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Abstract

We introduce a new hereditary class of graphs, the dominant-matching
graphs, and we characterize it in terms of forbidden induced subgraphs.
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1. Dominant-Covering Graphs

Let G be a graph. The neighborhood of a vertex x ∈ V (G) is the set
NG(x) = N(x) of all vertices in G that adjacent to x. If vertices x and
y of G are adjacent (respectively, non-adjacent), we shall use notation x ∼ y
(respectively, x 6∼ y). For disjoint sets X, Y ⊆ V (G), we write X ∼ Y
(respectively, X 6∼ Y ) to indicate that each vertex of X is adjacent to each
vertex of Y (respectively, no vertex of X is adjacent to a vertex of Y ).

A set D ⊆ V (G) is called a dominating set in G if V (G) = N [D] =⋃
d∈D N [d], where N [d] = N(d) ∪ {d} is the closed neighborhood of d. A

minimum dominating set in G is a dominating set having the smallest car-
dinality. This cardinality is the domination number of G, denoted by γ(G).

A set C ⊆ V (G) is called a vertex cover in G if every edge of G is
incident to at least one vertex in C. The minimum cardinality of a vertex
cover in G is the vertex covering number of G, denoted by τ(G).

Definition 1. A graph G is called a dominant-covering graph if γ(H) =
τ(H) for every isolate-free induced subgraph H of G.
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Many similarly defined classes were characterized in terms of forbidden in-
duced subgraphs by Zverovich [3], Zverovich [4], Zverovich and Zverovich [5],
and Zverovich and Zverovich [6]. We give such a characterization for
dominant-covering graphs, and then we extend it to dominant-matching
graphs.

Theorem 1. A graph G is a dominant-covering graph if and only if G does
not contain any of G1, G2, . . . , G10 shown in Figure 1 as an induced subgraph.
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Figure 1. Forbidden induced subgraphs for dominant-covering graphs.

Proof. Necessity. It is easy to check that the graphs Gi ∈ {G1, G2, . . . , G10}
(Figure 1) satisfies 2 = γ(Gi) < τ(Gi), and therefore they are not dominant-
covering. It follows that no one of them can be an induced subgraph of a
dominant-covering graph.

Sufficiency. Let G be a minimal forbidden induced subgraph for the
class of all dominant-covering graphs. Suppose that G 6∈ {G1, G2, . . . , G10}.
By minimality, G does not contain any of G1, G2, . . . , G10 as an induced
subgraph. Also, each proper induced subgraph of G is a dominant-covering
graph, therefore γ(G) < τ(G).

We consider a minimum dominating set D of G such that D covers the
maximum possible number of edges of G [among all minimum dominating
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sets of G]. If D covers all edges of G, then γ(G) = τ(G), a contradiction.
Thus, we may assume that an edge e = uv is not covered by D.

Since D is a dominating set, there exist vertices w and x in D which
are adjacent to u and v, respectively. If w = x then G(u, v, w) ∼= G1, a
contradiction. Therefore w 6= x. Moreover, u is non-adjacent to x, and v is
non-adjacent to w.

Let Du = (D \ {w}) ∪ {u}. We have |Du| = |D|, and Du covers the
edges uv, uw and vx.

Case 1. Du is not a dominating set.
Suppose that Du does not dominate a vertex y of G. Since D is a dominating
set, y is adjacent to w. Thus, the edge f = yw is covered by D, and it is
not covered by Du.

Case 2. Du is a dominating set.
Clearly, Du is a minimum dominating set. The choice of D implies that
there exists an edge f which is covered by D and which is not covered by
Du. Obviously, f is incident to the vertex w, i.e., we may assume that
f = yw for some vertex y 6∈ {u, v, x}.

In both cases, we have obtained that there exists some edge yw covered
by D and not covered by Du. If y is adjacent to u or x, then G contains
G1 or G2 as an induced subgraph, a contradiction. Hence edge-set of the
induced subgraph H = G(u, v, w, x, y) is one of the following:

Variant 1H: E(H) = {uv, uw, vx, wy}, or
Variant 2H: E(H) = {uv, uw, vx, wy, vy}, or
Variant 3H: E(H) = {uv, uw, vx, wy, wx}, or
Variant 4H: E(H) = {uv, uw, vx, wy, wx, vy}.

Now we consider the set Dv = (D\{x})∪{v}. By symmetry, there exists an
edge g = zx which is covered by D and which is not covered by Dv. Again,
we have four variants for the induced subgraph F = G(u, v, w, x, z):

Variant 1F: E(H) = {uv, uw, vx, xz}, or
Variant 2F: E(H) = {uv, uw, vx, xz, uz}, or
Variant 3F: E(H) = {uv, uw, vx, xz, wx}, or
Variant 4F: E(H) = {uv, uw, vx, xz, wx, uz}.
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Note that the vertices y and z may or may not be adjacent. Combinations
of Variants 1H, 2H, 3H, 4H and Variants 1F, 2F, 3F, 4F shows that the set
{u, v, w, x, y, z} induces one of G3, G4, . . . , G10, a contradiction.

2. Dominant-Matching Graphs

The matching number of a graph G is denoted by µ(G), i.e., µ(G) is the
maximum cardinality of a matching in G.

Proposition 1 (see Lovász and Plummer [1]). µ(G) ≤ τ(G) for every
graph G.

Proposition 2 (Volkmann [2]). γ(G) ≤ µ(G) for every graph G without
isolated vertices.

Definition 2. A graph G is called a dominant-matching graph if γ(H) =
µ(H) for every isolate-free induced subgraph H of G.

Note that the class of all graphs such that µ(H) = τ(H) for every induced
subgraph H of G coincides with the class of all bipartite graphs, see e.g.
Minimax König’s Theorem in Lovász and Plummer [1]. Now we extend
Theorem 1 by characterization of the dominant-matching graphs in terms
of forbidden induced subgraphs.

Theorem 2. A graph G is a dominant-matching graph if and only if G
does not contain any of G3, G4, . . . , G10 (Figure 1) and H1,H2,H3,H4,H5

(Figure 2) as an induced subgraph.

Proof. Necessity. It can be directly checked that

• γ(Hi) = 1 and µ(Hi) = 2 for i = 1, 2, 3,
• γ(Hj) = 2 and µ(Hj) = 3 for j = 4, 5, and
• γ(Gk) = 2 and µ(Gk) = 3 for k = 3, 4, . . . , 10.

Therefore none of G3, G4, . . . , G10 (Figure 1) and H1,H2,H3,H4,H5

(Figure 2) can be an induced subgraph of a dominant-matching graph.
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Figure 2. Some forbidden induced subgraphs for dominant-matching graphs.

Sufficiency. Suppose that the statement does not hold. We consider a mini-
mal graph G such that

• G does not contain any of G3, G4, . . . , G10 (Figure 1) and H1,H2,H3,
H4,H5 (Figure 2) as an induced subgraph, and

• G is not a dominant-matching graph.

The minimality of G means that each proper induced subgraph of G is a
dominant-matching graph. If G does not contain both G1 and G2 (Figure 1)
induced subgraphs, then G is a dominant-covering graph by Theorem 1.
Hence γ(G) = τ(G). Proposition 1 and Proposition 2 imply that γ(G) =
µ(G), a contradiction to the choice of G.

Thus, it is sufficient to consider two cases where either G1 or G2 is an
induced subgraph of G. By minimality of G, γ(G) < µ(G), and G is a
connected graph.

Case 1. G1 is an induced subgraph of G.
Since γ(G) < µ(G), G 6= G1. By connectivity of G, there exists a vertex
u ∈ V (G) \ V (G1) that is adjacent to at least one vertex of G1. Clearly, the
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set V (G1) ∪ {u} induces one of H1,H2 or H3 (Figure 2), a contradiction to
the choice of G.

Case 2. G2 is an induced subgraph of G.
As before, there exists a vertex u ∈ V (G) \ V (G2) that is adjacent to at
least one vertex of G2. We may assume that G has no induced G1 [see
Case 1]. Hence the set V (G2) ∪ {u} induces either H4 or H5 (Figure 2), a
contradiction to the choice of G.
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