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Abstract

Let a and b be integers 4 < a < b. We give simple, sufficient con-
ditions for graphs to contain an even [a, b]-factor. The conditions are
on the order and on the minimum degree, or on the edge-connectivity
of the graph.
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1. Introduction

We denote by G a graph of order n = |V(G)|. For a vertex z in V(G) let
dg(z) denote its degree. By § = 6(G) = min{dg(z)|x € V(G)} we denote
the minimum degree in G. Let X, Y be an ordered pair of disjoint subsets of
V(G), and f, g be mappings from V(G) into N. By e(X,Y’) we denote the
number of edges with one endvertex in X and the other in Y. By h(X,Y),
we denote the number of odd components in G — (X UY'). A component C
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of G — (X UY) is called odd if e(C,Y) + 3 ey f(c) is an odd number.
An even factor of GG is a spanning subgraph all of whose degrees are even. If
g(x) < f(z) for all z in V(G), by a [g, f]-factor we understand a spanning
subgraph F' of G satisfying g(x) < dp(z) < f(x), for all z € V(G).

Theorem 1 (Lovész’ parity [g, f]-factor theorem [13], [3]). Let G be a graph
and let g, f be maps from V(G) into the nonnegative integers such that for
each v € V(G), g(v) < f(v) and g(v) = f(v) (mod 2). Then G contains a
lg, f]-factor F such that dp(v) = f(v) (mod 2), for each v € V(G), if and
only if, for every ordered pair X,Y of disjoint subsets of V(Q)

(%) WX,Y) =" fl@)+ ) gly) =D daly) +e(X,Y) <0.

zeX yey yey

Tutte’s f-factor theorem is surveyed in [1]. Let us recall other results on
[a, b]-factors. In [7], Kano and Saito proved that, for any nonnegative inte-
gers k,r, s, t satisfying k < 7,1 <r ks < rt, every graph with degrees in the
interval [r,r + s| has a [k, k + t]-factor. Berge, Las Vergnas, and indepen-
dently Amahashi and Kano, proved for any integer b > 2, that a graph has
a [1,b]-factor if and only if b|N(X)| > |X]| for all independent vertex sets
X of the graph. Kano proved a sufficient condition for a graph to have an
[a, b]-factor giving a condition on the sizes |N(X)| for subsets X of V(G) [8].
Cui and Kano generalized Tutte’s 1-factor theorem. They consider a map
f:V(G) — {1,3,5,...} and call F an odd [1, f]-factor of G if F is a factor
of G with dp(v) odd and dr(v) € [1, f(v)] for all vertices v in G. They prove
that G has an odd [1, f]-factor if and only if G — X has at most )y f()
components of odd cardinality for any subset X C V(G) [5]. Then,Topp
and Vestergaard restrict the number of subsets to be considered above, and,
as a consequence, proved that a graph of even order n in which no vertex
v is the center of an induced K, f(,)41 -star has an odd [1, f]-factor [15].
In [9, 10], Kouider and Maheo prove the existence of connected [a, b] factors
in graphs of high degree. For even factors with degrees between 2 and b we
establish a sufficent condition in [11].

Theorem 2. Let b > 2 be an even integer and let G be a 2-edge connected
graph with n vertices and with minimum degree 6(G) > min{3, %} Then
G contains an even [2,b]-factor.
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We shall now generalize this to even factors with degrees between a and b,
where a is an even integer > 4.

2. Results

Let a,b, a < b, be even, positive integers. In the inequality (x), we substitute
e(X,Y) by | X||Y], and derive a sufficient condition for existence of an even
[a, b]-factor in G:

(%) h(X,Y) = b X|+alY]=46Y]+ |X]|Y]| <O0.
We shall prove the following results.

Theorem 3. Let a,b be two even integers satisfying 4 < a < b. Let G
2
be a 2-edge connected graph of order n at least max{ (a:b) , 3(‘1;17)}, and of

minimum degree 6 at least J2%. Then G has an even [a, b]-factor.

Example 1. Take even integers a, b such that @ > 12, b = 2a?, let § = 37“—%4
and let G be the graph which consists of 2a — 2 disjoint copies of a complete
graph K. 1, each copy joined by one edge to a common vertex y. The order
of Gisn= (3 +5)(2a—2)+1=3a?+7a — 9, and it is easy to see that

n > max{ (aib)z, 3(a+b)}. The minimum degree of G is § = 3% + 4 and the

an _ a(3¢®+7a=9) _ 3a®+7a-9 _ 3a>+7a
a+b a+2a? - 2a+1 = 2a
%a + % So G is not 2-edge connected but satisfies all other conditions of

Theorem 3. The graph G has no even [a, b]-factor F', because F' must contain
an edge from y to K, one of the complete graphs K;,1, and the rectriction
of F' to K should contain exactly one odd vertex, which is impossible.

inequality 6 > -5 follows from

Example 2. For a positive integer k£ > 5, let a = 2k + 2 and b = ka. Let
n = k(3k +2) + 1. We consider a graph G of order n, composed of k vertex
disjoint copies of the complete graph K32, and an external vertex x¢ joined
to each copy by 3 edges. This graph is 2-edge connected, its minimum degree
is 6 =3k > %, and n > @,n > %b. In an even [a,b]-factor F' of G
the vertex xg must be joined to at least 2k + 2 other vertices, so in F' at
least one of the K3i12’s, say K, is joined to zg by exactly 3 edges. Thus
the graph K should have a subgraph, namely K N F', with an odd number
of odd vertices. Hence G has no even |a, b]-factor.
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This example shows that even if G is 3-edge connected the conditions § >

2
atp and n > max{@, 3b/2} are not sufficient for existence of an even

[a, b]-factor, even if a is much more smaller than b.

Theorem 4. Let a > 4 and b > a be two even integers. Let G be a 2-edge
2
connected graph of order n > @ and of minimum degree at least =%+ 5.

a+b
Then G has an even [a, b]-factor.

In the following result, we have a weaker condition on the order, but a
stronger one on the edge-connectivity.

Theorem 5. Let a > 4 and b > a be two even integers, and let k > a +
min{\/a, g} Let G be a k-edge-connected graph of order n > % and of
minimum degree at least ;‘—& Then G has an even [a, b]-factor.

Example 3. Let a,b,k be integers such that b > 3a?, and k < a — 1;
furthermore a, b are even and k is odd. We define a k-connected graph G as
follows.

Let Y be a set k independant vertices, and consider a family of & + 2
complete graphs H; for 1 <1 < k+2 such that H; = K, o fori < k+1, and
Hyto = Kpi 34— (k+1)(a+3)+1- Bach y € Y is joined to exactly a + 1 vertices,
one in H; for each i, 1 <4 < k+1, and a —k vertices in Hy1o so that no two
vertices of Y have a common neighbour. So dy(y) = a + 1, for each y € Y.
The order n of G is 3a+b. As b > 3a?, one can verify that 6 > :—fb. Thus G
satisfies all conditions in Theorem 5, except the one on k. Suppose that G
has an even [a, b]-factor F.. Now, let y be any vertex in Y. As dg(y) =a+1
and a + 1 is odd, it follows that dp(y) = a. Then necessarily, there exists
a copy H; for some t < k such that eq(Y, H;) = ep(Y, Hy). It follows that
the restriction of the factor F' to Hy has k odd vertices; as k is odd, that is
impossible. So, the graph G has no even [a, b]-factor.

3. Proofs

We shall use Claims 1-4 below for the proof of Theorem 3. First we establish
the truth of (x) for a large class of ordered pairs X,Y.

Let 7(X,Y) = h(X,Y) = b| X |+ alY| — Zer da(y) +e(X,Y).
The hypotheses of Theorem 3 imply that § > max{%a, a—+ %}
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Claim 1. Inequality (%) holds if —b|X |+ a|Y| < 0.

Proof. Recall, that for any odd component C, b|V(C)| + e(C,Y) is odd;
as b is even, that implies e(C,Y) > 1. Hence, between Y and each odd
component of G — (X UY) there is at least one edge, therefore h(X,Y) +
e(X,Y) <37, ey da(y), and (x) follows as —b|X| +a|Y'| < 0. u

Claim 2. Inequality (%) holds if |Y| > a + 0.

Proof. Let —b|X| + a|Y| = p. By Claim 1, we may assume p > 0. By
definition of h(X,Y’), we have | X |+ |Y|+ h(X,Y) < n. Then we obtain

alY|—p _ aln—h(X,¥) = |X]) = p

X| =
’ ’ b —_ b Y
and thus
|X| < CL(TL— h(va)) _p'
a+b
So
o(x.¥) < X|y| < QI 20y
a+b
By hypothesis on § we have
an
- < — < - .
3 daly) < —d¥| < -2y
yey
That yields the inequality
an aln—h(X,Y))—p
X.Y)<h(X,Y - Y Y.
T(XY) < BX,Y) +p— |+ Sy

So now, since |Y| > a + b, we get

a(h(X,Y) +p)

Y] < (1—=a)(h(X,Y) +p).

As a >4 and p > 0, we conclude that 7(X,Y) <0 and (%) is proven. |

By Claims 1 and 2 we may henceforth assume 0 < 3|X| <lY|<a+b-1
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Proof of Theorem 3. We assume 0 < 2|X| < |Y| < a+b—1 and,
following the different values of |Y|, we proceed to prove that 7(X,Y") < 0.
As h(X,Y) <n—|X|—1|Y], 7(X,Y) is bounded as follows:

7(X,Y) < h(X,Y) = b X|+alY| = 6Y]| + | X]||Y|
<n—0@—-—a+ Y|+ |X|(|]Y]-0-1),
and therefore, to prove 7(X,Y) < 0 it suffices to prove that

( * *) n—(0—a+)|Y|+|X|(JY|-b-1)<0.

Case |Y| > b+ 1.
Let us set

a

(V) =n— (@0 —a+ Y[+ |Y|([Y] - b-1).
As [ X| < 3]Y|, we see that (x * x) will follow if ¢(|Y]) <O0.
Claim 3. $(|Y]) < 0.

Proof. For |Y| varying in the interval of integers, [b + 1,a + b — 1], the
maximum value of the parabola ¢ is attained at an endpoint of the interval.
In both ends we shall show that ¢(|Y|) <0.

pb+1)=n—(0—a+1)(b+1);

and as —0 < — 1%, we get

b—ab

+ab+a—0b—1.
a-+b

opb+1)<n

As —n < —%, we obtain
pb+1)<(a+b)(1—a)—(b+1)(1—-a)=—-(1-a)*<0.
At the other endpoint,

gb(a—i—b—l):n—i-(—(5—a+1)+%(a—2)) (a+b—1).
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As 0 > 1%, we get

20 +b—a?—ab
a+b

1
pla+b—1)<n +(a+b—1)(a2—2a+ab—b)g

Now the inequalities n > (atb) and 2a—a?+b—ab = —a(a—2)—b(a—1) <0
imply
2a 4+ b — a® — ab

pla+b—-1) < 2 (a+b—a—-0b+1)
bla+b—1) < == 2)6_ ba=l)
This proves Claim 3. [

Henceforth we may assume |Y| < b and |X| <a—1, as |[X| < 3]Y].

Let H be the set of odd components C of G — (X UY). Then, H =
HUHy where H is the set of the odd components C' having e(C,Y’) = 1, and
H, is the set of those for which e(C,Y) > 3. Let us set h = h(X,Y) = |H|
and hi = hi(X, Y) = ‘Hz|7 1= 1,2. So h = h1 + h2.

. n—|Y]|
Claim 4. h; < SHT=IX]

Proof of Claim 4. A component C' in H; has at least two vertices.
Otherwise C' = {c} and, the degree of the vertex ¢ could be at most | X |+ 1;
and, as | X| < a — 1, then dg(c) < a; that contradicts dg(c) > 6 > 32, So
the component C' contains a vertex ¢’ not joined to any vertex in Y, and
hence having at least § — | X| neighbours in C, therefore |C| > § — | X| + 1

; n—|Y|
and we obtain h; < pm ey g [ |

We continue with the proof of Theorem 3.

Case |Y| < b and | X]| = 0.
To prove that 7(X,Y) < 0 we shall show that

WX, Y) +alY] =) d(y)
yey
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As G has no bridge, and |X| = 0 necessarily hy = 0, h = hg and h <
%Zer d(y). Then

2 0
<-2) < _22).
7(X,Y) < 3yeyd(y) +alY| <|Y| <a 23)

As § > 3 we conclude 7(X,Y)
From now, |Y| < b and | X|

<0.
> 1.
Case |[Y|<band 1< |X|<a-—1.
We note that 3 oy d(y) > e(Y,H) + e(X,Y), and e(Y, H) > hy + 3hy =
3h — 2hy, so
3h < > d(y) — e(X,Y) + 2hy;

yey
Dyey Ay) —e(X,Y) +2h

3 .

h <
By Claim 4, then

Zer d(y) - e(X7 Y) 2n
= 3 3o xX)

Recalling 7(X,Y) =h —b|X |+ a|Y| = >_
following upper bound for 7(X,Y).

yey d(y) + e(X,Y), we obtain the

Zer d(y) —e(X,Y) 2n
_bX| +alYl.
T3priogxy XY

7(X,Y) < -2

From e(X,Y) < [X||Y] and }_, cy d(y) > 6|Y| we obtain

2lY] 2n
- Y[+
TR LT Sy e g

7(X,Y) < —2’}26

+ 1 XI(
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As é > 37“, this gives

2\Y]| 2
T(X,Y) < ‘X|<3 - > 3o X))

Inserting |Y| < b yields

_b|X|+ 2n
3 30+1— X))

7(X,Y) <

Then 7 is strictly positive if and only if

2n
bX| < —
X< S
in other words if
2
(4 5 5 %) X1 +1 - 1X) < 2=

Let us consider the left side of this inequality as a function f(|X]) of | X|.
We have assumed 1 < |X| <a—1<4.

For | X| varying in the interval [1, §] the function f has its minimum for
|X| =1 and |X| = §, namely f(1) = f(0) = J. Hence inequality (x * x* x)
implies that § < 2%. As § > at5» we should have b(a — 2) < 2a. But this
does not hold for b > a > 4. So we conclude that 7 is nonpositive, and
Theorem 3 is proven. [

2

Proof of Theorem 4. § > %(a +b) + § implies § > 9 + 37“ >

max {%‘1, a-+ %} , and all arguments, including the argument for the case
|Y| < b, can be carried through. |

Proof of Theorem 5. Claims 1, 2 and 3 still hold with the hypotheses
of Theorem 5, so the proof of Theorem 5 begins analogously to that of
Theorem 3, and we reach the assumption 0 < ng\ < Y| < b. Now, we
examine the missing case.

Case |Y| <b.
We know that 0 < [X| < a —1 (as [X| < 3[Y]). Since G has edge-
connectivity at least k, each component of G— (X UY) sends at least k — | X|

edges to Y, so h(X,Y) < 2yey Z(_yl));‘e(X,Y).
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It follows that

Zer d(y) - €(X, Y)

T(X,Y) < X —bX|+alY]+eX,Y) =) d(y),
yey
— X -1
rxy) < LT vy - S dg) — bl aly],
k—|X| =
|X|-1

AsO<\X|<a—1andk>awehavek7

X > 0 and inserting e(X,Y) —
Zer d(y) < |X||Y| = d]Y]| we obtain

kE—|X|-1
rxy) < SIS0 - o) - )+ aly,
kX =1 k—|X|-1

7(X,Y) X J) (7k—|X]

IN

V(e — Y] =) X].

The last term is nonpositive, since |Y| < b; so to have 7(X,Y) < 0 it will
suffice that

: — X
d>a——F——.
(i) = X1
On one hand, as § > k, it is sufficient that k& > akk‘)ﬁql; as | X| <a-1,
we see that the inequality (i) is satisfied if £ > a + \/a, because a7 | )L)‘( | - =

a(l+ﬁ)§a(l+ﬁ)—a+\f§k
On the other hand, we have

a
>a(l+ ).
> a(1+5)

Ifk>a+2 and as [X| < a— 1, it follows that k — |X|— 1> 2 and

akkT‘)ﬂl =a(l+ %) <a(l+ ) < and hence, also in this case, the

inequality (i) is satified; and 7(X,Y’) < 0. This proves Theorem 5. n
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