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91405 Orsay, France

e-mail: km@lri.fr

and

Preben Dahl Vestergaard

Department of Mathematics
Aalborg University, Fredrik Bajers Vej 7G

DK-9220 Aalborg Øst, Denmark

e-mail: pdv@math.aau.dk

Abstract

Let a and b be integers 4 ≤ a ≤ b. We give simple, sufficient con-
ditions for graphs to contain an even [a, b]-factor. The conditions are
on the order and on the minimum degree, or on the edge-connectivity
of the graph.
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1. Introduction

We denote by G a graph of order n = |V (G)|. For a vertex x in V (G) let
dG(x) denote its degree. By δ = δ(G) = min{dG(x)|x ∈ V (G)} we denote
the minimum degree in G. Let X, Y be an ordered pair of disjoint subsets of
V (G), and f, g be mappings from V (G) into N. By e(X, Y ) we denote the
number of edges with one endvertex in X and the other in Y . By h(X, Y ),
we denote the number of odd components in G− (X ∪ Y ). A component C



432 M. Kouider and P.D. Vestergaard

of G − (X ∪ Y ) is called odd if e(C, Y ) +
∑

c∈V (C) f(c) is an odd number.
An even factor of G is a spanning subgraph all of whose degrees are even. If
g(x) ≤ f(x) for all x in V (G), by a [g, f ]-factor we understand a spanning
subgraph F of G satisfying g(x) ≤ dF (x) ≤ f(x), for all x ∈ V (G).

Theorem 1 (Lovász’ parity [g, f ]-factor theorem [13], [3]). Let G be a graph
and let g, f be maps from V (G) into the nonnegative integers such that for
each v ∈ V (G), g(v) ≤ f(v) and g(v) ≡ f(v) (mod 2). Then G contains a
[g, f ]-factor F such that dF (v) ≡ f(v) (mod 2), for each v ∈ V (G), if and
only if, for every ordered pair X, Y of disjoint subsets of V (G)

(∗) h(X,Y )−
∑

x∈X

f(x) +
∑

y∈Y

g(y)−
∑

y∈Y

dG(y) + e(X, Y ) ≤ 0.

Tutte’s f -factor theorem is surveyed in [1]. Let us recall other results on
[a, b]-factors. In [7], Kano and Saito proved that, for any nonnegative inte-
gers k, r, s, t satisfying k ≤ r, 1 ≤ r, ks ≤ rt, every graph with degrees in the
interval [r, r + s] has a [k, k + t]-factor. Berge, Las Vergnas, and indepen-
dently Amahashi and Kano, proved for any integer b ≥ 2, that a graph has
a [1, b]-factor if and only if b|N(X)| ≥ |X| for all independent vertex sets
X of the graph. Kano proved a sufficient condition for a graph to have an
[a, b]-factor giving a condition on the sizes |N(X)| for subsets X of V (G) [8].
Cui and Kano generalized Tutte’s 1-factor theorem. They consider a map
f : V (G) → {1, 3, 5, . . .} and call F an odd [1, f ]-factor of G if F is a factor
of G with dF (v) odd and dF (v) ∈ [1, f(v)] for all vertices v in G. They prove
that G has an odd [1, f ]-factor if and only if G−X has at most

∑
x∈X f(x)

components of odd cardinality for any subset X ⊆ V (G) [5]. Then,Topp
and Vestergaard restrict the number of subsets to be considered above, and,
as a consequence, proved that a graph of even order n in which no vertex
v is the center of an induced K1,nf(v)+1 -star has an odd [1, f ]-factor [15].
In [9, 10], Kouider and Maheo prove the existence of connected [a, b] factors
in graphs of high degree. For even factors with degrees between 2 and b we
establish a sufficent condition in [11].

Theorem 2. Let b ≥ 2 be an even integer and let G be a 2-edge connected
graph with n vertices and with minimum degree δ(G) ≥ min{3, 2n

b+2}. Then
G contains an even [2, b]-factor.
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We shall now generalize this to even factors with degrees between a and b,
where a is an even integer ≥ 4.

2. Results

Let a, b, a ≤ b, be even, positive integers. In the inequality (∗), we substitute
e(X, Y ) by |X||Y |, and derive a sufficient condition for existence of an even
[a, b]-factor in G:

(∗∗) h(X, Y )− b|X|+ a|Y | − δ|Y |+ |X||Y | ≤ 0.

We shall prove the following results.

Theorem 3. Let a, b be two even integers satisfying 4 ≤ a ≤ b. Let G

be a 2-edge connected graph of order n at least max{ (a+b)2

b , 3(a+b)
2 }, and of

minimum degree δ at least an
a+b . Then G has an even [a, b]-factor.

Example 1. Take even integers a, b such that a ≥ 12, b = 2a2, let δ = 3a
2 +4

and let G be the graph which consists of 2a−2 disjoint copies of a complete
graph Kδ+1, each copy joined by one edge to a common vertex y. The order
of G is n = (3a

2 + 5)(2a − 2) + 1 = 3a2 + 7a − 9, and it is easy to see that

n ≥ max{ (a+b)2

b , 3
2(a + b)}. The minimum degree of G is δ = 3a

2 + 4 and the

inequality δ ≥ an
a+b follows from an

a+b = a(3a2+7a−9)
a+2a2 = 3a2+7a−9

2a+1 ≤ 3a2+7a
2a ≤

3
2a + 7

2 . So G is not 2-edge connected but satisfies all other conditions of
Theorem 3. The graph G has no even [a, b]-factor F , because F must contain
an edge from y to K, one of the complete graphs Kδ+1, and the rectriction
of F to K should contain exactly one odd vertex, which is impossible.

Example 2. For a positive integer k ≥ 5, let a = 2k + 2 and b = ka. Let
n = k(3k + 2) + 1. We consider a graph G of order n, composed of k vertex
disjoint copies of the complete graph K3k+2, and an external vertex x0 joined
to each copy by 3 edges. This graph is 2-edge connected, its minimum degree
is δ = 3k ≥ an

a+b , and n ≥ (a+b)2

b , n ≥ 3b
2 . In an even [a, b]-factor F of G

the vertex x0 must be joined to at least 2k + 2 other vertices, so in F at
least one of the K3k+2’s, say K, is joined to x0 by exactly 3 edges. Thus
the graph K should have a subgraph, namely K ∩ F , with an odd number
of odd vertices. Hence G has no even [a, b]-factor.
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This example shows that even if G is 3-edge connected the conditions δ ≥
an
a+b and n ≥ max{ (a+b)2

b , 3b/2} are not sufficient for existence of an even
[a, b]-factor, even if a is much more smaller than b.

Theorem 4. Let a ≥ 4 and b ≥ a be two even integers. Let G be a 2-edge
connected graph of order n ≥ (a+b)2

b and of minimum degree at least an
a+b + a

2 .
Then G has an even [a, b]-factor.

In the following result, we have a weaker condition on the order, but a
stronger one on the edge-connectivity.

Theorem 5. Let a ≥ 4 and b ≥ a be two even integers, and let k ≥ a +
min{√a, b

a}. Let G be a k-edge-connected graph of order n ≥ (a+b)2

b and of
minimum degree at least an

a+b . Then G has an even [a, b]-factor.

Example 3. Let a, b, k be integers such that b > 3a2, and k ≤ a − 1;
furthermore a, b are even and k is odd. We define a k-connected graph G as
follows.

Let Y be a set k independant vertices, and consider a family of k + 2
complete graphs Hi for 1 ≤ i ≤ k+2 such that Hi = Ka+2 for i ≤ k+1, and
Hk+2 = Kb+3a−(k+1)(a+3)+1. Each y ∈ Y is joined to exactly a + 1 vertices,
one in Hi for each i, 1 ≤ i ≤ k+1, and a−k vertices in Hk+2 so that no two
vertices of Y have a common neighbour. So dH(y) = a + 1, for each y ∈ Y.
The order n of G is 3a+ b. As b > 3a2, one can verify that δ ≥ an

a+b . Thus G
satisfies all conditions in Theorem 5, except the one on k. Suppose that G
has an even [a, b]-factor F . Now, let y be any vertex in Y . As dG(y) = a+1
and a + 1 is odd, it follows that dF (y) = a. Then necessarily, there exists
a copy Ht for some t ≤ k such that eG(Y,Ht) = eF (Y, Ht). It follows that
the restriction of the factor F to Ht has k odd vertices; as k is odd, that is
impossible. So, the graph G has no even [a, b]-factor.

3. Proofs

We shall use Claims 1–4 below for the proof of Theorem 3. First we establish
the truth of (∗) for a large class of ordered pairs X,Y .

Let τ(X, Y ) = h(X, Y )− b|X|+ a|Y | −∑
y∈Y dG(y) + e(X,Y ).

The hypotheses of Theorem 3 imply that δ ≥ max{3a
2 , a + a2

b }.
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Claim 1. Inequality (∗) holds if −b|X|+ a|Y | ≤ 0.

Proof. Recall, that for any odd component C, b|V (C)| + e(C, Y ) is odd;
as b is even, that implies e(C, Y ) ≥ 1. Hence, between Y and each odd
component of G − (X ∪ Y ) there is at least one edge, therefore h(X, Y ) +
e(X, Y ) ≤ ∑

y∈Y dG(y), and (∗) follows as −b|X|+ a|Y | ≤ 0.

Claim 2. Inequality (∗) holds if |Y | ≥ a + b.

Proof. Let −b|X| + a|Y | = p. By Claim 1, we may assume p > 0. By
definition of h(X,Y ), we have |X|+ |Y |+ h(X, Y ) ≤ n. Then we obtain

|X| = a|Y | − p

b
≤ a(n− h(X, Y )− |X|)− p

b
,

and thus

|X| ≤ a(n− h(X, Y ))− p

a + b
.

So

e(X,Y ) ≤ |X||Y | ≤ a(n− h(X, Y ))− p

a + b
|Y |.

By hypothesis on δ we have

−
∑

y∈Y

dG(y) ≤ −δ|Y | ≤ − an

a + b
|Y |.

That yields the inequality

τ(X,Y ) ≤ h(X, Y ) + p− an

a + b
|Y |+ a(n− h(X,Y ))− p

a + b
|Y |.

So now, since |Y | ≥ a + b, we get

τ(X,Y ) ≤ h(X, Y ) + p− a(h(X, Y ) + p)
a + b

|Y | ≤ (1− a)(h(X,Y ) + p).

As a ≥ 4 and p > 0, we conclude that τ(X, Y ) ≤ 0 and (∗) is proven.

By Claims 1 and 2 we may henceforth assume 0 ≤ b
a |X| < |Y | ≤ a + b− 1.
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Proof of Theorem 3. We assume 0 ≤ b
a |X| < |Y | ≤ a + b − 1 and,

following the different values of |Y |, we proceed to prove that τ(X, Y ) ≤ 0.
As h(X, Y ) ≤ n− |X| − |Y |, τ(X, Y ) is bounded as follows:

τ(X,Y ) ≤ h(X, Y )− b|X|+ a|Y | − δ|Y |+ |X||Y |

≤ n− (δ − a + 1)|Y |+ |X|(|Y | − b− 1),

and therefore, to prove τ(X, Y ) ≤ 0 it suffices to prove that

(∗ ∗ ∗) n− (δ − a + 1)|Y |+ |X|(|Y | − b− 1) ≤ 0.

Case |Y | ≥ b + 1.
Let us set

φ(|Y |) = n− (δ − a + 1)|Y |+ a

b
|Y |(|Y | − b− 1).

As |X| < a
b |Y |, we see that (∗ ∗ ∗) will follow if φ(|Y |) ≤ 0.

Claim 3. φ(|Y |) ≤ 0.

Proof. For |Y | varying in the interval of integers, [b + 1, a + b − 1], the
maximum value of the parabola φ is attained at an endpoint of the interval.
In both ends we shall show that φ(|Y |) ≤ 0.

φ(b + 1) = n− (δ − a + 1)(b + 1);

and as −δ ≤ − an
a+b , we get

φ(b + 1) ≤ n
b− ab

a + b
+ ab + a− b− 1.

As −n ≤ − (a+b)2

b , we obtain

φ(b + 1) ≤ (a + b)(1− a)− (b + 1)(1− a) = −(1− a)2 ≤ 0.

At the other endpoint,

φ(a + b− 1) = n +
(
−(δ − a + 1) +

a

b
(a− 2)

)
(a + b− 1).
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As δ ≥ an
a+b , we get

φ(a + b− 1) ≤ n
2a + b− a2 − ab

a + b
+ (a + b− 1)(a2 − 2a + ab− b)

1
b
.

Now the inequalities n ≥ (a+b)2

b and 2a−a2+b−ab = −a(a−2)−b(a−1) ≤ 0
imply

φ(a + b− 1) ≤ 2a + b− a2 − ab

b
(a + b− a− b + 1)

φ(a + b− 1) ≤ −a(a− 2)− b(a− 1)
b

≤ 0.

This proves Claim 3.

Henceforth we may assume |Y | ≤ b and |X| ≤ a− 1, as |X| < a
b |Y |.

Let H be the set of odd components C of G − (X ∪ Y ). Then, H =
H1∪H2 where H1 is the set of the odd components C having e(C, Y ) = 1, and
H2 is the set of those for which e(C, Y ) ≥ 3. Let us set h = h(X, Y ) = |H|
and hi = hi(X,Y ) = |Hi|, i = 1, 2. So h = h1 + h2.

Claim 4. h1 ≤ n−|Y |
δ+1−|X| .

Proof of Claim 4. A component C in H1 has at least two vertices.
Otherwise C = {c} and, the degree of the vertex c could be at most |X|+1;
and, as |X| ≤ a − 1, then dG(c) ≤ a; that contradicts dG(c) ≥ δ ≥ 3a

2 . So
the component C contains a vertex c′ not joined to any vertex in Y , and
hence having at least δ − |X| neighbours in C, therefore |C| ≥ δ − |X| + 1
and we obtain h1 ≤ n−|Y |

δ+1−|X| .

We continue with the proof of Theorem 3.

Case |Y | ≤ b and |X| = 0.

To prove that τ(X,Y ) ≤ 0 we shall show that

h(X,Y ) + a|Y | −
∑

y∈Y

d(y) ≤ 0.
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As G has no bridge, and |X| = 0 necessarily h1 = 0, h = h2 and h ≤
1
3

∑
y∈Y d(y). Then

τ(X,Y ) ≤ −2
3

∑

y∈Y

d(y) + a|Y | ≤ |Y |
(

a− 2
δ

3

)
.

As δ ≥ 3a
2 , we conclude τ(X, Y ) ≤ 0.

From now, |Y | ≤ b and |X| ≥ 1.

Case |Y | ≤ b and 1 ≤ |X| ≤ a− 1.
We note that

∑
y∈Y d(y) ≥ e(Y,H) + e(X, Y ), and e(Y,H) ≥ h1 + 3h2 =

3h− 2h1, so

3h ≤
∑

y∈Y

d(y)− e(X,Y ) + 2h1;

h ≤
∑

y∈Y d(y)− e(X, Y ) + 2h1

3
.

By Claim 4, then

h ≤
∑

y∈Y d(y)− e(X, Y )
3

+
2n

3(δ + 1− |X|) .

Recalling τ(X, Y ) = h− b|X|+ a|Y | −∑
y∈Y d(y) + e(X,Y ), we obtain the

following upper bound for τ(X,Y ).

τ(X, Y ) ≤ −2

∑
y∈Y d(y)− e(X, Y )

3
+

2n

3(δ + 1− |X|) − b|X|+ a|Y |.

From e(X, Y ) ≤ |X||Y | and
∑

y∈Y d(y) ≥ δ|Y | we obtain

τ(X, Y ) ≤ −2
|Y |δ

3
+ |X|(2|Y |

3
− b) + a|Y |+ 2n

3(δ + 1− |X|) .
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As δ ≥ 3a
2 , this gives

τ(X,Y ) ≤ |X|
(

2|Y |
3

− b

)
+

2n

3(δ + 1− |X|) .

Inserting |Y | ≤ b yields

τ(X, Y ) ≤ −b|X|
3

+
2n

3(δ + 1− |X|) .

Then τ is strictly positive if and only if

b|X| < 2n

δ + 1− |X| ;

in other words if

(∗ ∗ ∗ ∗) |X|(δ + 1− |X|) <
2n

b
.

Let us consider the left side of this inequality as a function f(|X|) of |X|.
We have assumed 1 ≤ |X| ≤ a− 1 < δ.

For |X| varying in the interval [1, δ] the function f has its minimum for
|X| = 1 and |X| = δ, namely f(1) = f(δ) = δ. Hence inequality (∗ ∗ ∗ ∗)
implies that δ < 2n

b . As δ ≥ an
a+b , we should have b(a − 2) < 2a. But this

does not hold for b ≥ a ≥ 4. So we conclude that τ is nonpositive, and
Theorem 3 is proven.

Proof of Theorem 4. δ ≥ a
b (a + b) + a

2 implies δ ≥ a2

b + 3a
2 ≥

max
{

3a
2 , a + a2

b

}
, and all arguments, including the argument for the case

|Y | ≤ b, can be carried through.

Proof of Theorem 5. Claims 1, 2 and 3 still hold with the hypotheses
of Theorem 5, so the proof of Theorem 5 begins analogously to that of
Theorem 3, and we reach the assumption 0 ≤ b

a |X| < |Y | ≤ b. Now, we
examine the missing case.

Case |Y | ≤ b.
We know that 0 ≤ |X| ≤ a − 1 (as |X| < a

b |Y |). Since G has edge-
connectivity at least k, each component of G−(X∪Y ) sends at least k−|X|
edges to Y, so h(X, Y ) ≤

∑
y∈Y d(y)−e(X,Y )

k−|X| .
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It follows that

τ(X, Y ) ≤
∑

y∈Y d(y)− e(X, Y )
k − |X| − b|X|+ a|Y |+ e(X, Y )−

∑

y∈Y

d(y),

τ(X, Y ) ≤ k − |X| − 1
k − |X| (e(X, Y )−

∑

y∈Y

d(y))− b|X|+ a|Y |.

As 0 ≤ |X| ≤ a− 1 and k > a we have k−|X|−1
k−|X| > 0 and inserting e(X, Y )−∑

y∈Y d(y) ≤ |X||Y | − δ|Y | we obtain

τ(X,Y ) ≤ k − |X| − 1
k − |X| (|X||Y | − δ|Y |)− b|X|+ a|Y |,

τ(X,Y ) ≤ |Y |(a− k − |X| − 1
k − |X| δ) + (

k − |X| − 1
k − |X| |Y | − b)|X|.

The last term is nonpositive, since |Y | ≤ b; so to have τ(X, Y ) ≤ 0 it will
suffice that

(i) δ ≥ a
k − |X|

k − |X| − 1
.

On one hand, as δ ≥ k, it is sufficient that k ≥ a k−|X|
k−|X|−1 ; as |X| ≤ a − 1,

we see that the inequality (i) is satisfied if k ≥ a +
√

a, because a k−|X|
k−|X|−1 =

a(1 + 1
k−|X|−1) ≤ a(1 + 1√

a
) = a +

√
a ≤ k.

On the other hand, we have

δ ≥ an

a + b
≥ a(1 +

a

b
).

If k ≥ a + b
a , and as |X| ≤ a− 1, it follows that k − |X| − 1 ≥ b

a and

a k−|X|
k−|X|−1 = a(1 + 1

k−|X|−1) ≤ a(1 + a
b ) ≤ δ and hence, also in this case, the

inequality (i) is satified; and τ(X, Y ) ≤ 0. This proves Theorem 5.
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