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Abstract
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1. Introduction

The tensor product of two simple graphs G1 = (V (G1), E(G1)) and G2 =
(V (G2), E(G2)) is the graph G1 ⊗ G2 whose vertex set is V (G1) × V (G2),
and whose edge set is {(x1, x2)(y1, y2)| x1y1 ∈ E(G1) and x2y2 ∈ E(G2)}.
The n-fold tensor product of simple graphs G1, G2, · · · , Gn, denoted

⊗n
i=1 Gi,

is the graph whose vertex set is V (G1) × V (G2) × · · · × V (Gn), and
whose edge set is {(x1, x2, · · · , xn)(y1, y2, · · · , yn)|xiyi ∈ E(Gi), 1 ≤ i ≤ n}.
This is equivalent to the inductive definition

⊗n
i=1 Gi = (

⊗n−1
i=1 Gi) ⊗ Gn.
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In the literature, the tensor product is also called the Kronecker product, the
categorical product, the direct product, or simply the product. See Section
5.3 of [3] for greater detail.

The eccentricity of a vertex x of a graph G is the maximum distance
from x of a vertex y of G. The radius of G is the smallest eccentricity of
the vertices of G. The center of G is the set of vertices whose eccentricity
equals the radius of G. See [2] for a standard reference.

This article derives formulas which express vertex eccentricity and ra-
dius of an n-fold tensor product in terms of invariants of its factors. We also
prove the center of such a graph is a union of n + 1 vertex sets of the form
V1 × V2 × · · · × Vn, with Vi ⊆ V (Gi).

Previously, Suh-Ryung Kim [4] treated the case of the tensor product
of two graphs, one of which is bipartite. More recently, Abay-Asmerom and
Hammack [1] solved the case involving the tensor product of two arbitrary
graphs, but the formulas did not generalize to products with more than two
factors. The present article solves the problem in complete generality, and
the results of [4] and [1] become corollaries and special cases. Moreover, the
formulas from [1] are greatly simplified under our approach. The authors
thank the referees for their valuable comments and suggestions.

2. Distance in a Tensor Product

This section reviews the notion of distance in a graph, and derives a few
results concerning distance in a tensor product. The discussion is phrased
in the language of walks.

Recall that a walk in G is a sequence of vertices W = w0w1w2 · · ·wm,
where any two consecutive vertices are adjacent, and form an edge of the
walk. A walk is regarded as a traversal of its edges in a specified order. The
length of W , denoted by |W |, is the number of edges in the walk (with the
understanding that an edge may appear and be counted multiple times). A
trivial walk consists of a single vertex, and has length 0. Two walks have
the same parity if the difference of their lengths is even; otherwise they have
opposite parity. A walk W and an integer q have the same (or opposite)
parity if |W | − q is even (or odd). An even (odd) walk is one whose length
is even (odd). A walk that begins at vertex x and ends at vertex y is called
an x-y walk.

The distance between two vertices x and y of a graph G, denoted
by dG(x, y), is the length of the shortest x-y walk in G, or ∞ if no such
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walk exists. The upper distance between x and y, denoted DG(x, y), is the
minimum length of an x-y walk whose parity differs from that of dG(x, y).
If G is bipartite or trivial, then no such walk exists, and we say DG(x, y) =
∞. Likewise, DG(x, y) = ∞ if x and y happen to be in different components
of G. Note that if G is connected and contains an odd cycle, then DG(x, y)
must be finite. For example, in Figure 1, dG(a, d) = 2, DG(a, d) = 3,
dG(a, a) = 0, and DG(a, a) = 5. Notice that DG is not a distance function,
as, in particular, DG(x, x) > 0. The notion of upper distance, as well as the
definitions in the next paragraph, first appeared in [1].

An x-y walk W in a graph G is called minimal if |W | = dG(x, y),
and it is called slack if dG(x, y) < |W | < DG(x, y). It is called critical if
|W | = DG(x, y), and ample if DG(x, y) < |W |. For example, if G is the
5-cycle abcdea, the walk ab is minimal, and aedcb is critical. The walk abcb
is slack, and abcbcb is ample. Notice that any minimal walk is necessarily a
path. Observe also that any walk in a bipartite graph is either minimal or
slack — it can be neither critical nor ample. The following lemma will help
prove our main results.

Lemma 1. Any subwalk of a critical walk is either minimal or critical.

Proof. Suppose the x-y walk X is a subwalk of a critical w-z walk W . Then
W = AXB for (possibly trivial) walks A and B. If X is minimal, there is
nothing to prove, so suppose X is not minimal. Let Y be an x-y walk that
is shorter than X. If we can show the parity of Y must differ from that of
X, then (by the definition of a critical walk) X must be critical. But this
is clear. For if Y had the same parity as X, then AY B would be a shorter
w-z walk than W , yet it would have the same parity as W , contradicting
the fact that W is critical.

If each factor Gi in G =
⊗n

i=1 Gi has a walk Wi = wi0wi1wi2...wim of length
m, we denote by W1⊗W2⊗· · ·⊗Wn =

⊗n
i=1 Wi the walk (w10, w20, · · · , wn0)

(w11, w21, · · · , wn1) (w12, w22, · · · , wn2) · · · (w1m, w2m, · · · , wnm) in G. Notice
that any walk of length m in G can be written uniquely as

⊗n
i=1 Wi, for

appropriate walks Wi in Gi, all of length m.
Next, we present two lemmas concerning distance in an n-fold tensor

product. These lemmas are generalizations to n factors of results that ap-
peared in [1]. See [4] and [5] for another approach to distance in a tensor
product.
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Lemma 2. Let x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) be two vertices
of G =

⊗n
i=1 Gi and suppose each factor Gi has a nontrivial xi-yi walk Wi.

If all walks Wi have the same parity, then dG(x, y) ≤ max{|Wi| |1 ≤ i ≤ n}.

Proof. For each integer 1 ≤ i ≤ n, denote the walk Wi as xixi1xi2xi3

· · ·ximiyi. Choose an integer k, 1 ≤ k ≤ n, for which |Wk| = max{|Wi| |1 ≤
i ≤ n}. For each i 6= k, the xi-yi walk Wi can be extended to an
xi-yi walk W̃i of length |Wk| by appending to its end the even walk
yiximiyiximiyi · · ·ximiyi of length |Wk| − |Wi|. Then (

⊗k−1
i=1 W̃i) ⊗ Wk ⊗

(
⊗n

i=k+1 W̃i) is an x-y walk of length |Wk| in G. Hence dG(x, y) ≤ |Wk| =
max{|Wi| |1 ≤ i ≤ n}.

Lemma 3. Let x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) be two vertices
of G =

⊗n
i=1 Gi. If there is no integer m for which each Gi has an xi-yi

walk of length m, then dG(x, y) = ∞. Otherwise, dG(x, y) = min{m ∈
N | each Gi has an xi-yi walk of length m}.

Proof. If there is no integer m for which each Gi has an xi-yi walk of length
m, then there can be no x-y walk W in G, for such a walk would necessarily
have the form W =

⊗n
i=1 Wi with each Wi an xi-yi walk of length m = |W |.

Hence dG(x, y) = ∞.
Now suppose there is some integer m for which each Gi has an xi-yi walk

Wi of length m. Set M = min{m ∈ N| each Gi has an xi-yi walk of length
m}. By Lemma 2, dG(x, y) ≤ M . Let W =

⊗n
i=1 Wi be an x-y walk of

length dG(x, y) in G. Then each Wi is an xi-yi walk of length m = dG(x, y),
so dG(x, y) ≥ M . It follows dG(x, y) = M .

The next result is our primary tool for constructing minimal walks in tensor
products.

Proposition 1. A walk W =
⊗n

i=1 Wi in the graph G =
⊗n

i=1 Gi is
minimal if and only if one factor Wi is minimal, or one factor is slack
and another factor is critical.

Proof. Say W begins at x = (x1, x2, · · · , xn) and ends at y = (y1, y2, · · · , yn),
so each Wi is an xi-yi walk in Gi.

Suppose W is minimal. First, suppose to the contrary that no factor
of W is minimal and no factor is slack. Then each factor Wi is critical or
ample, so for each 1 ≤ i ≤ n there is a shorter xi-yi walk than Wi. We can
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assume all these shorter walks have the same parity — the parity opposite
to |W | if W has any critical factors, or either parity if all factors are ample.
But then Lemma 2 contradicts the minimality of W .

Now suppose that no factor of W is minimal and no factor is critical.
Then each factor Wi is slack or ample, so for each 1 ≤ i ≤ n there is a shorter
xi-yi walk than Wi. We can assume all these shorter walks have the same
parity – the same parity as |W | if W has any slack factors, or either parity
if all factors are ample. But then Lemma 2 contradicts the minimality of W .

The previous two paragraphs show that if W is minimal, then one factor
of W is minimal, or one factor is slack and another is critical.

Conversely, suppose that one factor of W is minimal, or one factor
is slack and another factor is critical. If one factor is minimal, then W is
minimal by Lemma 3. Next suppose that one factor Wk is slack and another
factor Wl is critical. Then any xk-yk walk in Gk that is shorter than Wk

has the same parity as Wk, while any xl-yl walk in Gl that is shorter than
Wl has the opposite parity to Wl. As |Wk| = |Wl|, we conclude there is no
integer m < |Wk| = |Wl| for which there are xk-yk and xl-yl walks of length
m. Then W is minimal by Lemma 3.

3. Eccentricity and Centers

The eccentricity of x ∈ V (G) is eG(x) = max{dG(x, y)|y ∈ V (G)}. The
upper eccentricity of x is EG(x) = max{DG(x, y)|y ∈ V (G)}. Notice that
EG(x) = ∞ if and only if G is disconnected, bipartite, or trivial. As an
illustration of these ideas, each vertex x of the graph G in Figure 1 is labeled
with an ordered pair (eG(x), EG(x)).

a (2, 5)

b (1, 4)

c (2, 3)

d (2, 3)

G
@

@

¡
¡

s
s

s
s

Figure 1

The radius of G is r(G) = min{eG(x)|x ∈ V (G)}, and the upper radius is
R(G) = min{EG(x)|x ∈ V (G)}. For example, in Figure 1, r(G) = 1, and
R(G) = 3.
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Recall that the center of G is the subset of V (G) consisting of all vertices
x for which eG(x) = r(G). For example, the center of the graph G in Fig-
ure 1 consists of the single vertex b. Consideration of the upper eccentricity
and radii in the factors of an n-fold tensor product will be instrumental in
characterizing its center.

4. Results

Now we can compute the eccentricity of a vertex in an n-fold tensor product,
and also find the radius and center of such a graph. This is done in Theorems
1, 2 and 3 below. These theorems involve a function µ, defined as follows.
If X is a finite multiset with elements in N ∪ {∞}, then

µ(X) =

{
max(X − {max(X)}) if max(X) has multiplicity 1,

max(X)− 1 otherwise.

In words, µ selects the second-largest element of X, unless X contains
more than one largest element, in which case µ returns one less than the
largest elements. As examples, µ({3, 6, 4, 9}) = 6, µ({2, 7, 7,∞, }) = 7,
µ({2, 4, 7, 7}) = 6, and µ({2, 4,∞,∞}) = ∞.

Theorem 1. If no factor of G =
⊗n

i=1 Gi is trivial, and x = (x1, x2, · · · , xn)
∈ V (G), then eG(x1, x2, · · · , xn) = µ({eGi(xi), EGi(xi)|1 ≤ i ≤ n}).

Proof. For brevity, set M = µ({eGi(xi), EGi(xi)|1 ≤ i ≤ n}). First, we
establish eG(x) ≤ M . For this it suffices to show any minimal walk W =⊗n

i=1 Wi in G, beginning at x, satisfies |W | ≤ M . If W is such a walk, then,
by Proposition 1, one factor of W is minimal or one is slack and another is
critical. If some factor Wa is minimal, then, since it begins at xa, we have
|W | = |Wa| ≤ eGa(xa) ≤ M , by definition of M . If Wa is slack and Wb is
critical, then |W | = |Wa| < EGa(xa) and |W | = |Wb| ≤ EGb

(xb). It follows
that |W | is smaller than the largest element of {EG1(xi)|1 ≤ i ≤ n}, yet it
is not larger than the second-largest element. Then |W | ≤ M , by definition
of M . This completes the proof that eG(x) ≤ M .

The rest of the proof is devoted to showing eG(x) ≥ M . Certainly this
is true if G is disconnected, for then eG(x) = ∞ ≥ M . So we may assume
henceforward that G is connected. This means every factor Gi is connected
and at most one factor is bipartite (c.f. Theorem 5.29 of [3]). To show
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eG(x) ≥ M , it suffices to construct a minimal walk W in G beginning at
x, and satisfying |W | = M . The rest of the proof is a construction of such
a walk.

Choose indices 1 ≤ a, b ≤ n for which EGb
(xb) is the largest element of

the multiset {EGi(xi)|1 ≤ i ≤ n}, and EGa(xa) is the largest of the remain-
ing elements once EGb

(xb) has been removed. Thus EGa(xa) ≤ EGb
(xb).

Since EGi(xi) = ∞ if and only if Gi is bipartite, it follows Gb is the only fac-
tor of G that can be bipartite, and, if it is, then EGb

(xb) = ∞ and EGa(xa)
is finite.

For each 1 ≤ i ≤ n, with i 6= a, b, let Wi be any walk in Gi that begins
at xi and has length M . (Such walks exist because each Gi is connected
and nontrivial.) We are going to find walks Wa and Wb of length M for
which Proposition 1 implies the walk

⊗n
i=1 Wi of length M beginning at x

is minimal. For the rest of the proof, let Za be a critical xa-za walk of length
EGa(xa) in Ga. Let Ya be a minimal xa-za walk in Ga. We consider three
exhaustive cases.

Case 1. EGa(xa) < EGb
(xb) = ∞. This is the case where Gb is bi-

partite. In the expression for M , the function µ disregards the largest
value of EGb

(xb) = ∞ and selects the largest of the remaining values of
{eGi(xi), EGi(xi)|1 ≤ i ≤ n}. Since eGi(xi) < EGi(xi) for each i, it follows
that M = max{eGb

(xb), EGa(xa)}. We consider the cases M = EGa(xa)
and M = eGb

(xb) separately. First suppose M = EGa(xa). Let Wa be the
critical walk Za of length EGa(xa) = M , and let Wb be an arbitrary walk
in Gb beginning at xb and having length M . Then Wb is either minimal or
slack because Gb is bipartite. The walk

⊗n
i=1 Wi begins at x, has length

M , and is minimal by Proposition 1. Next suppose M = eGb
(xb). Let Wb

be a minimal walk in Gb starting at xb and having length eGb
(xb) = M ,

and let Wa be an arbitrary walk in Ga beginning at xa and having length
M . Then the walk

⊗n
i=1 Wi begins at x, has length M , and is minimal by

Proposition 1.
This takes care of the case where the factor Gb of G is bipartite, so

EGb
(xb) is finite for the rest of the proof. Let Zb be a critical xb-zb walk of

length EGb
(xb) in Gb, and denote the last edge in Zb as ybzb. Let Yb be a

minimal xb-zb walk in Gb.

Case 2. EGa(xa) < EGb
(xb) < ∞. As in the previous case, M =

max{eGb
(xb), EGa(xa)}, and, as in that case, if M = eGb

(xb) there is a
minimal walk in G, starting at x and having length M . Thus suppose
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M = EGa(xa), so eGb
(xb) ≤ EGa(xa) < EGb

(xb). Let Wa be the critical
walk Za of length EGa(xa) = M . Then since Yb is minimal and begins at
xb, we have |Yb| ≤ eGb

(xb) ≤ EGa(xa) = |Wa|.
If the integer k = |Wa| − |Yb| is even, extend Yb to a walk Wb of length

M by appending to its end the even walk zbybzbyb · · · ybzb of length k. Then
the xb-zb walk Wb is minimal or slack because |Wb| = |Wa| = EGa(xa) <
EGb

(xb) = DGb
(xb, zb). Then the walk

⊗n
i=1 Wi begins at x, has length M ,

and is minimal by Proposition 1.
On the other hand, if k is odd, extend Yb to a xb-yb walk Wb of length

M by appending to its end the odd walk zbybzbyb · · · zbyb of length k. If we
can show that Wb is minimal or slack, then

⊗n
i=1 Wi will be the required

minimal walk of length M beginning at x.
Now, the parity of Yb is opposite to that of Wa (since k is odd) it

is also opposite to Zb by construction. Therefore |Wa| = EGa(xa) and
|Zb| = EGb

(xb) have the same parity, and as the former is smaller that the
latter we infer EGa(xa) < EGb

(xb) − 1. And, since eGb
(xb) ≤ EGa(xa), we

get eGb
(xb) < EGb

(xb) − 1. Let Xb be the walk Zb with its last edge ybzb

removed. By Lemma 1, Xb is either minimal or critical. But it cannot be
minimal, for then eGb

(xb) ≥ dGb
(xb, yb) = |Xb| = |Zb| − 1 = EGb

(xb) − 1,
contradicting the above inequality. Therefore Xb is a critical xb-yb walk, so
|Xb| = DGb

(xb, yb). But this means Wb is a minimal or slack xb-yb walk
since |Wb| = |Wa| = EGa(xa) < EGb

(xb)− 1 = |Xb| = DGb
(xb, yb).

Case 3. EGa(xa) = EGb
(xb) < ∞. In this case, M = EGb

(xb) − 1 by
definition of M . Let Wb be the walk Zb with its last edge ybzb removed, so
|Wb| = EGb

(xb) − 1 = M , and Wb is either minimal or critical by Lemma
1. By construction, Wb and Ya have the same parity (namely that opposite
of |Za| = |Zb|), and |Ya| ≤ EGa(xa) − 1 = |Wb|. Extend Ya to a xa-za

walk Wa of length M by appending to its end an even walk zayazaya · · · yaza

of length |Wb| − |Ya|. Then Wa is a minimal or slack xa-za walk because
|Wa| = |Wb| = EGb

(xb)− 1 < EGb
(xb) = EGa(xa) = DGa(xa, za). The walk⊗n

i=1 Wi begins at x, has length M , and is minimal by Proposition 1. The
proof is complete.

Theorem 2. If every factor of G =
⊗n

i=1 Gi is nontrivial, then G has
radius r(G) = µ({r(Gi), R(Gi)|1 ≤ i ≤ n}).
Proof. Choose a vertex x = (x1, x2, · · · , xn) of G with the property that
r(G) = eG(x). Using Theorem 1, r(G) = eG(x) = µ({eGi(xi), EGi(xi)|1 ≤
i ≤ n}) ≥ µ({r(Gi), R(Gi)|1 ≤ i ≤ n}).
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To establish the reverse inequality, let R(Ga) ≤ R(Gb) be the two largest
upper radii in the multiset {R(Gi)|1 ≤ i ≤ n}, and consider the following
two cases.

If R(Ga) = R(Gb), then for each 1 ≤ i ≤ n, choose xi ∈ V (Gi) for which
EGi(xi) = R(Gi). Then EGa(xa) = EGb

(xb) are the largest elements in the
multiset {eGi(xi), EGi(xi)|1 ≤ i ≤ n}. Thus r(G) ≤ eG(x1, x2, · · · , xn) =
µ({eGi(xi), EGi(xi)|1 ≤ i ≤ n}) = EGa(xa) − 1 = R(Ga) − 1 = µ{r(Gi),
R(Gi)|1 ≤ i ≤ n}.

If R(Ga) < R(Gb), choose xb ∈ V (Gb) for which eGb
(xb) = r(Gb),

and for i 6= b take xi ∈ V (Gi) for which EGi(xi) = R(Gi). Then for
i 6= b we have EGi(xi) = R(Gi) ≤ R(Ga) < R(Gb) ≤ EGb

(xb). Thus
EGb

(xb) is the sole largest element of the multiset {eGi(xi), EGi(xi)|1 ≤
i ≤ n}, and the second-largest is either eGb

(xb) = r(Gb) or EGa(xa) =
R(Ga). Hence R(G) ≤ eG(x1, x2, · · · , xn) = µ({eGi(xi), EGi(xi)|1 ≤ i ≤
n}) = max{eGb

(xb), EGa(xa)} = max{r(Gb), R(Ga)} = µ({r(Gi), R(Gi)|1 ≤
i ≤ n}).
The next theorem is an explicit description of the center of G =

⊗n
i=1 Gi.

To set the stage, for each 1 ≤ i ≤ n, define the following sets.

Xi = {x ∈ V (Gi)|EGi(x) ≤ r(G)},
Xi = {x ∈ V (Gi)|EGi(x) ≤ r(G) + 1},
X̃i = {x ∈ V (Gi)|eGi(x) ≤ r(G)}.

Observe that these sets are nested in the fashion Xi ⊆ Xi ⊆ X̃i.

Theorem 3. The center of G =
⊗n

i=1 Gi is the following union of n + 1
vertex sets:
(X1×X2× · · · ×Xn)∪ (X̃1×X2× · · · ×Xn)∪ (X1× X̃2× · · · ×Xn)∪ · · · ∪
(X1 ×X2 × · · · × X̃n).

Proof. The theorem is obviously true if some factor of G is trivial or
disconnected, or if more than one factor is bipartite. Thus we may assume
each factor of G is connected and nontrivial, and at most one factor is
bipartite.

We first verify that each set in the above union is in the center of G.
For this it suffices to show that if vertex x = (x1, x2, · · · , xn) is in one of
these sets, then eG(x) ≤ r(G).
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If x ∈ X1×X2×· · ·×Xn, then EGi(xi) ≤ r(G)+1, for 1 ≤ i ≤ n, and since
eGi(xi) < EGi(xi), it follows that eGi(xi) ≤ r(G) for each i. Consequently,
Theorem 1 gives eG(x) = µ({eGi(xi), EGi(xi)|1 ≤ i ≤ n}) ≤ r(G), since µ of
a multiset is always less than its largest element, and in this case the largest
element is at most r(G) + 1.

If x ∈ X1 × X2 × · · · × X̃k × · · · × Xn, then eGk
(xk) ≤ r(G) and

eGi(xi) < EGi(xi) ≤ r(G) for i 6= k. Thus no element in the multiset
{eGi(xi), EGi(xi)|1 ≤ i ≤ n} is greater than r(G), with the possible ex-
ception of EGk

(xk). By Theorem 1 and definition of M it follows that
eG(x) = µ({eGi(xi), EGi(xi)|1 ≤ i ≤ n}) ≤ r(G).

Next, suppose x is in the center of G, so eG(x) = r(G). Let EGa(xa) ≤
EGb

(xb) be the two largest upper eccentricities in the multiset {EGi(xi)|1 ≤
i ≤ n}.

If EGa(xa) = EGb
(xb), then r(G) = eG(x) = µ{eGi(xi), EGi(xi)|1 ≤ i ≤

n} = EGa(xa)−1. This means EGi(xi) ≤ EGa(xa) ≤ r(G)+1 for 1 ≤ i ≤ n,
so x ∈ X1 ×X2 × · · · ×Xn.

On the other hand, suppose EGa(xa) < EGb
(xb). Then using Theorem

1, r(G) = eG(x) = µ({eGi(xi), EGi(xi)|1 ≤ i ≤ n}). But µ will ignore the
largest value of EGb

(xb) and pick the largest of the remaining values. Hence

r(G) = max{EG1(x1), EG2(x2), · · · , EGb−1
(xb−1), eGb

(xb),

EGb+1
(xb+1), · · · , EGn(xn)}.

It follows that eGb
(xb) ≤ r(G), and EGi(xi) ≤ r(G) for i 6= b. This means

x ∈ X1 ×X2 × · · · × X̃b × · · · ×Xn.

Theorems 1, 2, and 3 simplify greatly if one or more factors of the ten-
sor product is bipartite or disconnected. Of course, if one factor is dis-
connected or if more than one factor of is bipartite, then G is discon-
nected, and its radius and all its vertex eccentricities are infinite. More-
over, Xi = Xi = X̃i = V (Gi) in such cases, and Theorems 1, 2 and 3
give the expected result that the eccentricities and radius are infinite and
every vertex of G is central. That is not particularly interesting. What
is interesting is the case where exactly one of the factors, say G1, is bi-
partite, while all other factors are connected and have odd cycles. In
this situation EG1(x1) = ∞, while EGi(xi) is finite when 1 < i ≤ n.
In Theorem 1, µ disregards the largest value of EG1(x1) = ∞ and se-
lects the largest of the remaining finite values. Theorem 1 thus becomes
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eG(x1, x2, · · · , xn) = max{eG1(x1), EG2(x2), EG3(x3), · · · , EGn(xn)}. The-
orem 2 reduces to r(G) = max{r(G1), R(G2), R(G3), · · · , R(Gn)}, and in
Theorem 3, X1 = X1 = ∅. These observations prove the following.

Corollary 1. Suppose every factor of G =
⊗n

i=1 Gi is connected, and G1 is
bipartite, while all other factors have odd cycles. Then for any vertex x =
(x1, x2, · · · , xn) of G, eG(x) = max{eG1(x1), EG2(x2), EG3(x3), · · · , EGn(xn)}.
Also G has radius r(G) = max{r(G1), R(G2), R(G3), · · · , R(Gn)}. More-
over, the center of G is the vertex set X̃1 ×X2 ×X3 × · · · ×Xn.

For n = 2, this corollary reduces to Kim’s Theorem 3 of [4]. Kim defines
de(a, b) and do(a, b) to be the lengths of the shortest a-b walks of even and
odd lengths, respectively, in a graph G. The double eccentricity of a vertex
a of G is defined to be deG(a) = max{de(a, b), do(a, b)|b ∈ V (G)}, and the
double radius is defined to be dr(G) = min{deG(a)|a ∈ V (G)}. Kim proves
that if G is bipartite, then eG⊗H(a, x) = max{eG(a), deH(x)}, and (a, x) is
in the center of G ⊗H if and only if eG⊗H(a, x) = max{r(G), dr(H)} (i.e.,
that r(G⊗H) = max{r(G), dr(H)}). Simply observe deG(a) = EG(a), and
dr(G) = R(G), and these results are our Corollary 1 for the case n = 2.
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