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Abstract

Let T be a hamiltonian bipartite tournament with n vertices, v a
hamiltonian directed cycle of T', and k£ an even number. In this paper
the following question is studied: What is the maximum intersection
with « of a directed cycle of length k contained in T'[V'(v)]? It is proved
that for an even k in the range ”T‘LG < k < n—2, there exists a directed
cycle Cpy) of length h(k), h(k) € {k,k — 2} with [A(Chy) N A(y)| >
h(k) — 4 and the result is best possible. In a previous paper a similar
result for 4 < k < %"4 was proved.
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1. Introduction

The subject of pancyclism has been studied by several authors (e.g. [1, 2, 3,
5, 13, 15]). Three types of pancyclism have been considered. A digraph D is:
pancyclic if it has directed cycles of all the possible lengths; vertez-pancyclic
if given any vertex v there are directed cycles of every length containing v;
and arc-pancyclic if given any arc e there are directed cycles of every length
containing e.

It is well known that a hamiltonian bipartite tournament is pancyclic,
and vertex-pancyclic (with only very few exceptions) but not necessarily
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arc-pancyclic (see for example [3, 12, 14]). The concept of cycle-pancyclism
studies the following question: Given a directed cycle v of a digraph D, find
the maximum number of arcs which a directed cycle of length k, (if such a
directed cycle exists) contained in D[V ()] (the subdigraph of D induced by
V(7)) has in common with . Cycle-pancyclism in tournaments has been
studied in [6, 7, 8, 9]. In a previous paper [10] it was attempted to study
cycle-pancyclism in bipartite tournaments; in fact it was proved that for an
even k, 4 < k < ™} there exists a directed cycle Ch(r) of length h(k), h(k) €
{k, k — 2} with [A(Cp)) N A(7)| > h(k) — 3 and the result is best possible.
In this paper, the study of cycle-pancyclism in bipartite tournaments is
completed. To study this question it is sufficient to consider a hamiltonian
bipartite tournament where 7 is a hamiltonian directed cycle (because we
are looking for directed cycles of length k contained in D[V (y)] whose arcs
intersect the arcs of v the must possible). We will assume (without saying
it explicitly in Lemmas, Theorems or Corollaries) that we are working in a
hamiltonian bipartite tournament with a vertex set V= {0,1,...,n—1} and
arc set A. Also we assume without loss of generality that v = (0,1,...,n —
1,0) is a hamiltonian directed cycle of T'; k will be an even number; Cj ;) will
denote a directed cycle of length h(k) with h(k) € {k,k—2} and J (Cyq)) =
| A(Chr)) NA(7)|. This paper is the second part of the study on the existence
of a directed cycle Cj ;) where J(Cjy)) is the maximum. For general concepts
we refer the reader to [4].

2. Preliminaries

A chord of a cycle C is an arc not in C' with both terminal vertices in C.
The length of a chord g = (u,v) of C, denoted £(g), is equal to the length of
(u, C,v) where (u,C,v) denotes the uv-directed path contained in C'. We say
that g is a c-chord if £(g) = ¢ and g = (u,v) is a —c-chord if {{v,C,u) = c.
Observe that if ¢ is a c-chord then it is also a —(n — ¢)-chord. All the chords
considered in this paper are chords of 7, also observe that since T is bipartite
all the the chords of v have odd lengths. We will denote by € a directed
cycle of length k. In what follows all notation is taken modulo n. In what
follows we assume k& > 10 (In [10] it was proved that for k = 4,6,8 there
exists a directed cycle Cp,iy with I(Cyx)) > h(k) — 3).

Observation 2.1. Ifn = 2k —6, then there exists a directed cycle Cp_o with
I(Cr—2) =k — 3.
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Proof. Consider the arc between 0 and k — 3; when (0,k —3) € A we have
Cr—2 = (0,k —3) U (k—3,7,0) a directed cycle with J(Cr_2) = k — 3; when
(k—3,0) € A we obtain Cx_o = (0,7,k—3)U(k—3,0) a directed cycle with
I(Cp_s) = k — 3. -

In view of Observation 2.1 we will assume in what follows that £ +2 <n <
2k — 8.

Lemma 2.2. At least one of the following properties holds:
(i) There exists a directed cycle Cpy with I(Cppy) > h(k) — 1 (h(k) €
{k,k —2}).
(ii) All the following arcs are in A: (a) Every (k — 1)-chord; (b) FEvery
(k —3)-chord.

Proof. Suppose that (i) is not true. (a) If (k — 1,0) is a —(k — 1)-chord,
then C; = (0,v,k— 1)U (k—1,0) is a directed cycle with J(C) =k —1. (b)
If (k—3,0) is a —(k — 3)-chord, then Cr_o = (0,7,k —3) U (k — 3,0) is a
directed cycle with J(Cx_2) =k — 3 |

Lemma 2.3. Let P = (z,x + 1,...,¢), x,{ even, £ > x + 4, be a directed
path contained in 7y, let z be odd, x € V-V (P), and {(z, 2), (zr+2, 2), (2, £),
(z2,0—2),...,(2,0—(a—1))} C A with a odd, 1 <a <{—x—3. Then there
exists an index i, x+2 < i < {—(a+1), such that {(i, z), (z,i+a+1)} C A.

Proof. Let i € V(P) be the maximum vertex in P such that (i,z) € A
clearly t +2 <i<{—(a+1) and {(i,2),(z,i+a+ 1)} C A. |

Lemma 2.4. If all the (k—3), (k—1),...,p-chords, p is odd, k—1 < p < n—3
are in T, then at least one of the two following properties holds.

(i) There exists a directed cycle C with J(Cx) > k — 3.
(ii) Every (p + 2)-chord is in T

Proof. We show that if (ii) is false, then (i) holds. Let (s1, s2) be a —(p+2)-
chord and let z be odd in (s1,7, s2) — {s1, S2}. Assume w.l.o.g. that so = 0.
Let x = z+n — p(modn). Observe that

(1) {(z,2),(z+2,2),...,(z+p—(k—3),2)} T A.
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since these are the p,p — 2, ..., (k — 3)-chords of v ending in z. Similarly

(2) {(z,z+Dp),(z,24+p—2),...,(2,2+k—3)} CA.

Observe that the start points of the arcs in set (1) are consecutive in-
neighbors of z in 7 and less than the endpoints of the arcs in set (2), which
are consecutive out-neighbors of z in «. This is because the largest start
point of an arc in (1) is z + n — (k — 3) and the last endpoint of an arc in
(2)isz+(k—3)and 2+ (k—3) > z2+n— (k—3) (asn < 2k —38).

Now, consider the directed path (z,~, z+p). Since x = z+n—p(modn)
and 2p > n it is obvious that z € V({z,~, 2+ p)). Note that the cardinality
of (1) is at least 2 and the cardinality of (2) is I#. Thus letting a =
p—k+4and { = z+ p it follows from Lemma 2.3 that there exists j,
r < j < z+ (k— 3) such that {(4,2),(2,j +a+ 1)} € A. And then
C = (s1,52) U (52,7, ) U (2, +a+1)U(j+a+1,7,s1) is a directed
cycle. In order to see that £(C') = k note that £(s1,7,s2) = n — (p+ 2),
and thus ¢(s2,7,s1) = p+ 2. Clearly, ¢(j,7,7 +a+ 1) = a + 1, therefore
(C)=p+2—(a+1)+3=kand J(C) =k — 3. |

It follows directly from Lemmas 2.2 and 2.4 the following

Theorem 2.5. At least one of the following conditions holds.
(i) There exists a directed cycle Cyy with I(Cpy) > h(k) — 3.
(ii) For each p odd, k —3 < p <mn — 3, every p-chord of v is in T.

3. The Main Result

In this section we prove the following
Theorem 3.1. For every k such that ”T% < k < n-2, there exists a directed
cycle Cpy with I(Cpry) > h(k) — 4.

Proof. In view of Observation 2.1 we will assume k& > ”T%. It follows from
Theorem 2.5 that we can assume that for each odd p, k—3 < p < n-—3, every
p-chord is in T i.e., for each odd ¢ 3 < ¢ < n — (k — 3), every (—q)-chord
is in T. This assumption will be maintained in the whole proof. Let s be
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the minimum integer such that v has an s-chord. Note that s > n —k+5
(s is odd), and thus —s < k —5. This is because for each odd p, k—3 <p <
n — 3, every p-chord is in 7', and therefore for each 3 <n —p <n —k + 3,
every (n — p)-chord is not in 7T". Let g = (u,v) be an s-chord of ~.

Denote by w the last vertex of (v + 1,7,u — 1) such that there exists
an arc (w,z) with z € (u + 1,v,v — 1). Notice that ¢{u,~,v) > 7 (because
l{u,y,v) =5 >n—k+5and n > k+2), and thus (u+1,v,v—1) has at least
one vertex. Also, the vertex w is well defined because (v+2,v—1) is a (—3)-
chord and hence it is in A. Hence for every vertex = € (w+1,7,u—1), every
(«',z) arc with 2/ € (u+1,v,v—1) and z #Z 2/ (mod 2), is in A; by Definition
of w. Also for any x, 2’ such that: z Z 2/ (mod2), 2 < ¢{x,v,2’) < s, and
{z,2'} CV({u,y,v—1)) the arc (2/, z) is in A because of the definition of s.
Therefore we have the following Claims:

Claim 1. (a) For every z; € (z,7,v — 1) and u; € (u,v,z — 1) such that
uy # 21 (mod 2) and £(uq,7y, z1) > 2, it holds (21,u1) € A.

(b) For every us € (u+1,7,v — 1) and w; € (w + 1,7v,u) such that
wy Z ug (mod 2) and £{w1,7y,us) > 2, it holds (ug,w;) € A.

As a direct consequence we have the following Claim.

Claim 2. (a) If z; € (2,7,v — 1) and w; € (w + 1,7,u) such that 2; #
wi (mod 2) and ¢(w1,~, 2z1) > 2, then

et = (z1,w1) U (wy, 7, u) U (u,v) U (v, v,w) U (w, 2) U (z,7, 21)

is a directed cycle of T' of length m with J(C!) = m — 3.

(b) If z1 € (z,v,v—1), w1 € (w+1,7v,u), us € (u+1,7,z—1) and uy €
(u1,7,z — 1) such that: u; # 21 (mod2); €{u1,v,21) > 2, w; # uz (mod?2)
and (w1, y,u2) > 2, then

€? = (zhul) U <U1,’}/,UQ> U (u27w1) U <w1777u>
U (u7 U) U <’U,")/7’Ll)> U (’U},Z) U <Z777 Zl)
is a directed cycle of length q with J(€?) = ¢ — 4.
Observe that C? is a directed cycle because (u+1,7v,v—1) is non-empty,

and because z # uo, u # u, w # w; and v # z;. A similar observation
holds for C!.
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We proceed to prove the existence of a directed cycle of length k intersecting
v in at least &k — 4 arcs. We split the problem into several cases according
to the position of z in (u + 1,v,v — 1) and according to £{u + 1,v,v — 1).
We are able to use constructions equal or similar to €' or €2. Consider
the path a = (u,v) U (v,y,w) U (w, z), and let r = k — ¢(a). We now
extend « to a directed cycle Cp ) with J(Cpx)) > h(k) — 4. Observe that
since £(v,y,u) = n—s < k —5 (because s > n — k + 5) it follows that
v, y,u—1) <k—6and {(a) < k — 4; hence r > 4.

Case 1. L{w,y,u) — 1+ €(z,v,v) =1 >r—1>0.

Let r1 and rg be such that 7y +ro =7r—1,0 <7 < lw,vy,u) —1,0 < ry <
z,y,v) — 1, wy =u—ry and 21 = z + ro.

The proof that (z1,w;) € A is as follows:

First, we prove that ¢{w1,~,21) > 2. We have that {(wy,v,21) = z + 13 —
(u—ry) =z—u+r—1, since 11 + 19 = r — 1; the definition of z implies
z —u > 1, and therefore z —u+r—1>r > 4.

Now we prove that z; #Z w; (mod 2) by considering two possible cases:
When ¢(«) is odd we have: r is odd (because r = k — ¢(«), and k even),
r — 1 is even, 11 = 9 (mod 2) (because 71 + 19 = r — 1), and consecuently
ro = —ry (mod2) (Notice 11 = —r; (mod2)); moreover, ¢{v,v,w) is odd
which implies ¢(z,~,v) is even (Notice that since (w, z) is a chord we have
l{w, ", z) is odd and ¢(z,7,w) is odd and therefore ¢(u,~, z) is odd (because
{u,7y,v) is odd); so we have u # z(mod?2), we conclude u —r # z +
ro (mod 2) (because u — 11 = z + r3 (mod 2) implies © = z (mod 2) as ro =
—r1 (mod 2)). When /(«) is even we have: r is even, r — 1 is odd, r; #
ro (mod 2), r9 Z —ry (mod 2); moreover, ¢(v,y,w) is even, ¢(z,~y,v) is odd,
0{u,~,z) is even; so we have u = z (mod 2) and since ry Z —r1 we conclude
u—ry Z z+re (mod2). So in any case we have u — 1 Z z 4 ro (mod 2).

It follows from Claim 2 that C! is a directed cycle of length £(a) + 1 +
ro+1={(a) +r =k with J(C!) = k — 3.

Case 2. L{w,y,u) — 1+ L{z,y,v) =1 <r—1.
Observe that ¢(w,vy,u) — 1+ €(z,v,v) =1 +l{u,vy,2) =1 =n—Ll(a) =1 >
k — (o) =r. Thus l{u,y,z) — 1 >7r— (Lw,y,u) — 1+ {z,y,v) — 1)+ 1
From the hyphotesis of Case 2, {(u,~,z) > 4.
Let r3 = r— (¢{w,y,u) —14+£(z,7v,v) — 1) — 2. It follows from the hyphotesis
of Case 2 that 0 < rg < l(u,~,z) — 1.
Denote: w1 =w+1,u1 =u+1,us =u+r3+1=wu1+rz3and zy =v—1.
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We have that £{u1,7,21) = v—1—u—1=v—u—2 > 2. The last
equality follows because ¢{u,v,v) =s>n—k+5 and k < n —2, and hence
{u,v,v)y > 7. So L{u1,7v,z1) > 2 and the fact u; # z; (mod2) (because
(u,v) € A implies u+1 # v — 1 (mod 2) (as 1 = —1 (mod 2)).

Hence (z1,u1) € A.

Now #(w1,7y,u2) =u+r3+1—w—1=u—w+rs. Since by Definition
u—w > 1 and r3 > 0; it is sufficient to consider two possibilities: ug—wy > 2
and us — wy = 1.

Case 2.a. {{wy,7,u) > 2.

In this case we only need to prove that w; # w2 (mod2) in order to have
(ug,w1) € A. Since w # z (mod 2) (because (w,z) € A), and w; = w + 1
it suffices to prove f{us, 7, z) is odd. We proceed by contradiction; suppose
£{ug,7, z) is even and consider the two possible cases: When ¢(«) is odd we
have r is odd, r — 2 is odd, and ¢(v,~,w) is odd. Moreover, since (v, ~y, w)
is odd we have £(z,~,z1) is odd (because z; = v — 1 and ¢(z,7,w) is odd
as (w,z) € A); now £{u1,v,us2) is even (Notice ¢(ui,~,z1) is odd because
(z1,u1) € A) and (w1, 7, u) is odd (Notice £(w,~, z) is odd and €(uy,7, z) is
even), so we obtain ¢{wy, 7y, u) +£{u1, v, u2)+€(z,7, z1) is even. Also we have
Cwr, v, u) +{ur, v, ue) +4{(z,7,z1) = l{w,v,u) —1+rs+L{z,v,v) =1 =r—2
is odd; a contradiction. The case when ¢(«) is even is completely analogous
(by interchanging even with odd).

We conclude (ug,w1) € A and by Claim 2 G, = €? is a directed cycle
with J(€?) = ¢ — 4. Furthermore, ¢ = k since by construction ¢(€?) =
la)+r=k.

We now divide the remaining case of us — w1 = 1 into two subcases.
In both the following holds: w — w + r3 = 1 (because ug — w; = 1), w =
u—1,r3 =0, u = wy and uy = u; = v+ 1. Also, by Definition of rs,
r=w,vy,u) + €{z,7,0).

Case 2.b.1. ug —wy; =1and 2 < 2z — 1.

Notice that ¢(u,v,z1 — 1) = l{u,y,v) —2 > 3. (because s > 5). Moreover,
since u # v (mod 2) (as (u,v) € A) we have u # 21 —1 = v—2 (mod 2). Thus
(z1—1,u) € A, and the fact z < z;—1 implies Cy = aU(z,7,21—1)U(z1—1, u)
is a directed cycle of length ¢ with J(Cy) = ¢ — 3.

Now we prove ¢ = k — 2; observe that » = u — w + v — 2z, and since
w=u—landv=2z2 +1weobtainr=2z1 —z2+2and z1—1—2z=1r—3.
Thus ((Cy) =l(a) +r =3+ 1=l(a)+r—2=k—2.

We conclude the proof of Theorem with the next subcase.
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Case2.b.2. us—wy=1land z=2; =v — 1.
Fromrs =0, w=u—1, z=v—1 and r = {{w,y,u) + (z,7,v) it follows
that r = 2, thus {(a) = k —r = k — 2. Since {(v,y,w) =l(a) =2 =k —4
and w = u — 1 we have ¢(v,v,u) = k — 3 and hence Cr_o = (v,7v,u) U (u,v)
is a directed cycle of length k — 2 with J(Cx_2) = k — 3. |

4. Remarks

In this section it is proved that the hyphotesis of Theorem 3.1 are tight, and
the result is best possible.

Definition 4.1 [10]. A digraph D with vertex set V is called cyclically p-
partite complete (p > 3) provided one can partition V = VyUViU---UV,_;
so that (u,v) is an arc of D if and only if u € V;, v € V;;1 (notation
modulo p).

Remark 4.2 [10]. The cyclically 4-partite complete digraph Ty is a bipar-
tite tournament and clearly, every directed cycle of Ty has length= 0 (mod 4).
So for k = 4m + 2, T4 has no directed cycles of length k and for k = 4m, Ty
has no directed cycles of length k& — 2.

Remark 4.3. For n > 6, k > 6, such that n < 2k —8, there exits a bipartite
hamiltonian tournament 7}, with no directed cycles €y with J(Cpx)) >
h(k) — 3. (recall h(k) € {k,k —2}).

Proof. Define T, as follows:
A(T,) ={(i,i+1)]i€{0,1,...,n—1}}

u{Gi+ilie{F+1.5+35n-3}].
Notice that n =0 (mod4), otherwise the arc (7,7 + j) is not defined.

Consider a directed cycle Cp, ) of length h(k), h(k) € {k,k—2}. Observe
that the definition of T}, and the fact n < 2k — 8 imply J(Cy 1)) < h(k) — 2.
We prove that J(Cjx)) < h(k) — 3 by showing that for any directed cycle €
with J(€) = k — 3, it holds ¢(C) < k — 4.

Let fi1 = (z1,22), fa = (x3,24), and f3 = (x5, 26) be the three arcs of C
not in v. Hence without loss of generality

C= (331’ :EQ) U <$2,’Y,ZL‘3> U (1'3,1'4) U <LL‘4,’7, ZE5> U (1'5,1'6) U <x677a £E1> .
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By the definition of T}, it follows that £(f;) > § + 1, for each i € {1,2,3}.
On the other hand,

g(e) = £<.’E2,’}/,x1> +€<IE6,’7, JJ5> - £<$3777(I;4> +3
=n—L(f1) +n—Lf3) —L(f2) +3

< -—=14+--1—-=-1+3
) + 5 +
n
2
Therefore ¢(C) < k — 4, since n < 2k — 8. ]
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