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1. Introduction

In this paper we continue the study of the total domination subdivision
numbers introduced in [9] and studied further in [6]. Total domination in
graphs was introduced by Cockayne, Dawes, and Hedetniemi [2] and is now
well studied in graph theory. The literature on domination and related
parameters has been surveyed and detailed in the two books by Haynes,
Hedetniemi, and Slater [7, 8].

Let G be a graph with no isolated vertex. If S, T ⊆ V (G) and every
vertex of T is adjacent to a vertex of S, then we say that S totally dominates
T . In particular, if T = V (G), then we call S a total dominating set (TDS)
of G. The total domination number of G, denoted by γt(G), is the minimum
cardinality of a TDS. A TDS of G of cardinality γt(G) is called a γt(G)-set.

Haynes, Hedetniemi, and van der Merwe [9] define the total domination
subdivision number sdγt(G) of a graph G to be the minimum number of
edges that must be subdivided (where each edge in G can be subdivided at
most once) in order to increase the total domination number. We assume
that a component of G is of order at least three since the total domination
number of the graph K2 does not change when its only edge is subdivided.
This concept for domination was defined by Arumugam [1] and studied in
[3, 4, 5].

Constant upper bounds on the total domination subdivision number for
several families of graphs were determined in [9]. For trees T , they [9] showed
that 1 ≤ sdγt(T ) ≤ 3. The trees T having sdγt(T ) = 3 are characterized in
[6]. In [9], the evidence seemed to point to a constant upper bound on the
total domination subdivision number. The largest value given in [9] for the
total domination subdivision number is 4. Our aim in this paper is twofold.
First we determine additional bounds on the total domination subdivision
number improving the ones in [9] for some graphs. Then we show that
there is no constant upper bound on sdγt(G), that in fact, sdγt(G) can be
arbitrarily large.

1..1 Notation

For notation and graph theory terminology we in general follow [7]. For a
graph G = (V, E), the open neighborhood of a vertex v ∈ V is N(v) = {u ∈
V | uv ∈ E} and the closed neighborhood is N [v] = N(v) ∪ {v}. For a set
S ⊆ V , we denote the subgraph of G induced by S by G[S]. The minimum
degree of G is denoted by δ(G).
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A vertex u is a triangular vertex if every vertex in N(u) is in a triangle
with u. Stated equivalently, a vertex is triangular if the induced subgraph
G[N(u)] contains no isolated vertices. Notice if a vertex u is triangular,
then deg(u) ≥ 2. We say that a graph G is triangular if it contains at least
one triangular vertex, and is completely triangular if every vertex in G is
triangular.

A vertex v in a graph G is called simplicial if the induced subgraph
G[N [v]] is a complete graph.

A k-tree is any graph which can be obtained from a complete graph on
k + 1 vertices, by repeatedly adding a new vertex and joining it to every
vertex in a complete subgraph of the existing graph of order k.

A graph G is called chordal if every cycle of G of length greater than
three has a chord, that is, an edge between two nonconsecutive vertices of
the cycle.

A maximal outerplanar graph is a 2-tree which is obtained from a copy
of K3 by repeatedly adding a new vertex and joining it to two adjacent
vertices on the exterior face of the existing graph.

A graph is claw-free if it does not contain K1,3 as an induced subgraph.

2. Bounds on the Total Domination Subdivision
Number

Our first bound is a generalization of the following result from [9].

Theorem 1 [9]. For any connected graph G with adjacent vertices u and
v, each of degree at least two,

sdγt(G) ≤ deg(u) + deg(v)− 1.

Theorem 2. For any connected graph G with adjacent vertices u and v,
each of degree at least two,

sdγt(G) ≤ deg(u) + deg(v)− |N(u) ∩N(v)| − 1.

Proof. We may assume that N(u) ∩ N(v) 6= ∅ for otherwise our result
follows from Theorem 1. Let N(v) = {v1, v2, . . . , vk} where u = v1 and if
N(u) − N [v] 6= ∅, let N(u) − N [v] = {u1, . . . , ut}. Let G′ be the graph
obtained by subdividing the edge vvi with subdivision vertex xi, for 1 ≤
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i ≤ k, and the edge uuj for 1 ≤ j ≤ t. Let A be the set of the subdivision
vertices and S′ a γt(G′)-set. Clearly, no vertex of G totally dominates v in
G′, and so |S′ ∩ A| ≥ 1. We show that γt(G′) > γt(G). It suffices for us to
show that γt(G) ≤ |S′| − 1, since then γt(G′) = |S′| ≥ γt(G) + 1.

One of u or v must be in S′ to totally dominate x1. If both u and v are
in S′, then S′ −A is a TDS of G, and so γt(G) ≤ |S′ −A| ≤ |S′| − 1.

Assume u ∈ S′ and v /∈ S′. Then every neighbor of v in G is in S′

to totally dominate {x1, x2, . . . , xk} and some xi is in S′ to dominate v. If
|S′∩A| ≥ 2, then (S′−A)∪{v} is a TDS of G, and so γt(G) ≤ |S′−A|+1 ≤
|S′| − 1. On the other hand, if |S′ ∩ A| = 1, then since S′ − {u} totally
dominates N(u)−N [v], it follows that (S′ −A− {u})∪ {v} is a TDS of G,
and so γt(G) ≤ |S′ −A| ≤ |S′| − 1.

Assume v ∈ S′ and u /∈ S′. If |S′ ∩ A| ≥ 2, then (S′ − A) ∪ {u} is a
TDS of G, and so γt(G) ≤ |S′ − A| + 1 ≤ |S′| − 1. Therefore, assume that
|S′ ∩ A| = 1. The vertex of A in S′ is a neighbor of v in G′. If x1 ∈ S′,
then all neighbors of v in G, except for possibly u, are totally dominated by
S′−{v, x1}. Thus, (S′−{v, x1})∪{vi} for some vertex vi ∈ N(u)∩N(v) is a
TDS of G, and so γt(G) ≤ |S′| − 1. Therefore, we may assume that x1 /∈ S′.
But then some vi ∈ NG(v) ∩ NG(u) must be in S′ to totally dominate u,
whence S′ −A is a TDS of G and γt(G) ≤ |S′| − 1.

Our next bound on the total domination subdivision number is for graphs
with triangular vertices.

Theorem 3. If a graph G contains a triangular vertex u, then sdγt(G) ≤
deg(u), and this bound can be attained when deg(u) = 2.

Proof. Let u be a triangular vertex in G, and let G′ be the graph which
results from subdividing every edge incident with u in G. Let A be the
set of subdivision vertices, and let S′ be any γt(G′)-set. We show that
γt(G′) > γt(G). It suffices for us to show that γt(G) ≤ |S′| − 1.

Clearly, no vertex of G totally dominates u in G′, and so S′ must contain
a subdivision vertex.

If u /∈ S′, then every vertex of NG(u) is in S′ to totally dominate the
subdivision vertices. Since u is a triangular vertex, every vertex in NG(u)
has a neighbor in NG(u), implying that S′ − A is a TDS of G, and so
γt(G) ≤ |S′ −A| ≤ |S′| − 1. Hence, we assume that u ∈ S′.

If NG(u) ∩ S′ 6= ∅, then S′ −A is a TDS of G, and so γt(G) ≤ |S′| − 1.
If |S′∩A| ≥ 2, then (S′−A)∪{x}, where x ∈ NG(u), is a TDS of G, and so
γt(G) ≤ |S′|−1. Therefore, we assume that NG(u)∩S′ = ∅ and |S′∩A| = 1.
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Let S′∩A = {x′} and let x be the neighbor of x′ in NG(u). Now every vertex
in NG(u)− {x} is totally dominated by vertices in S′ − {u, x′}. Since u is a
triangular vertex, x has a neighbor y in NG(u). Hence, (S′ − {u, x′}) ∪ {y}
is a TDS of G, and so γt(G) ≤ |S′| − 1. Hence, γt(G′) > γt(G).

To see that the bound is sharp, consider the family of graphs G that
can be obtained from a complete graph Kt, t ≥ 3, by adding a vertex u
adjacent to exactly two vertices of Kt. It is easy to see that γt(G) = 2. We
will show that sdγt(G) = deg(u) = 2. Since u is a triangular vertex in G,
by Theorem 3, we have sdγt(G) ≤ deg(u) = 2. To see that sdγt(G) ≥ 2, let
V (G) − {u} = {v1, v2, . . . , vt} and let N(u) = {v1, v2}. Subdivide an edge
in G with a vertex w to form a new graph G′ with minimum TDS S′. We
will show that γt(G′) = γt(G) = 2. If w subdivides an edge incident with u,
without loss of generality, say uv1, then S′ = {v1, v2} is a TDS of G′. If w
subdivides an edge in G− u incident to v1 or v2, without loss of generality,
say v1vk where k 6= 1, then S′ = {v1, vj}, where j 6= k, is a TDS of G′. If w
subdivides an edge in G not incident to v1 or v2, say vivj , then S′ = {v1, vi}
is a TDS of G′. Hence, sdγt(G) = deg(u) = 2.

Immediate consequences of Theorem 3 can be seen in the following six corol-
laries.

Corollary 4. For every completely triangular graph G, sdγt(G) ≤ δ(G).

Since every k-tree and every 2-connected chordal graph is completely trian-
gular, we have the following two immediate corollaries.

Corollary 5. For every k-tree G, k ≥ 2, sdγt(G) ≤ k.

Corollary 6. For every 2-connected chordal graph G, sdγt(G) ≤ δ(G).

Since any simplicial vertex with degree at least two is triangular, we have
the following corollary.

Corollary 7. If a graph G contains a simplicial vertex u of degree at least
two, then sdγt(G) ≤ deg(u).

It is easy to see that every maximal outerplanar graph G contains at least
two vertices of degree two, which is the minimum degree of any vertex in G,
and that each such vertex is a simplicial vertex. Notice that every maximal
outerplanar graph is completely triangular.
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Corollary 8. For every maximal outerplanar graph G, sdγt(G) ≤ δ(G) = 2.

It is well known that every planar graph contains at least one vertex of
degree at most five. One can also observe that every maximal planar graph
is completely triangular.

Corollary 9. For every maximal planar graph G, sdγt(G) ≤ δ(G) ≤ 5.

Our next bound is for graphs with simplicial vertices. To establish our first
bound we shall use the fact that sdγt(K3) = 2 and for complete graphs of
order n ≥ 4, sdγt(Kn) = 3 (a proof of this fact is straightforward and is
therefore omitted).

Theorem 10. If G is a graph having three or more pairwise-adjacent sim-
plicial vertices, then sdγt(G) ≤ 3.

Proof. If G has order 3, then G = K3, and sdγt(G) = 2. Hence, we will
assume that G contains a clique of order at least 4. Let u, v, and w be
three pairwise-adjacent simplicial vertices in graph G. We will assume that
these vertices are adjacent to at least one nonsimplicial vertex, else G is a
complete graph of order n ≥ 4 and sdγt(G) = 3.

Let C be the set of nonsimplicial vertices adjacent to u, v, and w, and
let D be the set of simplicial vertices in the clique containing u, v, and w
and the vertices in C. Let G′ be the graph obtained from G by subdividing
edges uv, vw, and uw with vertices a, b, and c, respectively. Let A be the
set of subdivision vertices. We will show that γt(G′) > γt(G).

We show first that no γt(G)-set S is a TDS of G′. If S ∩ C 6= ∅, then
|S ∩D| ≤ 1, else S is not a γt(G)-set. But if at most one of u, v, and w is in
S, then S does not dominate at least one of a, b, and c. If S ∩ C = ∅, then
S ∩ D 6= ∅ which implies that |S ∩ D| = 2. To totally dominate a, b, and
c, it follows that |S ∩ {u, v, w}| = 2. But then u, v, and w are not totally
dominated in G′. Hence no γt(G)-set totally dominates G′.

It remains for us to show that no set in G′ that contains a subdivision
vertex and of cardinality γt(G) is a TDS of G′. Suppose such a set S′ exists.
Then, |S′ ∩ {u, v, w}| ≥ 2 to totally dominate A. But then S′ −A is a TDS
of G with cardinality less than γt(G), a contradiction. Hence no such set
exists, as claimed.

We show next that the bound of Corollary 7 can be strengthened if the
graph has a simplicial vertex of degree at least two.
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Theorem 11. Let u be a simplicial vertex of degree at least two in a graph
G, and let v be a neighbor of u. Then, sdγt(G) ≤ min(deg(u),deg(v) −
deg(u) + 3).

Proof. The first bound has been established in Corollary 7. The proof of
the second bound is as follows. Let v, u1, . . . , ur, r ≥ 1, be the neighbors of
u and v1, . . . , vk the other neighbors of v (with k = 0 if v is also simplicial).
We form a new graph G′ by subdividing the edge uv with a vertex x, the
edge u1v with a vertex y, the edge uu1 with a vertex z, and each edge
vvi, 1 ≤ i ≤ k, with a vertex ai. Let A = {x, y, z, a1, . . . , ak}, and let S′

be a minimum TDS of G′ such that |S′ ∩ A| is minimum. We show that
γt(G′) > γt(G). It suffices for us to show that γt(G) ≤ |S′| − 1.

Clearly, if u has only u1 and v as neighbors, then the first bound holds,
thus we will assume that r ≥ 2. Since S′ totally dominates {x, y, z}, we
must have |S′ ∩ {u, u1, v}| ≥ 2. Since |S′ ∩ A| is minimum, it follows that
ui ∈ S′ for some i 6= 1 to totally dominate u. If u ∈ S′, then S′ − {u} is a
TDS of G, and so γt(G) ≤ |S′| − 1. Hence we may assume u /∈ S′, and so
{u1, v} ⊂ S′. Thus, S′ ∩{x, y, z} = ∅. If aj ∈ S′ for some j, then S′−A is a
TDS of G, and so γt(G) ≤ |S′| − 1. On the other hand, if S′ ∩ A = ∅, then
S′ − {v} is a TDS of G, and so γt(G) ≤ |S′| − 1.

3. Claw-Free Graphs

In this section, we investigate upper bounds on the total domination subdi-
vision number for claw-free graphs.

Theorem 12. If G is a claw-free graph with minimum degree δ ≥ 2, then

sdγt(G) ≤ max{δ + 1, 4}.
Proof. Let u be a vertex of minimum degree δ in G, and let {u1, u2, . . . , ur}
be the neighbors of u.

If u is a triangular vertex, then by Theorem 3, sdγt(G) ≤ deg(u) <
deg(u) + 1 and the result holds. Hence we may assume that there is an
isolate in G[N(u)]. Without loss of generality, let ur be such an isolate.
Since δ ≥ 2, ur has at least one neighbor, say v, in V − N [u]. Since G
is claw-free, it follows that NG[u] − {ur} induces a complete graph as does
NG[ur] − {u}. We now consider two cases depending on the value of the
minimum degree.
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Case 1. δ ≥ 3. Let G′ be the graph which results from subdividing the
edges uui for 1 ≤ i ≤ r with subdivision vertex ai and the edge urv with
subdivision vertex a. Let A be the set of subdivision vertices. Let S′ be
any γt(G′)-set. We show that γt(G′) > γt(G). It suffices for us to show that
γt(G) ≤ |S′|−1. To totally dominate u in G′, S′ must contain a subdivision
vertex ai, 1 ≤ i ≤ r, and to totally dominate the vertex a, at least one of ur

and v is in S′. Moreover if u /∈ S′, then to totally dominate each subdivision
vertex ai for 1 ≤ i ≤ r, ui ∈ S′.

Assume that u ∈ S′. If |S′ ∩ A| ≥ 2, then (S′ − A) ∪ {ur} is a TDS of
G, and so γt(G) ≤ |S′| − 1. Hence we may assume |S′ ∩ A| = 1 implying
that aj ∈ S′ for some j, 1 ≤ j ≤ r, and a /∈ S′. If j < r, then let uk

be on a triangle with u and uj in G. Note that uk is totally dominated
by S′ − {u, aj}. Then (S′ − {u, aj}) ∪ {uk} is a TDS of G, and once again
γt(G) ≤ |S′| − 1. Thus we may assume, j = r. If ur ∈ S′, then S′ − {ar} is
a TDS of G, and so γt(G) ≤ |S′| − 1. On the other hand, if ur /∈ S′, then
v ∈ S′ and v is totally dominated by S′−{u, ar}. Thus, (S′−{u, ar})∪{ur}
is a TDS of G, and again γt(G) ≤ |S′| − 1.

Thus, assume that u /∈ S′. Hence, NG(u) ⊂ S′. If |S′ ∩ A| ≥ 2, then
(S′−A)∪{u} is a TDS of G, and so γt(G) ≤ |S′|−1. Hence we may assume
|S′ ∩A| = 1 implying that aj ∈ S′ for some j, 1 ≤ j ≤ r to totally dominate
u. If j < r, then S′ − {aj} is a TDS of G, and so γt(G) ≤ |S′| − 1. Thus
we may assume, j = r. If v ∈ S′, then S′ − {ar} is a TDS of G, and so
γt(G) ≤ |S′| − 1. Hence we may assume that v /∈ S′. The vertex v is totally
dominated by S′−{ar, ur}. Hence, (S′−{ar, ur})∪{v} is a TDS of G, and
so γt(G) ≤ |S′| − 1.

Case 2. δ = 2. If u has a neighbor with degree at most three, then
the result follows from Theorem 1. Hence, we may assume that deg(ui) > 3
for i = 1, 2. Since G is claw-free, NG[ui] − {u} induces a complete graph
for i = 1, 2. Let w 6= u be a neighbor of u1 and v /∈ {u,w} be a neighbor
of u2. Form G′ from G by subdividing the edges uu1, uu2, u1w, and u2v
with subdivision vertices a, b, c, and d, respectively. Let A be the set of
subdivision vertices. Let S′ be a γt(G′)-set with a minimum number of
subdivision vertices. We show that γt(G′) > γt(G). It suffices for us to show
that γt(G) ≤ |S′| − 1. To totally dominate u in G′, S′ must contain at least
one of a and b, and so |S′ ∩A| ≥ 1. Moreover, if u /∈ S′, then {u1, u2} ⊂ S′

to totally dominate {a, b}. To totally dominate c, |S′ ∩ {u1, w}| ≥ 1 while
to totally dominate d, |S′ ∩ {u2, v}| ≥ 1.
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Assume {a, b} ⊂ S′. If u /∈ S′, then {u1, u2} ⊂ S′ and (S′−{a, b})∪{u} is a
TDS of G, and so γt(G) ≤ |S′|−1. Hence we may assume u ∈ S′. If now u1 ∈
S′, then (S′−{a, b})∪{u2} is a TDS of G, and so γt(G) ≤ |S′|−1. Similarly,
if u2 ∈ S′, then γt(G) ≤ |S′| − 1. Thus we may assume S′ ∩ {u1, u2} = ∅,
and therefore {v, w} ⊂ S′. But then (S′ − {a, b, u}) ∪ {u1, u2} is a TDS of
G, and so γt(G) ≤ |S′| − 1. Thus, without loss of generality, assume that
a ∈ S′ and b /∈ S′.

Assume that u ∈ S′. If both u1 and u2 are in S′, then S′ −A is a TDS
of G with cardinality less than |S′|. If u1 ∈ S′ and u2 /∈ S′, then v ∈ S′ and
u2 is totally dominated by S′ − {u, v}. In this case, S′ − A is again a TDS
of G. If u1 /∈ S′ and u2 ∈ S′, then w ∈ S′. If now d ∈ S′, then |S′ ∩ A| ≥ 2
and (S′ − A − {u}) ∪ {u1, v} is a TDS of G, and so γt(G) ≤ |S′| − 1. On
the other hand, if d /∈ S′, then u2 is totally dominated by S′ −A− {u} and
(S′−A−{u})∪{u1} is a TDS of G, and so γt(G) ≤ |S′|− 1. Hence we may
assume that neither u1 nor u2 is in S′. Thus, {v, w} ⊂ S′. If d ∈ S′, then we
can exchange d for a vertex in NG(u2) ∩N(v) to produce a new γt(G′)-set
that contains fewer subdivision vertices than does S′, contrary to our choice
of S′. Hence, d /∈ S′, and so there exists a vertex x ∈ N(u2) ∩ N(v) in S′

to totally dominate u2. Thus, (S′ − {a, u}) ∪ {u1} is a TDS of G, and so
γt(G) ≤ |S′| − 1.

Hence we may assume that u /∈ S′ implying that {u1, u2} ⊂ S′. If
d ∈ S′, then we contradict our choice of S′. Thus, d /∈ S′, and so there
exists a vertex x ∈ N(u2) ∩ N(v) in S′ to totally dominate u2. If c ∈ S′,
then we contradict our choice of S′ (simply replace c in S′ with a vertex
in NG(u1) ∩ N(w)). Thus, S′ ∩ A = {a}. Now there must exist a vertex
z ∈ S′ to totally dominate w. If z ∈ NG(u1), then S′ − {a} is a TDS of
G. If z /∈ NG(u1), then (S′ − {a, u1}) ∪ {w} is a TDS of G, and so again
γt(G) ≤ |S′| − 1.

4. Graphs with Large Total Domination
Subdivision Numbers

Our aim in this section is to show that the total domination subdivision
number of a graph can be arbitrarily large.

Theorem 13. For any integer k ≥ 2, there exists a connected graph G with
sdγt(G) = k.



466 T.W. Haynes, M.A. Henning and L.S. Hopkins

Proof. Let X = {1, 2, . . . , 3(k − 1)} and let Y = {Y ⊂ X: |Y | = k}. Thus,
Y consists of all k-element subsets of X, and so |Y| =

(3(k−1)
k

)
. Let G be

the graph with vertex set X ∪ Y and with edge set constructed as follows:
add an edge joining every two distinct vertices of X and for each x ∈ X
and Y ∈ Y, add an edge joining x and Y if and only if x ∈ Y . Then, G is
a connected graph of order n =

(3(k−1)
k

)
+ 3(k − 1). The set X induces a

clique in G, while the set Y is an independent set each vertex of which has
degree k in G.

To totally dominate Y, any TDS of G must contain at least 2(k − 1)
vertices of X, and so γt(G) ≥ 2(k− 1). On the other hand, any subset of X
of cardinality 2(k−1) is a TDS of G, and so γt(G) ≤ 2(k−1). Consequently,
γt(G) = 2(k − 1).

Let F = {e1, . . . , ek−1} be an arbitrary subset of k − 1 edges of G. Let
H be the graph obtained from G by subdividing each edge in F . We show
that γt(H) = γt(G). For i = 1, . . . , k − 1, let ei = uivi. Since every edge
of G is incident with at least one vertex of X, we may assume ui ∈ X for
each i. If vi ∈ Y, then since deg vi = k and |F | = k − 1, vi is adjacent to
a vertex wi, say, in X such that viwi /∈ F . If vi ∈ X, let wi be any vertex
of X that is incident with no edge of F . Let DF = ∪k−1

i=1 {ui, wi}. Then,
|DF | ≤ 2(k− 1). If |DF | < 2(k− 1), let D be any subset of 2(k− 1) vertices
of X that contain DF . If |DF | = 2(k−1), let D = DF . Then, D is a TDS of
H, and so γt(H) ≤ 2(k − 1) = γt(G). On the other hand, since subdividing
edges of G cannot decrease its total domination number, γt(H) ≥ γt(G).
Consequently, γt(H) = γt(G), whence sdγt(G) ≥ k.

We show next that sdγt(G) ≤ k. Let y ∈ Y and let Gy be the graph
obtained from G by subdividing each edge incident with y. Let D be a
γt(Gy)-set. To totally dominate Y − {y}, D must contain at least 2k − 3
vertices of X. Further, if D contains exactly 2k − 3 vertices of X, then
necessarily X − D = NG(y). But then in order to totally dominate y and
the k new vertices of degree 2 in Gy, D must contain at least two additional
vertices, and so |D| ≥ 2k − 1. On the other hand, if D contains at least
2k−2 vertices of X, then in order to totally dominate y, D contains at least
one additional vertex, and so once again |D| ≥ 2k − 1. Hence, γt(Gy) =
|D| ≥ 2k − 1 > γt(G), whence sdγt(G) ≤ k. Consequently, sdγt(G) = k.

The number of vertices in the graph constructed in the proof of Theorem 13
is n =

(3(k−1)
k

)
+ 3(k − 1) < 23(k−1), and so k > 1

3 log2 n + 1. Hence we have
the following corollary of Theorem 13.



Total Domination Subdivision Numbers of Graphs 467

Corollary 14. There exist connected graphs G of arbitrarily large order n
satisfying

sdγt(G) >
1
3

log2 n + 1.

We close with the remark that for any n ≥ 6, a connected graph H of order n
satisfying sdγt(H) > 1

3 log2 n+1 can be constructed from a copy of the graph
G constructed in the proof of Theorem 13 by adding, if necessary, a new set
Z of vertices and adding edges so that the set X ∪Z induces a clique in H.
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