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Abstract

A digraph G is a difference digraph iff there exists an S ⊂ IN+ such
that G is isomorphic to the digraph DD(S) = (V,A), where V = S
and A = {(i, j) : i, j ∈ V ∧ i− j ∈ V }.

For some classes of digraphs, e.g. alternating trees, oriented cycles,
tournaments etc., it is known, under which conditions these digraphs
are difference digraphs (cf. [5]). We generalize the so-called source-
join (a construction principle to obtain a new difference digraph from
two given ones (cf. [5])) and construct a difference labelling for the
source-join of an even number of difference digraphs.

As an application we obtain a sufficient condition guaranteeing that
certain (non-alternating) trees are difference digraphs.
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1. Introduction and Basic Definitions

Harary [11] introduced the notion of sum graphs and difference graphs in
1988. In recent years, a lot of authors published papers dealing with sum
graphs, e.g. [1, 2, 6, 9, 10, 12] – [20], or sum hypergraphs, cf. [23] – [28].

Some classes of difference graphs (paths, trees, cycles, cacti, special
wheels, complete graphs, complete bipartite graphs etc.) were investigated
by Bloom, Burr, Eggleton, Gervacio, Hell, Sonntag and Taylor in the
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undirected (cf. [3, 4, 7, 21]) as well as in the directed case (cf. [5]). In
[3, 4, 7] undirected difference graphs were referred to as autographs or mono-
graphs.

In our paper we generalize the source-join (a construction principle to
obtain a new difference digraph from two given ones (cf. [5])) for even num-
ber of digraphs. As an application difference labellings can be constructed
for a class of trees.

All digraphs considered in this article are supposed to be oriented graphs,
i.e., nonempty and finite without loops, multiple arcs and 2-cycles.

As usually, a vertex v of a digraph G = (V, A) is called a source [sink ]
iff v has in-degree [out-degree] 0.

Let G = (V, A) be a digraph. G is a difference digraph iff there exist a
finite S ⊂ IN+ and a bijection r : V −→ S such that A = {(u, v) : u, v ∈
V ∧ r(u) − r(v) ∈ S}. We call the bijection r a difference labelling of the
difference digraph G = (V, A).

Most of the time we will refer to vertices of difference digraphs by their
labels. With this in mind, for finite S ⊂ IN+ we denote DD(S) = (V, A) as
the difference digraph of S iff V = S and A = {(i, j) : i, j ∈ V ∧ i− j ∈ V }.

Obviously, if G = (V, A) is a difference digraph with difference labelling
r, then G is isomorphic to DD(S), where S = {r(v) : v ∈ V } (and the
isomorphism is defined by V 3 v 7→ r(v) ∈ S).

Note whenever i−j ∈ V , the difference digraph G = (V, A) must include
the arc (i, j).

As an example of a difference digraph, consider the oriented wheel in
Figure 1.
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Figure 1

In difference digraphs there are only two different types of arcs: the first one
is an arc of the form (2x, x), the second one is an arc (z, x) with z = x + y,
where y ∈ V \ {x, z} and (z, y) ∈ A, i.e., arcs of the second type always
appear in pairs (cf. Figure 2).
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In [5] a pair of adjacent arcs is called an inpair [outpair ] iff the arcs have
the same terminal [initial] vertex. An inpair and an outpair having one arc
in common is an intersecting inpair and outpair (cf. Figure 3).
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Figure 3

The following Theorem of Eggleton and Gervacio has been very useful for
our investigations.

Theorem 1.1 [5]. In a difference digraph, every inpair intersects an out-
pair.

We say that a given digraph G = (V, A) fulfills the Inpair-Outpair-Condition
(IOC) iff in G every inpair intersects an outpair.

In Figure 4 there are examples to demonstrate that the IOC is not
sufficient for a digraph to be a difference digraph. To see this, start the
labelling procedure at the marked vertices and try to avoid pairs of ver-
tices having the same label. For G1 and G3 this is impossible (for G3

some modifications of the given labelling are possible but result in the
same problem). The labelling of G2 would involve the existence of the arcs
(4x, 3x), (4x, x) /∈ A(G2).
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Figure 4. Three non-difference digraphs fulfilling the IOC

G1 : G2 : G3 :

x y

x
2 = y

2 or x + y

x + y x

2x 3x
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4x 4y 2x + 2y

2x + 2y

2x 2y x + y

2. Generalized Source-Join

In [5] the source-join G1 ⊗ G2 = (V, A) of two disjoint difference digraphs
G1 = (V1, A1) and G2 = (V2, A2) is defined as follows: let v1 ∈ V1 and
v2 ∈ V2 be two vertices and s /∈ V1∪V2 a new vertex. Then G1⊗G2 has the
vertex set V = V1 ∪ V2 ∪ {s} and the arc set A = A1 ∪A2 ∪ {(s, v1), (s, v2)}.
Hence the new vertex s is a source in G1 ⊗ G2 which is referred to as the
source of G1 ⊗G2.

Eggleton and Gervacio [5] proved the source-join G1 ⊗ G2 = (V,A) to
be a difference digraph if G1 = (V1, A1) and G2 = (V2, A2) are difference
digraphs. To construct a difference labelling for G1 ⊗G2 they started with
difference labellings of G1 and G2 and used the following labelling method

(LM): Choose primes q1 6= q2 with q2 > maxV1 and q1 > maxV2.
Label the source s /∈ V1 ∪ V2 of G1 ⊗G2 by s := q1v1 + q2v2.
Relabel vertices v ∈ V1 by v := q1v and vertices v ∈ V2 by v := q2v.

We generalize the source-join to an even number d of disjoint difference
digraphs G1 = (V1, A1), G2 = (V2, A2), . . . , Gd = (Vd, Ad). To this end
we choose v1 ∈ V1, . . . , vd ∈ Vd, a new vertex s /∈ ⋃d

i=1 Vi and define the
(generalized) source-join G =

⊗d
i=1 Gi = (V, A) by V =

⋃d
i=1 Vi ∪ {s} and

A =
⋃d

i=1 Ai ∪ {(s, v1), (s, v2), . . . , (s, vd)}.

We construct the following labelling of V (G1 ⊗G2 ⊗ . . .⊗Gd):
Let the difference digraphs Gi be difference labelled and m be the max-

imum label of the vertices of
⋃d

i=1 Vi. Choose primes p1, . . . , pd such that
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Figure 5. Generalized source-join G1 ⊗G2 ⊗ . . .⊗Gd
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∀i ∈ {1, . . . , d− 1} : pi+1 > 2
2√
2+1 m

3√
2+1 p

√
2

i(2)

holds. For odd i = 1, 3, . . . , d− 1, let

Pi :=
d−1∏

odd k=1(k 6=i)

(pkvk + pk+1vk+1)

and relabel the vertices vi ∈ Vi by vi := Pi · pi · vi as well as vi+1 ∈ Vi+1 by
vi+1 := Pi · pi+1 · vi+1. Finally, we label the source s by

s :=
d−1∏

odd k=1

(pkvk + pk+1vk+1).

To demonstrate that this labelling is a difference labelling, in the proof of
the corresponding theorem we will construct the same labelling in a slightly
modified way: we apply (LM) to Gi⊗Gi+1, for all odd i ∈ {1, 3, . . . , d− 1},
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then we relabel the vertices of V (G1⊗G2⊗ . . .⊗Gd) using the numbers Pi.
In the second step we verify that all vertices of the source-join have obtained
different labels and only the arcs of G1⊗G2⊗ . . .⊗Gd have been generated
by this labelling.

In order to prove that the labelling induces no “additional” arcs, we
need a technical lemma.

Lemma 2.1.

∀i ∈ {1, . . . , d− 1} : pi+1 > 2m2pi .(3)

∀i ∈ {1, . . . , d− 2} : pi+2 > 4m3p2
i .(4)

Proof. Let i ∈ {1, . . . , d− 1}. Using (1) and (2) we get

pi+1 > 2
2√
2+1 m

3√
2+1 p

√
2

i = 2
2√
2+1 m

3√
2+1 p

√
2−1

i pi
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2√
2+1 m

3√
2+1

(
2
√

2−1m2
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2−1
)√2−1

pi
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2√
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+(
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√

2−1)
m

3√
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+(2
√

2−1)(
√
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pi

= 2
2+(2−1)(

√
2−1)√

2+1 m
3+(2−1)(2

√
2−1)√

2+1 pi = 2m2pi

as well as

pi+2 > 2
2√
2+1 m

3√
2+1 p

√
2

i+1 > 2
2√
2+1 m

3√
2+1

(
2

2√
2+1 m

3√
2+1 p

√
2

i

)√2

= 2

(
2√
2+1

+ 2
√

2√
2+1

)
m

(
3√
2+1

+ 3
√

2√
2+1

)
p2

i = 22m3p2
i .

Theorem 2.1. The labelling described above is a difference labelling of the
generalized source-join

⊗d
i=1 Gi of the difference digraphs G1, G2, . . . , Gd,

for even d.

Proof. Unless otherwise agreed, in the following ui, vi, . . . denote the (la-
bels of the) vertices ui, vi, . . . ∈ Vi, for i = 1, 2, . . . , d, where the notations
v1, v2, . . . , vd are reserved for (the original labels of) the successors of the
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source s 6∈ ⋃d
i=1 Vi in

⊗d
i=1 Gi (cf. Figure 5). In detail, by original label we

mean the label of a vertex in the difference digraphs G1, G2, . . . , Gd before
the relabelling procedure.

We begin with difference labellings of G1, . . . , Gd. For every odd i ∈
{1, 3, . . . , d−1}, we apply the labelling method (LM) from [5] to the source-
join Gi ⊗ Gi+1 with the primes pi and pi+1, respectively, i.e., we label the
source s of Gi ⊗Gi+1 by s := pivi + pi+1vi+1 and relabel vertices v ∈ Vi by
v := piv and vertices v ∈ Vi+1 by v := pi+1v. Note that (1) and Lemma 2.1
guarantee pi+1 > maxVi and pi > maxVi+1 (cf. (LM)).

Then we multiply the labels of all vertices of Gi⊗Gi+1 by Pi and obtain
a new difference labelling of Gi⊗Gi+1, for all odd i ∈ {1, 3, . . . , d− 1}, with
the property that s has the same label in G1⊗G2, G3⊗G4, . . . , Gd−1⊗Gd.
Consequently, every arc of

⊗d
i=1 Gi is generated by our vertex labelling.

Now we demonstrate

(a) different vertices have different labels and
(b) the labelling does not induce “new” arcs, i.e., arcs which are not con-

tained in A(
⊗d

i=1 Gi).

Obviously, no problems occur if we consider vertices v, v′ ∈ V (Gi ⊗ Gi+1)
and arcs between such vertices, for odd i ∈ {1, 3, . . . , d− 1}.

To (a): Assume, we have labels ui′ = uj′ with i′ ∈ {i, i + 1} and j′ ∈
{j, j + 1}, where i 6= j are odd elements of {1, 3, . . . , d − 1}. Moreover, let
xi′ and xj′ be the original labels of ui′ and uj′ in Gi′ and Gj′ , respectively,
i.e., Pipi′xi′ = ui′ = uj′ = Pjpj′xj′ . We divide this equation by

d−1∏

odd k=1(k 6=i,j)

(pkvk + pk+1vk+1)

and obtain pi′xi′(pjvj + pj+1vj+1) = pj′xj′(pivi + pi+1vi+1).
First, consider i′ = i∧j′ = j. It follows pi(xi(pjvj+pj+1vj+1)−pjxjvi) =

pjpi+1xjvi+1 (6= 0). Consequently, pi divides one of pj , pi+1, xj or vi+1. This
is incompatible with the fact that pi, pi+1, pj are pairwise distinct primes and
pi > m ≥ max{xj , vi+1}.

The remaining cases i′ = i + 1 ∧ j′ = j, i′ = i ∧ j′ = j + 1 and
i′ = i + 1 ∧ j′ = j + 1 can be considered analogously.

To (b): First we exclude ui′ = 2uj′ with i′ ∈ {i, i+1} and j′ ∈ {j, j+1},
where i 6= j are odd elements of {1, 3, . . . , d − 1}. We see this in the same
way like in (a), when we begin with Pipi′xi′ = ui′ = 2uj′ = 2Pjpj′xj′ .



516 M. Sonntag

Now we have to show the non-existence of a set {i′, j′, k′} 6⊆ {l, l + 1} with
uk′ − uj′ = ui′ , where ul′ ∈ V (Gl′ ⊗ Gl′+1) holds for l′ ∈ {i′, j′, k′}, and all
odd l ∈ {1, 3, . . . , d− 1}.

At first, consider ui′ , uj′ , uk′ with uk′ − uj′ = ui′ and s /∈ {ui′ , uj′ , uk′}.
Without loss of generality, we can assume i′ ≤ j′ ≤ k′. (Because of uk′−uj′ =
ui′ we obtain uk′ > uj′ , ui′ , i.e., k′ ≥ j′, i′. Since uk′ − uj′ = ui′ is equivalent
to uk′ − ui′ = uj′ , we can assume ui′ < uj′ , i.e. i′ ≤ j′.)

We distinguish three cases:

Case A. ui′ , uj′ ∈ V (Gi⊗Gi+1)∧uk′ ∈ V (Gk⊗Gk+1)∧ i < k∧ i, k odd.

Case B. ui′ ∈ V (Gi ⊗Gi+1)∧ uj′ , uk′ ∈ V (Gj ⊗Gj+1)∧ i < j ∧ i, j odd.

Case C. ui′ ∈ V (Gi⊗Gi+1)∧uj′ ∈ V (Gj ⊗Gj+1)∧uk′ ∈ V (Gk⊗Gk+1)
∧ i < j < k ∧ i, j, k odd.

In each case we have to distinguish a lot of subcases, i.e., whether the vertices
ui′ , uj′ , uk′ are in V (Gl) or in V (Gl+1) for certain l ∈ {i, j, k}. All these
subcases can be treated similarly as done in (a) and at the beginning of
(b), respectively, where in some situations Lemma 2.1 is needed to obtain a
contradiction. Finally, s ∈ {ui′ , uj′ , uk′} must be investigated.

For details, see [22].

3. Trees

In [5], the alternating trees which are difference digraphs are characterized.
A tree is referred to as alternating iff every path of length of at least 2
in the tree is alternating, i.e., two consecutive arcs have always opposite
orientation. An odd source in an alternating tree is a source having an odd
out-degree. A sink is ordinary iff it is not adjacent to both an odd source u
and an end-source (i.e., a source with out-degree 1) v 6= u.

Theorem 3.1 [5]. An alternating tree is a difference digraph iff every odd
source is adjacent to an ordinary sink.

The generalized source-join enables us to verify a sufficient condition for
the existence of a difference labelling of trees, which are not necessarily
alternating. Let N−(v) and N+(v) denote the set of all predecessors and
the set of all successors of the vertex v ∈ V , respectively.
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Definition 3.1. A tree T = (V, A) is called a d-tree iff T fulfills the IOC
and for every v ∈ V the following conditions hold:

(i) d+(v) ∈ {0, 1} or d+(v) even;
(ii) if there exists a v′ ∈ N−(v) with d+(v′) = 1, then in N−(N+(v)) there

are at most d+(v)
2 vertices v′′ with d+(v′′) = 1.

d-trees will be proved to be difference digraphs. Condition (i) results from
the fact that we will need the generalized source-join of an even number of
difference digraphs in the proof of the following Theorem 3.2. As to condition
(ii) we note that there exist trees without difference labellings which violate
(ii) but fulfill the IOC and (i). To see this, consider the tree T in Figure 6
and assume it has a difference labelling.

The vertex z has a predecessor a with out-degree 1 as well as more than
d+(z)

2 = 4 successors with the property that each of them has a predecessor
of out-degree 1. Because of the even out-degree of z and the different labels
of all successors of z, at least two of these successors (with predecessors of
out-degree 1), say x and y, have the property x + y = z. Their predecessors
of out-degree 1 must have the labels 2x and 2y. Since a has the label 2z,
the equation a = 2z = 2x+2y would imply the existence of two arcs (a, 2x)
and (a, 2y) in contradiction to the definition of T .

a = 2z = 2x + 2y

z = x + y

6 j

=

-
>

±M
}

¾

¼

x

°N

z

*

y

2x

2y

Figure 6. A nonalternating tree violating Definition 3.1(ii) that is not a difference
digraph
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To verify Theorem 3.2 (see below), we need some information on the struc-
ture of d-trees.

Lemma 3.1. If T = (V, A) is a d-tree then T has one of the following
structures:

(S1) ∀ v ∈ V : d+(v) ≤ 1.
In this case T is a path.

(S2) ∃ s ∈ V : d+(s) ≥ 2 ∧ s is a source.
Since d = d+(s) is even, T is the generalized source-join of d trees
T1, T2, . . . , Td (cf. Figure 5 with Gi = Ti).

(S3) ∃ s ∈ V : d+(s) ≥ 2 ∧ d−(s) = 1∧ the component of T − s, which con-
tains the predecessor s′ of s, is a directed path with terminal vertex s′.
Again, d = d+(s) is even, and T has the structure shown in Figure 7.

?

?

?

?

Rª

w1

w2

wk−1 = s′

wk = s

v1 vd

T1 Td





P = (w1, w2, . . . , wk = s)

Figure 7

Proof. Assume, neither (S1) nor (S2) nor (S3) is valid. Then there exists
a vertex v0 ∈ V with d = d+(v0) ≥ 2 (because of not (S1)) and d−(v0) ≥ 1
(because of not (S2)).

The IOC implies that there is at most one predecessor of v0 with out-
degree 1. Consequently, if v0 has a second predecessor or v0 has no predeces-
sor of out-degree 1, there exists a predecessor v1 of v0 with even out-degree
(≥ 2).
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Let us delete the outgoing arcs {e1, e2, . . . , ed} of v0 and consider the com-
ponent T ′ of T −{e1, e2, . . . , ed} which contains v0. Because of the IOC and
since (S3) is forbidden, also in the case that v0 has exactly one predecessor
and this predecessor has out-degree one, we obtain the existence of a vertex
v1 ∈ V (T ′) with even out-degree d+(v1) ≥ 2.

Since (S2) cannot occur, d−(v1) ≥ 1 holds. We delete the outgoing
arcs {e′1, e′2, . . . , e′f} of v1 in T ′ and consider the component T ′′ of T ′ −
{e′1, e′2, . . . , e′f} which contains v1. Because (S3) is forbidden, in T ′′ we obtain
the existence of a vertex v2 ∈ V (T ′′) with even out-degree d+(v2) ≥ 2 and
so on.

Since the tree T is finite, this construction must stop in contradiction
to our assumption.

Theorem 3.2. If T = (V,A) is a d-tree then there is a difference labelling
of T with

(∗)
∀ v ∈ V ∀i ∈ IN+ : (∃ v∗ ∈ V : v∗ = 2iv)

=⇒ ∃ v− ∈ N−(v) : d+(v−) = 1.

Proof. The proof will be done by induction on the number t of the vertices
v ∈ V (T ) with d+(v) ≥ 2.

In case t = 0 the tree T has structure (S1), i.e., T is an oriented path.
Hence we can label its vertices by 20, 21, 22, . . . , 2n−1.

Now let T contain t+1 vertices v with d+(v) ≥ 2. In the following Case
A we use the same notation as in the proof of Theorem 2.1; in Case B we
need additionally the notation w1, w2, . . . , wk of the vertices of the path P
(cf. Figure 7).

Case A. ∃ s ∈ V (T ) : d+(s) ≥ 2 ∧ s is a source.
Now T has structure (S2) and we delete the vertex s and all of its outgoing
arcs. Thus we obtain an even number of trees T1, T2, . . . , Td and these trees
fulfill the premise of the theorem. The induction hypothesis guarantees that
we can construct a difference labelling with property (∗) for each of these
trees. The generalized source-join provides a difference labelling of T .

Now we have to show the property (∗) for this labelling.

A1. ∃ i, j ∈ {1, 2, . . . , d} ∃ui ∈ V (Ti)∃uj ∈ V (Tj) : i 6= j ∧ ui = 2huj .

With ui = Pipixi and uj = Pjpjxj we have Pipixi = 2hPjpjxj .
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We construct a contradiction for odd i and j. If i or j is even, only slight
modifications are necessary.

Pipixi = 2hPjpjxj ⇔ xipi(pjvj + pj+1vj+1) = 2hxjpj(pivi + pi+1vi+1)

⇔ pi(xi(pjvj + pj+1vj+1)− 2hxjpjvi) = 2hxjpjpi+1vi+1.

Then, we obtain the contradiction that pi divides 2hxjpjpi+1vi+1.

A2. ∃ i ∈ {1, 2, . . . , d} ∃ui ∈ V (Ti) : s = 2hui ∨ 2hs = ui.

s = 2hui ⇔ Pi(pivi + pi+1vi+1) = 2hPipixi ⇔ pivi + pi+1vi+1 = 2hpixi

⇔ pi+1vi+1 = pi(2hxi − vi).

Consequently, pi has to divide pi+1vi+1, but this is impossible.
A similar contradiction is found, if we assume 2hs = ui.

Case B. ∀ v ∈ V (T ) : d+(v) ≥ 2 ⇒ d−(v) ≥ 1.

Obviously, T has structure (S3) (cf. Figure 7; note that d = d+(s)). Because
of the IOC no vertex of V has more than one predecessor with out-degree
of exactly one.

We apply assumption (ii) of Definition 3.1 to the vertex s (cf. Figure
7). Of course, in N−(N+(s)) there are at most d

2 vertices v′ ∈ N−(N+(s))
with d+(v′) = 1 and these vertices v′ are predecessors of pairwise distinct
vertices from N+(s). Hence at most d

2 of the trees T1, T2, . . . , Td have such
a vertex v′ and every such tree contains at most one of these vertices.

Therefore, without loss of generality we can subscript the trees T1,
T2, . . . , Td in such a way that only trees Ti with odd i can contain such
a vertex. Hence, in every pair (Ti, Ti+1), for odd i, we find at most one
vertex v′ ∈ N−(N+(s)) with d+(v′) = 1.

We apply the following

Labelling Algorithm

1. Delete all outgoing arcs of s, i.e., the arcs (s, v1), . . . , (s, vd).
2. T1, . . . , Td fulfill the induction hypothesis, so for i = 1, . . . , d construct a

difference labelling of Ti with property (∗).
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3. Construct a difference labelling (which has property (∗)) of the source-
join

⊗d
i=1 Ti with source s, under consideration of the following

conditions:

(a) Let k be the length of the path P (cf. Figure 7). In addition to (1)
and (2) (see Section 2), the primes p1, . . . , pd must have the properties
p1 > 2km ∧ pi+1 > 2k+1m2pi, for all i ∈ {1, . . . , d− 1}.
(b) To construct the difference labelling of

⊗d
i=1 Ti (with property (∗))

we proceed as in Case A and use the algorithm described in Section 2.

(c) Note that because of the special subscription of the trees T1, T2, . . . ,
Td in every source-join Ti ⊗ Ti+1, for odd i, there is at most one vertex
v′ ∈ N−(N+(s)) with d+(v′) = 1.

Of course, the vertex s = wk obtains the label s =
∏d−1

odd l=1(plvl +
pl+1vl+1) = Pi(pivi + pi+1vi+1), for odd i ∈ {1, . . . , n− 1}.

4. For i = 1, . . . , k−1 label the vertices of the path P by wk−i = 2 wk−i+1 =
2is.

It is easy to see that every arc (x, y) is generated by the labels of its end
vertices x and y, i.e., for every arc (x, y) there exists a vertex z such that
the label of the arc is the same as the label of the vertex: x− y = z.

Now we verify that the labelling constructed above does not induce
“new” arcs, i.e.:

∀u, u′, u′′ ∈ V : u− u′ = u′′ ⇒ (u, u′) ∈ A.(5)

(5) is obvious in case u, u′, u′′ ∈ ⋃d
i=1 V (Ti) ∪ {s}, since this is a triple of

vertices in the source-join
⊗d

i=1 Ti. The situation u, u′, u′′ ∈ V (P ) is trivial,
too, and the same holds for u′ = u′′.

Therefore assume there are three vertices u, u′, u′′ ∈ V with u−u′ = u′′

and |{u, u′, u′′} ∩ V (P )| ∈ {1, 2}; without loss of generality, we can suppose
u > u′ > u′′.

B1. |{u, u′, u′′} ∩ V (P )| = 2.

It suffices to investigate u, u′ ∈ V (P ). Changing some signs the remaining
cases can be considered analogously. With u = 2gs, u′ = 2hs and u′′ =
Pipixi ∈ V (Ti) we obtain
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u − u′ = u′′ ⇔ (2g − 2h)s = Pipixi ⇔ (2g − 2h)
∏d−1

odd l=1(plvl + pl+1vl+1) =
Pipixi ⇔ (2g − 2h)(pivi + pi+1vi+1) = pixi ⇔ (2g − 2h)pi+1vi+1 =
pi(xi − (2g − 2h)vi).

Since pi cannot divide the left hand side of the equation, we have got a
contradiction. For u′′ = Pipi+1xi+1 ∈ V (Ti+1) we similarly obtain a contra-
diction.

B2. |{u, u′, u′′} ∩ V (P )| = 1.

We suppose s /∈ {u, u′, u′′} and distinguish whether or not two of the vertices
u, u′, u′′ are in V (Ti), V (Ti+1), V (Ti)∪V (Ti+1) or one is in V (Ti)∪V (Ti+1)
and the other one in V (Tj)∪V (Tj+1), for i 6= j, where i, j ∈ {1, 3, . . . , d−1}
are odd. As done above, we will discuss only the most important cases. The
rest can be obtained by slight modifications.

In the following, i and j are odd numbers from {1, 3, . . . , d− 1}.

B2.1. u = 2hs ∈ V (P ) ∧ u′ = Pipixi ∈ V (Ti) ∧ u′′ = Pipix
′
i ∈ V (Ti).

2hs − Pipixi = Pipix
′
i ⇔ 2h(pivi + pi+1vi+1) − pixi = pix

′
i ⇔ 2hpi+1vi+1 =

pi(xi + x′i − 2hvi), but 2hpi+1vi+1 is not a multiple of pi.

B2.2. u = 2hs ∈ V (P ) ∧ u′ = Pipi+1xi+1 ∈ V (Ti+1) ∧ u′′ = Pipixi ∈ V (Ti).
2hs − Pipi+1xi+1 = Pipixi ⇔ 2h(pivi + pi+1vi+1) − pi+1xi+1 = pixi ⇔
pi+1(2hvi+1 − xi+1) = pi(xi − 2hvi).

This is only possible if pi divides 2hvi+1 − xi+1, i.e., for 2hvi+1 = xi+1,
and if pi+1 divides 2hvi − xi, i.e., for 2hvi = xi. Because of step 2 of our
Algorithm property (∗) holds and we have ∃v−i ∈ N−(vi) : d+(v−i ) = 1 and
∃v−i+1 ∈ N−(vi+1) : d+(v−i+1) = 1. This is incompatible with (c), since vi

and vi+1 are distinct successors of s.

B2.3. u = 2hs ∈ V (P )∧u′ = Pipixi ∈ V (Ti)∧u′′ = Pjpjxj ∈ V (Tj)∧ i > j.

2hs− Pipixi = Pjpjxj ⇔ 2h(pivi + pi+1vi+1)(pjvj + pj+1vj+1)− pixi(pjvj +
pj+1vj+1) = pjxj(pivi + pi+1vi+1) ⇔ pi((2hvi − xi)(pjvj + pj+1vj+1) −
pjxjvi) = pi+1(pjxjvi+1 − 2hvi+1(pjvj + pj+1vj+1)).

Define σ = pjxjvi+1−2hvi+1(pjvj+pj+1vj+1). Obviously, pi must divide
σ, moreover σ < 0 can be deduced from (3): pjxjvi+1 < 2m2pj < pj+1 <
2hvi+1(pjvj + pj+1vj+1).

In the case i > j immediately i > j + 1 follows and from (a) we get
the contradiction pi > 2k+1m2pj+1 ≥ 2 · 2hm2pj+1 > 2hm2(pi + pj+1) ≥
2hvi+1(pjvj + pj+1vj+1) > |pjxjvi+1 − 2hvi+1(pjvj + pj+1vj+1)| = |σ|.
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At the end of Case B we have to demonstrate the property (∗), i.e., for
vertices v and v∗ with v∗ = 2iv we must show the existence of a vertex
v− ∈ N−(v) with d+(v−) = 1. Because of Case A we can suppose that
exactly one of v, v∗ is an element of V (P ).

Assume v∗ = 2iv with v∗ = 2hs ∈ V (P ) − {s} and v = Pkpkxk ∈
V (Tk) ⊂ V (

⊗d
i=1 Ti) − {s}. It follows: 2hs = 2iPkpkxk ⇔ 2h−i(pkvk +

pk+1vk+1) = pkxk ⇔ 2h−ipk+1vk+1 = pk(xk − 2h−ivk), but pk cannot divide
the left hand side of this equation.

The cases v∗ = 2hs ∈ V (P ) − {s} ∧ v = Pkpk+1xk+1 ∈ V (Tk+1) and
v∗ ∈ V (

⊗d
i=1 Ti)− {s} ∧ v ∈ V (P )− {s} can be treated analogously.

This completes the proof.

Corollary 3.1. If T = (V, A) is a d-tree then T is a difference digraph.

4. Remarks on Digraphs with Cycles

Among many other results, in [5] some basic properties of difference digraphs
were given, e.g.:

Remark 4.1 ([5]).
(a) A difference digraph contains no directed cycles.
(b) A difference digraph is an oriented graph.
(c) A difference digraph has at least one source and at least one sink.
(d) A digraph with a total sink is a difference digraph iff it is a transitive

tournament.
(A total sink is a vertex v ∈ V with N−(v) = V − {v}.)

In [5] the authors cite Gervacio [8] (unfortunately, the paper [8] is not
available to me) and mention that he proved that transitive tournaments
are the only difference digraphs in the class of tournaments. Moreover, in
[8] the oriented cycles were characterized, which are difference digraphs.
Because in [5] in this context a more general notion of difference digraph is
used (they allow integers as labels as well as the use of the same label for
different vertices), it is not clear, whether or not Gervacio used difference
labellings of oriented cycles in the sense of our definition in his paper [8].

Thus we sketch the proof of the following theorem here, i.e., we describe
a possible labelling procedure and make some remarks on its verification.
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Theorem 4.1 ([5], [8]). An oriented cycle C = (V, A) is a difference di-
graph iff C fulfills the IOC, C is not a directed cycle and C is not isomorphic
to C∗

4 or C∗
5 (cf. Figure 8).

¾

6

-
?

C∗
4

C∗
5

s+

O º

-

Figure 8. Two oriented cycles, which are not difference digraphs

Proof. Of course, we have only to verify the sufficiency of the given condi-
tions; their necessity is obvious. So let C = (v0, v1, . . . , vn, vn+1 = v0) be an
oriented cycle with IOC which is not directed and not isomorphic to C∗

4 or
C∗

5 . Without loss of generality, let vn be a source. In order to decompose C
into directed paths P1, P2, . . . , Pr, we delete all sources vj1 , vj2 , . . . , vjr = vn

of C and obtain C = (P1, vj1 , P2, vj2 , . . . , vjr−1 , Pr, vjr = vn, vn+1 = v0).
Now, step by step, we label the vertices of the paths P1, P2, . . . , Pr and the
sources vj1 , vj2 , . . . , vjr = vn.

Labelling algorithm

1. i := 1, L0 := 0.
2. If i ≥ 2, then let Li−1 be the maximum of the labels of the vertices of

P1, P2, . . . , Pi−1 and of the sources vj1 , vj2 , . . . , vji−2 .
3. Start at the terminal vertex of Pi and label the vertices of Pi along the

path by 2Li−1+1, 2(2Li−1+1), 22(2Li−1+1), . . . , 2l(Pi)(2Li−1+1), where
l(Pi) is the length of Pi.

4. If i ≥ 2, then label the source vji−1 by the sum of the labels of its
successors. (Note that these successors obtained their labels when Pi−1

and Pi were labelled.)
5. If i < r, then i := i + 1 and go to 2.
6. Label vjr = vn by the sum of the labels of its successors.

As an example, see Figure 9.
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Figure 9

It is clear that this labelling generates all arcs of the cycle C but no additional
arcs inside one of the paths Pi (i ∈ {1, 2, . . . , r}). Because of the definition of
L1, L2, . . . , Lr−1 and the labelling of the vertices of the paths P1, P2, . . . , Pr

(cf. step 3) we have “sufficiently large” differences between the vertex labels
of different paths, i.e., there cannot be vertices ui ∈ V (Pi) and uj ∈ V (Pj)
with i 6= j and ui − uj ∈ V (Pk) for a k ∈ {1, 2, . . . , r}. For the same reason
this fact holds true, if we involve also the sources vj1 , vj2 , . . . , vjr−1 , vjr = vn

beside the vertices of P1, P2, . . . , Pr. To demonstrate this, a detailed, but
simple distinction of cases is necessary.

The next step to investigate difference digraphs with cycles would be to con-
sider cycles with additional hanging arcs (“prickles”) as preparatory work to
combine cycles and paths (or trees) to oriented cacti (cf. [21] for undirected
cacti). Of course partial results are possible, but even adding hanging arcs
to cycles causes a lot of problems and can result in a difference digraph or
not. Many different cases must be considered, e.g. whether or not there
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are ingoing/outgoing arcs at adjacent vertices of the cycles, where the di-
rection of the arcs along the cycle is important, too. In the undirected case
the composition of difference labellings of cycles with prickles (“hedgehogs”)
and paths with prickles (“caterpillars”) causes no problems, but in the di-
rected case we have only the source-join as a tool (if we desist from very
special structures).
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