〈u1, γ, u2〉+`〈z, γ, z1〉 is even. Also we have
`〈w1, γ, u〉+`〈u1, γ, u2〉+`〈z, γ, z1〉 = `〈w, γ, u〉−1+r3+`〈z, γ, v〉−1 = r−2
is odd; a contradiction. The case when `(α) is even is completely analogous
(by interchanging even with odd).

We conclude (u2, w1) ∈ A and by Claim 2 Cq = C2 is a directed cycle
with I(C2) = q − 4. Furthermore, q = k since by construction `(C2) =
`(α) + r = k.

We now divide the remaining case of u2 − w1 = 1 into two subcases.
In both the following holds: u − w + r3 = 1 (because u2 − w1 = 1), w =
u − 1, r3 = 0, u = w1 and u2 = u1 = u + 1. Also, by Definition of r3,
r = `〈w, γ, u〉+ `〈z, γ, v〉.

Case 2.b.1. u2 − w1 = 1 and z ≤ z1 − 1.
Notice that `〈u, γ, z1 − 1〉 = `〈u, γ, v〉 − 2 ≥ 3. (because s ≥ 5). Moreover,
since u 6≡ v (mod 2) (as (u, v) ∈ A) we have u 6≡ z1−1 = v−2 (mod 2). Thus
(z1−1, u) ∈ A, and the fact z ≤ z1−1 implies Cq = α∪〈z, γ, z1−1〉∪(z1−1, u)
is a directed cycle of length q with I(Cq) = q − 3.

Now we prove q = k − 2; observe that r = u − w + v − z, and since
w = u− 1 and v = z1 + 1 we obtain r = z1 − z + 2 and z1 − 1− z = r − 3.
Thus `(Cq) = `(α) + r − 3 + 1 = `(α) + r − 2 = k − 2.

We conclude the proof of Theorem with the next subcase.
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Case 2.b.2. u2 − w1 = 1 and z = z1 = v − 1.
From r3 = 0, w = u − 1, z = v − 1 and r = `〈w, γ, u〉 + `〈z, γ, v〉 it follows
that r = 2, thus `(α) = k − r = k − 2. Since `〈v, γ, w〉 = `(α) − 2 = k − 4
and w = u− 1 we have `〈v, γ, u〉 = k − 3 and hence Ck−2 = 〈v, γ, u〉 ∪ (u, v)
is a directed cycle of length k − 2 with I(Ck−2) = k − 3.

4. Remarks

In this section it is proved that the hyphotesis of Theorem 3.1 are tight, and
the result is best possible.

Definition 4.1 [10]. A digraph D with vertex set V is called cyclically p-
partite complete (p ≥ 3) provided one can partition V = V0∪V1∪ · · ·∪Vp−1

so that (u, v) is an arc of D if and only if u ∈ Vi, v ∈ Vi+1 (notation
modulo p).

Remark 4.2 [10]. The cyclically 4-partite complete digraph T4 is a bipar-
tite tournament and clearly, every directed cycle of T4 has length≡ 0 (mod 4).
So for k = 4m + 2, T4 has no directed cycles of length k and for k = 4m, T4

has no directed cycles of length k − 2.

Remark 4.3. For n ≥ 6, k ≥ 6, such that n ≤ 2k−8, there exits a bipartite
hamiltonian tournament Tn with no directed cycles Ch(k) with I(Ch(k)) ≥
h(k)− 3. (recall h(k) ∈ {k, k − 2}).
Proof. Define Tn as follows:

A(Tn) = {(i, i + 1) | i ∈ {0, 1, . . . , n− 1}}

∪
{

(i, i + j) | j ∈
{n

2
+ 1,

n

2
+ 3, ṡ, n− 3

}}
.

Notice that n ≡ 0 (mod 4), otherwise the arc (i, i + j) is not defined.
Consider a directed cycle Ch(k) of length h(k), h(k) ∈ {k, k−2}. Observe

that the definition of Tn and the fact n ≤ 2k − 8 imply I(Ch(k)) < h(k)− 2.
We prove that I(Ch(k)) < h(k)− 3 by showing that for any directed cycle C

with I(C) = k − 3, it holds `(C) ≤ k − 4.
Let f1 = (x1, x2), f2 = (x3, x4), and f3 = (x5, x6) be the three arcs of C

not in γ. Hence without loss of generality

C = (x1, x2) ∪ 〈x2, γ, x3〉 ∪ (x3, x4) ∪ 〈x4, γ, x5〉 ∪ (x5, x6) ∪ 〈x6, γ, x1〉 .
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By the definition of Tn it follows that `(fi) ≥ n
2 + 1, for each i ∈ {1, 2, 3}.

On the other hand,

`(C) = `〈x2, γ, x1〉+ `〈x6, γ, x5〉 − `〈x3, γ, x4〉+ 3

= n− `(f1) + n− `(f3)− `(f2) + 3

≤ n

2
− 1 +

n

2
− 1− n

2
− 1 + 3

=
n

2

Therefore `(C) ≤ k − 4, since n ≤ 2k − 8.
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