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Abstract

Let a € (0,1) and let G = (Vg, Eg) be a graph. According to
Dunbar, Hoffman, Laskar and Markus [3] a set D C Vj is called an
a-dominating set of G, if |[Ng(u)ND| > adg(u) for all u € Vg \ D. We
prove a series of upper bounds on the a-domination number of a graph
G defined as the minimum cardinality of an a-dominating set of G.
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1. Introduction

Let o € (0,1) and let G = (V, Eg) be a simple and finite graph. The
neighbourhood and the degree of a vertex u € Vi in the graph G are denoted
by Ng(u) and dg(u), respectively. For all further notation and terminology
we refer the reader to [5].

In [3] Dunbar, Hoffman, Laskar and Markus introduce the concept of
an a-dominating set. They define a set D C Vz to be an a-dominating set
of G, if |Ng(u) N D| > adg(u) for all u € Viz \ D, i.e., for every vertex that
does not belong to D at least the a-fraction of its neighbours belongs to D.

In the present paper we prove a series of upper bounds on the -
domination number 7,(G) of a graph G defined as the minimum cardinality
of an a-dominating set of G. For further results on this parameter we refer
the reader to [3] and [6].

2. Results

Our first bound follows easily from a colouring result of Cowen and Emerson
(cf. Theorem 5.1 in [9]). In order to make our presentation self-contained
we include a short proof using a classical Erdés-type exchange argument.

Theorem 2.1. If « € (0,1) and G is a graph of order n, then v,(G) <
(1- ﬁ)”-
-«

Proof. Let r = (ﬁ} and let Vo = V3 U Vo U... UV, be a partition of Vg
such that >7/_; >, cy: [Na(u) N V4| is minimum. Note that r(1 — ) > 1.

If |[Ng(uo) N Viy| > (1 — a)dg(up) for some ig € {1,2,...,r} and
some ug € V;,, then there is some index 73 with 1 < 43 < r such that
[Na(uo) Vi | < (1= a)dg(uo). If Vi = Vig \ {uo}, Vi} = Vi, U{uo} and
V/ =V, for 1 <1<r with I & {ip,1}, then

>0 INe()nVil=3_ > [Ne(u) NVi|=2|Na(uo) NVi | +2|Ne (uo) NV |
’i=1u€Vi' i=1lueV;

<> > INe(w)nVj

i=1ueV;

which is a contradiction.
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For each i € {1,2,...,r} we therefore have |[Ng(u) N V;| < (1 — a)dg(u) for
all w € V;, which implies that Vi \ V; is an a-dominating set of G. Since
max{|V;| | 1 <i <r} > 2, the desired bound follows. ]

The following corollary is actually equivalent to Theorem 2.1.

Corollary 2.2. Let i € Nog = {0,1,2,...} and let « € R be such that

1 <a<itl If G is a graph of order n, then v,(G) < H%n <74

+2° —a”

Proof If - 1<oz<H'lforsomezGN(3,‘chenz+1<1 < i+ 2 and

1+1
i+2 < 2 a’

These inequalities easily imply the desired result. [
Corollary 2.3 (Corollary 10 in [3]). If a € (0, 3] and G is a graph of order
n, then vo(G) < 5.

The following observation shows that the bound given in Theorem 2.1 and
Corollary 2.2 is essentially best-possible.

Observatlon 2.4. Let i € Ng = {0,1,2,...} and let « € R be such that
ar <a< Zié For every € > 0, there is a connected graph G of order n

such that v, (G) > (% —e)n.

Proof. For | > 1 let the connected graph G(l) arise from the disjoint union
of I cliques Hy, Ha ,..., H; of order i+ 2 and one isolated vertex v by joining
v and one vertex u; of H; by a new edge for 1 < j <.

Let D be a minimum a-dominating set of G(I). If Vg, \ {u;} € D
for some 1 < j <[, then |DﬂVH\ > i+ 1. If Vg, \ {u;} € D for some
1 < j <1, then there is a vertex uj € Vp, \({uJ}UD) with dgy(uj) =i+1
and thus |DﬁVH | > [adg@y(uf)] = [ (H—lﬂ = i+1. Altogether, we obtain

(G (3 . . (3 7
Yo (G(1)) > 1(i4+1) and thus Wn( (E ) > l(ig—;)lj-l' Since lim;_, l(igr;)l_?_l = z’——%’

the desired result follows. [ ]

Note that the graphs we considered for the proof of Observation 2.4 were
connected but not 2-connected. In fact, we believe the following.

Conjecture 2.5. If a € (0,1) and G is a 2-(vertex-)connected graph of
order n, then v4(G) < Ja(n —1)].
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Using a probabilistic argument, our next result shows that the bound in
Conjecture 2.5, i.e., = an, is essentially the right bound for graphs with a
sufficiently large minimum degree.

Theorem 2.6. For o € (0,1) and € > 0 there is some constant § . depend-
ing only on « and € such that v,(G) < (a+ €)n for all graphs G of order n
with minimum degree at least 0.

Proof. Let G be a graph of order n and minimum degree §. Without loss
of generality, we may assume that o+ § < 1. Independently for each vertex
u € Vi we introduce a random indicator variable Y,, such that Pr[Y, = 1] =
a+§and Pr[Y, =0/ =1—(a+%). Let Dy ={ue Vg |Y, =1} and

Dy ={ue Vg |Yy,=0and |[Ng(u) N Dy| < adg(u)}.

Clearly, Dy U Dy is an a-dominating set of G. The expected value of |Dy| is
E[|Do|] = (a + §)n. It remains to estimate the expected value E[|D1]].

For u € Vi let Z, = [Ng(u) N Dol = Xy ng(u) Yos 1€, Zy is the sum of
mutually independent indicator variables. Clearly, E[Z,] = (o + §)da(u).
Using Corollary A.1.14 in [1] — a well-known bound of large deviation whose
origin goes back to Chernoff [2] — we obtain that there is some constant
¢(a, €) > 0 depending only on « and € such that

Pr[|Ng(u) N Dy| < adg(u)] = Pr[Z, < adg(u)]

~ Pr (a + ;) do(u) — Zu > ;dg(u)}

IN

Pr

7, — (a + ;) de:(u)

> ;dg(u)]

= Pr[|Z,- B[z, > . Biz]

20 + €

< 2e—c(a,e)E[Zu]

_ ge—clae)(a+§)da(u).
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Therefore,

E[D1]] = ) Prfu€ Dy

ueVg

= Y Pr[Y, =0]-Pr[|[Ng(u) N Do| < audz(u)]

ueVg

>y (1 _ (a n 6)) 9 —c(,6) (ot §)des ()
2

ueVg

< n (1 - (a + 2)) geel@:0(@+5)s

Since (for fixed a and € and hence also fixed ¢(a, €))

lim (1 _ (a + ;)) peel@aat 56 _ g

d—00

IN

the desired result follows. [ ]

We proceed to some best-possible bounds for bipartite graphs and for cacti,
i.e., graphs all cycles of which are edge-disjoint.

Proposition 2.7. Let a € (0,1).
(i) If G is a bipartite graph of order n, then vo(G) < 3n.
(ii) If G is a non-bipartite cactus of order n and the length of a shortest

odd cycle in G is at least goaa, then Vo (G) < 3(1 + ﬁ)n
Proof. (i) Since the smaller partite set of G is an a-dominating set of G,
the result is obvious.

(ii) Let G be a non-bipartite cactus of order n > 2 such that the length
of a shortest odd cycle in G is at least go,qq. We may assume, without loss
of generality, that G is connected. We prove the bound by induction on the
number b of blocks of G.

First we assume that b = 1, i.e., G is an odd cycle of length at least
Jodd- This implies
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Now let b > 1 and let B = (Vp, Eg) be an endblock of G, i.e. G has exactly
one cutvertex v. As above, we see that there is an a-dominating set Dp of
B such that |[Dp| < 3(1+ ﬁ)WB‘ and v € Dp.

Let Hy, Ho,...,H; be the components of G — Vg. Clearly, H; is a
cactus having less blocks than G such that H; is either bipartite or the
length of a shortest odd cycle in H; is at least goqq for 1 <1 <. By (i) and
the induction hypothesis, there is an a-dominating set D; of H; such that
1Di] < 514 )|V, | for 1 <i <.

Since v € Dp, it follows that D = Dg U Dy U Dy U ... U D; is an a-
dominating set of G such that [D| < (1 + ﬁ)(|VB| +Va |+ Vi, |+ +
Vi, |) = 3(1+ goﬁ)n and the proof is complete. u

The term § in Corollary 2.3 and Proposition 2.7 is a well-known upper

bound for the (ordinary) domination number v(G) of a graph G of order n
without isolated vertices [7].

The graphs for which the equality v(G) = 5 holds have been well-
studied and characterized in [4] and [8]. The main obstacle for proving an
analogous characterization for the a-domination number is the fact that
— in contrast to the (ordinary) domination number — this parameter has
no monotonicity with respect to spanning subgraphs, i.e., if G = (Vg, Eg)
and H = (Vy, Ey) are graphs such that Vg = Vg and Eyg C Eg, then
v(H) > v(G) but no such estimate holds for 7,. As an example consider
the star K5 of order 6, the complete graph K¢ of order 6 and the tree I/
that arises by subdividing two edges of K 3. Clearly, Ki5 and E are two
spanning subgraphs of K¢ but 1 = 7%(K175) <2= ’Y%(Kﬁ) <3= 72 (E).

We close with a corresponding characterization for trees.

Theorem 2.8. Ifa € (0,1) and T is a tree of order n, then 7o (T) = 5 if and
only if T has a perfect matching M such that min{dy(u),dr(v)} < [{1]
for all uv € M.

Proof. We first prove the ‘if’-part. Let T be a tree that has a perfect
matching M such that min{dr(u),dr(v)} < [£=] for all uv € M. Let
D be a minimum a-dominating set of 1. If there is some edge ugvy € M
such that ug,vg & D, then dp(ug) — 1 > |Ng(ug) N D| > adp(up) and
dr(vg) — 1 > |Ng(vo) N D| > adr(vg). This implies the contradiction
min{dr(uo),dr(vo)} > [11-]. Therefore, |{u,v} N D| > 1 for all wv € M.

11—«
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In view of Proposition 2.7, this implies

n n
S=Ml< Y [{we}nD| =D =a(T) < 5
uveM

and the proof of the ‘if’-part is complete.

Now we prove the ‘only if’-part by induction on the order n of T. If n < 2,
then the result is immediate. Now let T" be a tree of order n > 3 such
that 7o(T) = §. Let u be an endvertex of T' and let v be the unique
neighbour of » in T

If v is adjacent to an endvertex u' of T different from w, then let 77 =
T—{u}. It is obvious that there is a minimum a-dominating set D’ of 7" that
contains v. Therefore, D’ is also an a-dominating set of T' and we obtain
the contradiction v, (T) < 74(7”) < Z5%. Hence u is the unique endvertex
of T adjacent to v and all components Ty, To, ..., T; of T — {u, v} are trees
of order at least two. For 1 < ¢ <[ let D; be a minimum a-dominating set
of T;. Since the set {v}UD;UDyU...UDy is an a-dominating set of T', we

obtain

l l l
n—2 \Vr,] n—2
=7%(T)=1<) Dl =) %) <)Y == :
2 , ; ; 2 2
=1 =1 =1
This easily implies that v,(T;) = ‘VQTZ" and, by induction, the tree T; has a

perfect matching M; for 1 <i <. Clearly, M = {uv} UM;UMyU...UM,
is a perfect matching of T.

For contradiction we assume that min{dz (uo), dr(vo)} > [2=] for some
edge ugug € M. Since T is a tree, it is straightforward to verify that the set

D = {w € Vp | distg(w, up) is odd and distg(w, ug) < distg(w,vo)}
U{w € Vp | distg(w, vg) is odd and distg(w, vg) < distg(w,ug)}

is an a-dominating set of 7" such that ug,vg ¢ D and |[{u,v} N D| =1 for all
wv € M \ {ugvo}. This leads to the contradiction v,(T) < |D| = %52 and
the proof is complete. [

Note that [{1-] = 2 for a € (0,3]. Thus for these values of o the trees
described by the condition given in Theorem 2.8 correspond exactly to the
trees T' of order n that satisfy 7(T') = % (every non-endvertex of these trees

2
is adjacent to a unique endvertex).
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