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Abstract

Frankl and Rödl [3] proved a strong regularity lemma for 3-uniform
hypergraphs, based on the concept of δ-regularity with respect to an
underlying 3-partite graph. In applications of that lemma it is often
important to be able to “glue” together separate pieces of the desired
subhypergraph. With this goal in mind, in this paper it is proved that
every pair of typical edges of the underlying graph can be connected by
a hyperpath of length at most seven. The typicality of edges is defined
in terms of graph and hypergraph neighborhoods, and it is shown that
all but a small fraction of edges are indeed typical.
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1. Introduction

Szemerédi’s Regularity Lemma for graphs [10] has become one of the most
important tools in modern graph theory. When solving some problems,
it allows to concentrate on quasi-random subgraphs (called also ε-regular
pairs) instead of considering the whole graph. Notable examples of such
approach can be found in [5, 6].

Recently, Frankl and Rödl [3] have established an analogous, but much
deeper regularity lemma for 3-uniform hypergraphs, with potentially even
broader scope of applications. So far only few papers applied that lemma
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to solve some combinatorial problems (see [3, 9]). The general scheme is
similar to that for graphs: the regularity lemma is applied to the entire
hypergraph which is thus split into quasi-random blocks. Then a desired
structure is built within some blocks and finally connected together by short
paths constructed in other blocks.

While the existence of such paths in quasi-random graphs is almost
trivial (see Section 2.1), it is not obvious at all for 3-uniform hypergraphs.
One reason is the more complex structure of hypergraphs, and, in particular,
the interaction between pairs (graph edges) and triplets (hypergraph edges).

This paper is a first step in the study of the short paths in quasi-random
hypergraphs in the sense of the regularity lemma of Frankl and Rödl. We
show that every pair of typical edges can be connected by a path of length
at most seven (cf. Theorem 2.18 below).

We give relevant notation, background definitions and elementary facts
in the forthcoming section. Section 3 provides the proof of our main result,
while in the Appendix it is proved that almost all edges are, in a sense,
typical.

2. Preliminaries

2..1 Graphs

Let G = (V, E) be a given graph, where V and E are the vertex-set and
the edge-set of G. We write NG(v) for the set of neighbors of v ∈ V in the
graph G. The size of NG(v) is |NG(v)| = degG(v), the degree of v. We set
NG(x, y) = NG(x)∩NG(y) as the set of common neighbors of x, y ∈ V in G.
For a vertex v ∈ V and a set U ⊂ V − {v}, we write degG(v, U) for the
number of edges {v, u} of G so that u ∈ U .

When U , W are subsets of V , we define

eG(U,W ) = |{(x, y) : x ∈ U, y ∈ W, {x, y} ∈ E}| .

For nonempty and disjoint U and W ,

dG(U,W ) =
eG(U,W )
|U ||W |
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is the density of the graph G between U and W , or simply, the density of
the pair (U,W ).

Definition 2.1. Given ε1, ε2 > 0, a bipartite graph G with bipartition
(V1, V2), where |V1| = n and |V2| = m, is called (ε1, ε2)-regular if for every
pair of subsets U ⊆ V1 and W ⊆ V2, |U | > ε1n, |W | > ε1m, the inequalities

d− ε2 < dG(U,W ) < d + ε2

hold for some real number d > 0. We may then also say that G, or the pair
(V1, V2), is (d; ε1, ε2)-regular. Moreover, if ε1 = ε2 = ε, we will use the names
(d; ε)-regular and ε-regular.

For example, according to the above definition, a complete bipartite graph
has density equal to 1. Therefore it is ε-regular for all ε > 0.

Remark 2.2. Note that each (ε1, ε2)-regular graph is ε-regular, where ε =
max{ε1, ε2}. Note also that if G is (d; ε1, ε2)-regular, |V1| = |V2| = n, U ⊆ V1,
W ⊆ V2, |U | > ε′1n and |W | > ε′1n, where ε′1 > ε1, then the induced subgraph
G[U,W ] is (d; ε1/ε′1, ε2)-regular.

The celebrated Szemerédi Regularity Lemma [10] asserts that the vertex set
of every, sufficiently large graph can be decomposed into a bounded number
t of parts so that all but at most ε

(
t
2

)
pairs of these parts induce ε-regular

graphs.
Let G = (V,E) be a (d; ε)-regular bipartite graph with bipartition

(V1, V2), where |V1| = |V2| = n and d > 2ε. In general, because G may
contain isolated vertices, nothing can be said about the diameter of G. Ac-
cording to the definition of an ε-regular pair, we can control only pairs of
sets of vertices each consisting of at least εn vertices. Therefore, it seems to
be natural that the existence of a short path between two vertices x, y ∈ V
is guaranteed by the conditions:

degG(x) > εn and degG(y) > εn.(1)

Indeed, in the case when x ∈ V1 and y ∈ V2, we set A = NG(x) ⊆ V2 and
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B = NG(y) ⊆ V1 and observe that by (1)

dG(A,B) > d− ε > 0.

Thus there exists an edge e = {v, w} with v ∈ A and w ∈ B, and so the
vertices x, v, w, y form in G a path from x to y of length three.

Slightly harder is the case when x and y belong to the same partition
class, say V1. To handle it, we need a simple property of ε-regular graphs.
For a later application, we give it here in a more general form.

Fact 2.3. For all real ε1, ε2 > 0 and d > 0, and for all integers n and m,
the following holds. Let G be a (d; ε1, ε2)-regular bipartite graph with a
bipartition (V1, V2), where |V1| = n, |V2| = m. Further, let A ⊆ V2, where
|A| > ε1m. Then all but at most 2ε1n vertices x ∈ V1 satisfy

(d− ε2)|A| < degG(x,A) < (d + ε2)|A|.

Proof. We will show that no more than 2ε1n vertices of V1 violate either
of the above inequalities. Suppose not. Then, without loss of generality, we
may assume that there exists a subset B of V1, |B| > ε1n, such that for each
vertex x ∈ B we have degG(x, A) ≥ |A|(d + ε2). Then

dG(A,B) =
eG(A, B)
|A||B| ≥ |B||A|(d + ε2)

|A||B| = d + ε2.

This contradiction with the (d; ε1, ε2)-regularity of the graph G concludes
the proof.

Returning to the question of the existence of a short path between x and y,
as before we set A = NG(x) ⊆ V2 and B = NG(y) ⊆ V2. Assuming again
that d > 2ε, from (1) we conclude that there exists a vertex z ∈ B such that
degG(z) ≥ (d − ε)n > εn. Otherwise dG(B, V1) < d − ε which contradicts
the ε-regularity of G. We set C = NG(z) ⊆ V1, and, again by (1), we find
an edge between C and A. Thus, there is a path of length four between x
and y.

Remark 2.4. The (d; ε)-regular graphs are often called quasi-random be-
cause they resemble random bipartite graphs G(n, n, d) with edge probability
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d (see [1] and [4]). Random graphs have indeed more uniform structure. E.g.,
it is well known that asymptotically almost surely (a.a.s.), the diameter of
G(n, d), d — constant, is three.

In this paper a similar problem is considered for quasi-random, 3-uniform,
3-partite hypergraphs. However, since the hypergraphs studied here will be
“planted” on 3-partite, quasi-random graphs, before turning to hypergraphs,
we will prove a few more simple facts about such graphs.

Definition 2.5. Let G be a 3-partite graph with a fixed 3-partition V1∪V2∪
V3. We shall write G =

⋃
1≤i<j≤3 Gij , where Gij = G[Vi, Vj ] = {{vi, vj} ∈

E : vi ∈ Vi, vj ∈ Vj}. We call (G12, G13, G23) a triad. Let d = (d12, d13, d23),
where dij > 0, 1 ≤ i < j ≤ 3, and ε > 0 be given. We call G a (d, ε)-triad
if each bipartite graph Gij , 1 ≤ i < j ≤ 3, is (dij ; ε)-regular. If all dij = d
then we call G a (d, ε)-triad.

Definition 2.6. Let G be a (d, ε)-triad, where |V1| = |V2| = |V3| = n. We
call a vertex x ∈ Vi proper if the following holds:

n(d− ε) < degGij (x) < n(d + ε),

n(d− ε) < degGik(x) < n(d + ε),

where here and in similar statements throughout the paper we assume that
{i, j, k} = {1, 2, 3}.

It follows immediately from Fact 2.3 that most vertices are proper.

Corollary 2.7. For all real 0 < ε, d < 1 and for all integer n, the following
holds. Let G be a (d, ε)-triad, where |V1| = |V2| = |V3| = n. Then for each
i = 1, 2, 3, all but at most 4ε|Vi| vertices of Vi are proper.

The next result says that also most pairs of vertices have typical joint neigh-
borhoods.

Fact 2.8. For all ε > 0 and d > 2ε and for all integer n, the following holds.
Let G be a (d, ε)-triad, where |V1| = |V2| = |V3| = n. Then for all but at
most 4εn2 pairs of vertices (x, y) ∈ Vi × Vj we have

n(d− ε)2 < |NG(x, y)| < n(d + ε)2.
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Proof. Using Fact 2.3 (with A = Vk) we see that for all but at most 2εn
vertices x ∈ Vi the inequalities n(d − ε) < degGik(x) < n(d + ε) hold. We
pick one such vertex x and note that |NGik(x)| > εn. Now, using again Fact
2.3, this time to Gjk and with A = NGik(x), we conclude the proof.

When we investigate 3-uniform hypergraphs, it will be important to be able
to count triangles in quasi-random triads.

Definition 2.9. For a triad G, let T (G) be the set of all (vertex sets of)
triangles formed by the edges of G = G12∪G23∪G13, and let t(G) = |T (G)|.

Fact 2.10. Let G = (G12, G13, G23) be a ((d12, d13, d23), ε)-triad, where
min{d12, d13} > 2ε, then

(1−2ε)(d12−ε)(d13−ε)(d23−ε) <
t(G)

|V1||V2||V3| < 4ε+(d12+ε)(d13+ε)(d23+ε).

In particular, if ε < 1
10d12d13d23 then t(G) > 1

2d12d13d23|V1||V2||V3|.

Proof. Note that

t(G) =
∑

x∈V1

eG23(NG12(x), NG13(x)).

By the proof of Fact 2.3 and using the ε-regularity of G12 and G13 we see
that each of the four inequalities

ε|V2| < |V2|(d12 − ε) < degG(x, V2) < (d12 + ε)|V2|,

ε|V3| < |V3|(d13 − ε) < degG(x, V3) < (d13 + ε)|V3|.

is violated by at most ε|V1| vertices x ∈ V1.
Observe also, this time from the ε-regularity of G23, that the pair

(NG12(x), NG13(x)) has density between d23 − ε and d23 + ε. These inequal-
ities together yield the desired estimates.

2..2 Hypergraphs

A 3-uniform hypergraph H is a pair (V, E) of disjoint sets such that E ⊆
[V ]3, where [V ]3 is the set of all 3-element subsets of V . We call the elements
of E triplets or hyperedges. We will often identify H with E.
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The regularity lemma for 3-uniform hypergraphs established in [3] parti-
tions a 3-uniform hypergraph into a bounded number of 3-partite 3-uniform
hypergraphs, most of which are quasi-random in a well defined sense.

Definition 2.11. A 3-partite 3-uniform hypergraph H with a fixed
3-partition (V1, V2, V3) will be called a 3-graph. If G = G12 ∪ G23 ∪ G13

is a triad with the same vertex partition as H, and, moreover, H ⊆ T (G),
then we say that G underlies H.

Definition 2.12. Let H be a 3-graph with an underlying triad G = G12 ∪
G23 ∪G13. The density of H with respect to G is defined by

dH(G) =
|H ∩ T (G)|

t(G)
(2)

if t(G) > 0, and 0 otherwise.

In other words, the density counts the proportion of triangles of G which
are triplets of H.

Definition 2.13. Let α, δ > 0 be given. We say that a 3-graph H is (α; δ)-
regular with respect to an underlying triad G = G12 ∪G23 ∪G13 if for any
subtriad Q = (Q12,Q23,Q13) of G, where

Q12 ⊆ G12,Q23 ⊆ G23,Q13 ⊆ G13,

the following holds: If t(Q) > δt(G), then

α− δ < dH(Q) < α + δ.

We say that H is δ-regular with respect to G if it is (α; δ)-regular for some α.
If the regularity condition fails for any α, we say that H is δ-irregular with
respect to G, and if it fails with a particular α then we callH (α; δ)-irregular.

For instance, if H consists of all triangles of G, then dH(G) = 1. Conse-
quently it is δ-regular for all δ > 0.

The Hypergraph Regularity Lemma in [3] provides not only a partition
of the vertex set V (H) into a bounded number t of classes, but also, for
any given pair (Vi, Vj) of partition classes, it provides a partition of the set
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Vi × Vj into up to l graphs, in such a way that H is δ-regular with respect
to all but at most δ

(
t
3

)
l3 triads thus formed.

Most of the partition graphs are (1/l; ε)-regular and, therefore, a prob-
lem of significant interest in applications is to study the existence of short
paths between typical edges of G in an (α; δ)-regular 3-graph H underlied
by a (1/l, ε)-triad G = G12 ∪G23 ∪G13. It remains to define what we mean
by a path and what we mean by a typical edge.

Definition 2.14. A hyperpath of length k in a 3-uniform hypergraph is a
subhypergraph consisting of k +2 vertices and k hyperedges, whose vertices
can be ordered, v1, . . . , vk+2, in such a way that for each i = 1, 2, . . . , k, we
have vivi+1vi+2 ∈ H.

Sometimes such paths are called tight as opposed to loose ones, where
vivi+1vi+2 ∈ H holds only for odd i. In this paper we exclusively work
with tight paths and therefore the word “tight” is omitted.

By analogy with the graph case, typicality of an edge is defined in terms
of neighborhoods. It should not be surprising that there are two very differ-
ent notions of a neighborhood in 3-uniform hypergraphs: the neighborhood
of a pair of vertices, which is a subset of the vertex set, and the neighborhood
of a vertex, which is a set of pairs of vertices, i.e., a graph.

Definition 2.15. Let H be a 3-uniform hypergraph and let e = {x, y} be a
pair of vertics in V = V (H). We define the hypergraph neighborhood of e to
be Γe = {z ∈ V : {z, x, y} ∈ H}. The elements of Γe are called neighbors of
e in the hypergraph H.

Note that in a 3-graph, if e ∈ Gij then Γe ⊂ Vk.

Definition 2.16. Let H be a 3-graph with an underlying triad G = G12 ∪
G23 ∪G13 and let x ∈ Vi. We define the link graph L(x) = (Ex, Vx) of x to
be the graph on the vertex set Vx = NGij (x) ∪NGik(x) and the edge set

Ex =
{
{y, z} ∈ Gjk : {x, y, z} ∈ H

}
.

It is shown in the Appendix that almost all vertices x of an (α; δ)-regular
3-graph underlied by a (1/l, ε)-triad have (α/l; 4

√
δ, 4
√

δ/l)-regular links L(x).
It is also shown there that almost all edges e of the underlying triad have the
neighborhood Γe of average size. Combining these two properties, together
with that of having proper endpoints (see Definition 2.6) we arrive at the
notion of a good edge.
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Definition 2.17. Let for some real δ > 0, α > 0 and ε > 0 and integer
l ≥ 2, a 3-graph H be (α; δ)-regular with respect to an underlying (1/l, ε)-
triad G = G12 ∪ G23 ∪ G13, where |V1| = |V2| = |V3| = n. We call an edge
e = {x, y} ∈ Gij , 1 ≤ i < j ≤ 3, good if the following conditions are
satisfied:

(i) x and y are proper,
(ii) L(x) and L(y) are (α/l; 4

√
δ, 4
√

δ/l)-regular,
(iii) (1/l − ε)2(α− 4

√
δ)n < |Γe| < (1/l + ε)2(α + 4

√
δ)n.

Our aim in this paper is to prove the following theorem.

Theorem 2.18. For all real 0 < α < 1 and all integer l ≥ 2 there exist
δ > 0 and ε > 0 such that whenever H is a 3-graph which is (α; δ)-regular
with respect to an underlying (1/l, ε)-triad G = G12 ∪ G13 ∪ G23, where
|V1| = |V2| = |V3| = n is sufficiently large, then every two good edges of G
are connected in H by a hyperpath of length at most seven.

Remark 2.19. It follows from Corollary 2.7, Lemma 4.1 and Lemma 4.2
that most of the edges of G are good (see Corollary 4.3 in Section 4). Also, it
is possible to construct counterexamples showing that Theorem 2.18 ceases
to be true if any one of the three conditions defining good edges is dropped.

Remark 2.20. The way Theorem 2.18 is quantified allows to choose δ much
smaller than 1/l. In applications of the Hypergraph Regularity Lemma,
however, very often it is the other way around. A corresponding analog of
Theorem 2.18 in that case seems to be much harder and is the subject of a
forthcoming paper [7].

In the proof of Theorem 2.18 we have not attempted to optimize the
dependence of δ and ε on α and l.

Remark 2.21. A random model corresponding to an (α; δ)-regular 3-graph
with an underlying (1/l, ε)-triad is a two-phase, random, binomial 3-graph
H(α, 1/l) in which, first each triplet is selected independently, with probabil-
ity α, then a random graph G(n, 1/l) is drawn, and only triplets coinciding
with the triangles of G(n, 1/l) remain. It is easy to show that in this model,
for fixed α > 0 and l ≥ 1, a.a.s. for every choice of four vertices x, y, z, w
there exists a vertex v such that xyv, yvz, vzw are all triplets, and so, every
pair of edges of G(n, 1/l) is joint in H(α, 1/l) by a hyperpath of length at
most three.
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3. The Proof of Main Result

In the proof of Theorem 2.18 we will use twice the following fact.

Fact 3.1. For all real 0 < α < 1 and for all integer l ≥ 2, there exist δ > 0
and ε > 0 such that whenever a 3-graphH is (α; δ)-regular with respect to an
underlying (1/l, ε)-triad G = G12 ∪G23 ∪G13, where |V1| = |V2| = |V3| = n,
the following holds. If e = {x, y} ∈ G12 is a good edge then for at least 4εn
vertices z ∈ Γe the edge f = {y, z} ∈ G23 is also good.

Proof. Given α and l, choose δ and ε so that 4ε <
√

δ/2 and

α

2l2
− 5 4

√
δ > 4ε.(3)

and also so that Lemma 4.1 holds. Note that (3) implies that ε < 1/(16l)
and 4

√
δ < α/10.

Let x ∈ V1, y ∈ V2 and let e = {x, y} ∈ G12 be a good edge. Let
B ⊂ NG23(y) ⊂ V3 be the set of all z ∈ V3 for which

(1/l − ε)2(α− 4
√

δ)n < |Γ{y,z}| < (1/l + ε)2(α + 4
√

δ)n.

Note that Γ{y,z} = NL(y)(z) and that y is proper and L(y) is (α/l; 4
√

δ, 4
√

δ/l)-
regular. We now apply Fact 2.3 to L(y) with d = α/l, ε1 = 4

√
δ, ε2 = 4

√
δ/l,

V1 = NG23(y), and V2 = A = NG12(y). It then follows that |B| > (1 −
2 4
√

δ)|NG23(y)| and hence |NG23(y) \B| < 2 4
√

δ(1/l + ε)n.
Further, let C = {z ∈ V3 : z is proper and has (α/l; 4

√
δ, 4
√

δ/l)-regular
link graph L(z)}. By Corollary 2.7 and by Lemma 4.1 we have |C| >
(1− 3

√
δ)n. Note that {y, z} is a good edge, if and only if z ∈ B ∩C. Thus,

as e is good, Γe ⊂ NG23(y), and l ≥ 2, we have

|Γe ∩B ∩ C| > |Γe| − |NG23(y) \B| − |NG23(y) \ C|

> (1/l − ε)2(α− 4
√

δ)n− 2 4
√

δ(1/l + ε)n− 3
√

δn

>

(
α

2l2
− 5 4

√
δ

)
n > 4εn,

where the two last inequalities follow from (3). This ends the proof.
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Proof of Theorem 2.18. For a given real α > 0 and integer l ≥ 2, let
δ > 0 and ε > 0 be such that the conclusion of Fact 3.1 holds, as well as
the inequalities

δ <
( α

8l

)20
(4)

and

ε <
α2

16l4
(5)

are fulfilled. Note that the choice of such δ > 0 and ε > 0 is always possible.
Let H be a 3-graph which is (α; δ)-regular with respect to an underlying

(1/l, ε)-triad G = G12 ∪ G13 ∪ G23, where |V1| = |V2| = |V3| = n. Further,
let e and f be any two good edges of G. Without loss of generality we may
assume, that e = {ve, we} and f = {vf , wf} are in the same graph, say G12,
ve, vf ∈ V1. Otherwise, using Fact 3.1 (remember, that n is large), one can
add one hyperedge of the form {vf , wf , z} to achieve this.

Using again Fact 3.1, we see that for at least 4εn vertices w ∈ V3 the
edge fw = {vf , w} ∈ G13 is good. We set A = NG12(we) ⊂ V1 and apply
Fact 2.3 to the graph G13 and the set A to get that there exists a vertex
w′ ∈ V3 such that the edge {vf , w′} is good and

(1/l − ε)2n < degG13(w′, A) = |NG(we, w
′)| < (1/l + ε)2n.

Let us denote f ′ = fw′ = {vf , w′}. Using the (α; δ)-regularity of H we will
now show that there exists a path from e to f ′ of length five. Define a
subtriad Q = (Q12, Q13, Q23) of the triad G = (G12, G13, G23) on the vertex
sets NG(we, w

′) ⊂ V1, Γf ′ ⊂ V2, Γe ⊂ V3, where

Q12 = L(w′)[NG(we, w
′),Γf ′ ],

Q13 = L(we)[NG(we, w
′), Γe],

Q23 = G23[Γf ′ , Γe].

We will show that t(Q) > δt(G), and consequently, by the (α; δ)-regularity
of H, that

dH(Q) =
|H ∩ T (Q)|

t(Q)
> α− δ >

7
8
α,
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where the last inequality follows from (4). This means by Fact 2.10 that
there exist at least 7

16αδ(n/l)3 hyperedges {x, y, z} ∈ H ∩ T (Q) with x ∈
NG(we, w

′), y ∈ Γf ′ and z ∈ Γe. Therefore, one can choose such an hy-
peredge, so that z 6= w′, x 6= ve, vf and y 6= we, wf . Observe from the
construction of Q that hyperedges {ve, we, z}, {we, z, x}, {z, x, y}, {x, y, w′},
{y, w′, vf} form a hyperpath Π of length five connecting the graph edges e
and f ′. Indeed, {ve, we, z} and {we, z, x} are triplets of H, because, respec-
tively, z ∈ Γe, and {x, z} ∈ L(we). Similarly, {x, y, w′} and {y, w′, vf} form
hyperedges of H.

The hyperpath Π, together with the hyperedge {w′, vf , wf} build a hy-
perpath of length six connecting e and f , provided they belong to the same
graph Gij , 1 ≤ i < j ≤ 3. In case where e and f are in different graphs
one has to add one more hyperedge to connect these edges by a hyperpath.
Hence, Theorem 2.18 is proved if we can only show that t(Q) > δt(G).

To this end we use Fact 2.10. By Remark 2.2, we see that the graphs Q12

and Q13 are (α/l; 8l 4
√

δ/α, 4
√

δ/l)-regular and Q23 is (1/l; 4l2ε/α)-regular.
For example, let us show how it follows for the graph Q12. We know that
L(w′) is (α/l; 4

√
δ, 4
√

δ/l)-regular and that |NG23(w′)| < n(1/l + ε) < 2n/l
(since ε < 1/l). Also, |Γf ′ | > (1/l − ε)2(α − 4

√
δ)n > αn/(4l2) (by (5) and

(4)) and, by the choice of w′, |NG(we, w
′)| > n/(4l2) > αn/(4l2) (since

α < 1). Thus, indeed, G12 is (α/l; 8l 4
√

δ/α, 4
√

δ/l)-regular.
We now use the fact that δ and ε are much smaller than α and 1/l, and

hence, in particular, by (4), Q12, Q13 are (α/l; δ1/5)-regular while Q23, by
(5), is (1/l; ε1/2)-regular. Thus, by Fact 2.10, (4) and (5),

t(Q) > (1− 2δ1/5)
(α

l
− δ1/5

)2
(

1
l
− ε1/2

) (αn

4l2

)2 n

4l2
> 2−10 α4n3

l9
.

On the other hand, again by Fact 2.10 and (5), we have

t(G) <

(
n

l

)3

(4εl3 + (1 + εl)3) < 2
(

n

l

)3

.

Consequently, by (4), t(Q) > δt(G), which ends the proof.

4. Appendix

In this additional section we show that almost all vertices and edges satisfy,
respectively, parts (ii) and (iii) of Defintion 2.17, and consequently, taking
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into account Corollary 2.7, almost all edges are good. Both proofs are similar
and rely on the δ-regularity of H with respect G. We begin by showing that
link graphs L(x) are (α/l; 4

√
δ, 4
√

δ/l)-regular for almost all x ∈ V1. The proof
of this fact, in a slightly different form, has appeared in [3]. We include it
here because our proof of Theorem 2.18 strongly depends on that fact.

Lemma 4.1. For all real 0 < α < 1 and 0 < δ < α4, and for all integer
l ≥ 2, there exists ε > 0 so that whenever a 3-graph H is (α; δ)-regular
with respect to an underlying (1/l, ε)-triad G = G12 ∪ G23 ∪ G13, where
|V1| = |V2| = |V3| = n, then all but at most 5

2

√
δn proper vertices x ∈ V1

have (α/l; 4
√

δ, 4
√

δ/l)-regular link graphs L(x).

Proof. Given α, δ < α4, and l ≥ 2, let ε be such that

4
√

δ

(
1
l
− ε

)
> ε,(6)

ε <
4
√

δ − δ

(α− δ)l
,(7)

and
5
4
(1− εl)3 > 4εl3 + (1 + εl)3.(8)

Note that by Corolloray 2.7 at least (1 − 4ε)n vertices x ∈ V1 are proper,
i.e., their degrees in both, V2 and V3 are squeezed between (1/l ± ε)n.

The method of the proof is by contradiction. Suppose that proper ver-
tices of V1, x1, . . . , xt, t > 5

2

√
δn, have (α/l; 4

√
δ, 4
√

δ/l)-irregular link graphs
L(xi). Without loss of generality, this means that for each i = 1, . . . , s, s >
5
4

√
δn, there exists a pair of subsets (Ui, Vi), Ui ⊆ NG12(xi), Vi ⊆ NG13(xi),

satisfying
|Ui| > 4

√
δ|NG12(xi)|, |Vi| > 4

√
δ|NG13(xi)|,

and
eL(xi)(Ui, Vi) ≤ 1

l
(α− 4

√
δ)|Ui||Vi|.(9)

Note that, by (6), |Ui|, |Vi| > εn, and as a consequence of the (1/l; ε)-
regularity of G23,

eG23(Ui, Vi) > |Ui||Vi|
(

1
l
− ε

)
.
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Set Q12(xi) = {{xi, y} : y ∈ Ui}, Q13(xi) = {{xi, z} : z ∈ Vi}. Consider the
triad

Q = (G23,
s⋃

i=1

Q12(xi),
s⋃

i=1

Q13(xi)).

Then, by summing up the number of triangles containing each xi, i =
1, 2, . . . , s,

t(Q) =
s∑

i=1

eG23(Ui, Vi) >
5
4
δ(1− εl)3

n3

l3
.

So, by Fact 2.10 and (8) we see that t(Q) > δt(G).
Therefore, by the (α; δ)-regularity of H, we have

|H ∩ T (Q)| > (α− δ)t(Q) > (α− δ)
s∑

i=1

|Ui||Vi|
(

1
l
− ε

)
.(10)

On the other hand, each xi, i=1, 2, . . . , s, is contained in at most eL(xi)(Ui,Vi)
triplets of H ∩ T (Q) and, hence, by (7) and (9), we get

|H ∩ T (Q)| ≤ 1
l
(α− 4

√
δ)

s∑

i=1

|Ui||Vi| < (α− δ)
(

1
l
− ε

) s∑

i=1

|Ui||Vi|,

which contradicts (10).

Call an edge of G proper if it satisfies the inequalities of Fact 2.8, and typical
(in H) if it satisfies the inequalities from Definition 2.17, part (iii). Our last
result states that almost all proper edges of G are typical in H, i.e., have
typical neighborhoods in H.

Lemma 4.2. For all real 0 < δ, α < 1, and for all integer l ≥ 2, there
exists ε > 0 so that whenever a 3-graph H is (α; δ)-regular with respect to an
underlying (1/l, ε)-triad G = G12 ∪G23 ∪G13, where |V1| = |V2| = |V3| = n,
then all but at most 6

√
δn2/l proper edges of G12 are typical.

Proof. Given α, δ, and l, let 0 < ε <
√

δ/(4l) be such that

3
2
(1− εl)2 > 4εl3 + (1 + εl)3.(11)
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Let F ⊂ G12 be the subgraph of all proper, but not typical edges of G12,
and let L ⊂ V1 be the set of vertices whose degree in F is larger than
2
√

δn/l. We will show that |L| < 3
√

δn, and thus, that |E(F )| < 2
√

δn2/l+
3
√

δ(1/l + ε)n2 + εn2 < 6
√

δn2/l.
Suppose that |L| ≥ 3

√
δn. Then, there exists B ⊂ V1, |B| ≥ 3

2

√
δn, such

that for each x ∈ B there exists a set Bx ⊂ NG12(x) ⊂ V2, |Bx| ≥
√

δn/l,
such that for each y ∈ Bx we have |Γ{x,y}| ≤ (1/l − ε)2(α − 4

√
δ)n (and the

edge {x, y} is proper).
Let Q12 = {{x, y} : x ∈ B, y ∈ Bx}. Consider the triad Q = (Q12,

G13, G23). Then,

t(Q) =
∑

x∈B

∑

y∈Bx

|NG(x, y)| > 3
2

√
δn
√

δn
1
l
n

(
1
l
− ε

)2

> δt(G),

where the last inequality follows from Fact 2.10 and inequality (11). There-
fore, by the (α; δ)-regularity of H, we have

|H ∩ T (Q)| > (α− δ)t(Q) >
∑

x∈B

∑

y∈Bx

(α− δ)n
(

1
l
− ε

)2

>
∑

x∈B

∑

y∈Bx

n

(
1
l
− ε

)2

(α− 4
√

δ).

On the other hand,

|H ∩ T (Q)| =
∑

x∈B

∑

y∈Bx

|Γ{x,y}| ≤
∑

x∈B

∑

y∈Bx

n

(
1
l
− ε

)2

(α− 4
√

δ),

which yields a contradiction.

Lemmas 4.1 and 4.2, Fact 2.8 and Corollary 2.7 imply that almost all edges
of G are good and thus, by our Theorem 2.18, almost all pairs of edges of
G can be connected in H by hyperpaths of length at most seven.

Corollary 4.3. For all real 0 < δ < α4 < 1, and for all integer l ≥ 2, there
exists ε > 0 so that whenever 3-graph H is (α; δ)-regular with respect to an
underlying (1/l, ε)-triad G = G12 ∪G23 ∪G13, where |V1| = |V2| = |V3| = n,
then all but at most 50

√
δn2/l edges of G are good.
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Proof. There are at most 12εn2 improper edges in G and at most 18
√

δn2/l
proper but untypical edges. Moreover, in each Vi there are at most 4εn
improper vertices and at most 5

2

√
δn proper vertices but with irregular links.

Each of this vertices may be incident to at most 2n(1/l+ε) edges of G, except
for at most 2εn vertices which may even have degree 2n. Summing up, we
get, roughly, at most 50

√
δn2/l edges of G which are not good (provided, ε

is small enough).

Acknowledgements

I would like to thank my Ph.D. supervisor, Andrzej Ruciński, for his help
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