SOME REMARKS ON α-DOMINATION

Franz Dahme
Lehrstuhl II für Mathematik, RWTH-Aachen
52056 Aachen, Germany
e-mail: franz.dahme@web.de
Dieter Rautenbach
Forschungsinstitut für Diskrete Mathematik
Lennéstr. 2, D-53113 Bonn, Germany
e-mail: rauten@or.uni-bonn.de
AND
Lutz Volkmann
Lehrstuhl II für Mathematik, RWTH-Aachen
52056 Aachen, Germany
e-mail: volkm@math2.rwth-aachen.de

Abstract

Let $\alpha \in(0,1)$ and let $G=\left(V_{G}, E_{G}\right)$ be a graph. According to Dunbar, Hoffman, Laskar and Markus [3] a set $D \subseteq V_{G}$ is called an α-dominating set of G, if $\left|N_{G}(u) \cap D\right| \geq \alpha d_{G}(u)$ for all $u \in V_{G} \backslash D$. We prove a series of upper bounds on the α-domination number of a graph G defined as the minimum cardinality of an α-dominating set of G.

Keywords: α-domination; domination.
2000 Mathematics Subject Classification: 05C69.

1. Introduction

Let $\alpha \in(0,1)$ and let $G=\left(V_{G}, E_{G}\right)$ be a simple and finite graph. The neighbourhood and the degree of a vertex $u \in V_{G}$ in the graph G are denoted by $N_{G}(u)$ and $d_{G}(u)$, respectively. For all further notation and terminology we refer the reader to [5].

In [3] Dunbar, Hoffman, Laskar and Markus introduce the concept of an α-dominating set. They define a set $D \subseteq V_{G}$ to be an α-dominating set of G, if $\left|N_{G}(u) \cap D\right| \geq \alpha d_{G}(u)$ for all $u \in V_{G} \backslash D$, i.e., for every vertex that does not belong to D at least the α-fraction of its neighbours belongs to D.

In the present paper we prove a series of upper bounds on the α domination number $\gamma_{\alpha}(G)$ of a graph G defined as the minimum cardinality of an α-dominating set of G. For further results on this parameter we refer the reader to [3] and [6].

2. Results

Our first bound follows easily from a colouring result of Cowen and Emerson (cf. Theorem 5.1 in [9]). In order to make our presentation self-contained we include a short proof using a classical Erdős-type exchange argument.

Theorem 2.1. If $\alpha \in(0,1)$ and G is a graph of order n, then $\gamma_{\alpha}(G) \leq$ $\left(1-\frac{1}{\left\lceil\frac{1}{1-\alpha}\right\rceil}\right) n$.

Proof. Let $r=\left\lceil\frac{1}{1-\alpha}\right\rceil$ and let $V_{G}=V_{1} \cup V_{2} \cup \ldots \cup V_{r}$ be a partition of V_{G} such that $\sum_{i=1}^{r} \sum_{u \in V_{i}}\left|N_{G}(u) \cap V_{i}\right|$ is minimum. Note that $r(1-\alpha) \geq 1$.

If $\left|N_{G}\left(u_{0}\right) \cap V_{i_{0}}\right|>(1-\alpha) d_{G}\left(u_{0}\right)$ for some $i_{0} \in\{1,2, \ldots, r\}$ and some $u_{0} \in V_{i_{0}}$, then there is some index i_{1} with $1 \leq i_{1} \leq r$ such that $\left|N_{G}\left(u_{0}\right) \cap V_{i_{1}}\right|<(1-\alpha) d_{G}\left(u_{0}\right)$. If $V_{i_{0}}^{\prime}=V_{i_{0}} \backslash\left\{u_{0}\right\}, \bar{V}_{i_{1}}^{\prime}=\bar{V}_{i_{1}} \cup\left\{u_{0}\right\}$ and $V_{l}^{\prime}=V_{l}$ for $1 \leq l \leq r$ with $l \notin\left\{i_{0}, i_{1}\right\}$, then

$$
\begin{aligned}
\sum_{i=1}^{r} \sum_{u \in V_{i}^{\prime}}\left|N_{G}(u) \cap V_{i}^{\prime}\right| & =\sum_{i=1}^{r} \sum_{u \in V_{i}}\left|N_{G}(u) \cap V_{i}\right|-2\left|N_{G}\left(u_{0}\right) \cap V_{i_{0}}\right|+2\left|N_{G}\left(u_{0}\right) \cap V_{i_{1}}\right| \\
& <\sum_{i=1}^{r} \sum_{u \in V_{i}}\left|N_{G}(u) \cap V_{i}\right|
\end{aligned}
$$

which is a contradiction.

For each $i \in\{1,2, \ldots, r\}$ we therefore have $\left|N_{G}(u) \cap V_{i}\right| \leq(1-\alpha) d_{G}(u)$ for all $u \in V_{i}$, which implies that $V_{G} \backslash V_{i}$ is an α-dominating set of G. Since $\max \left\{\left|V_{i}\right| \mid 1 \leq i \leq r\right\} \geq \frac{n}{r}$, the desired bound follows.

The following corollary is actually equivalent to Theorem 2.1.
Corollary 2.2. Let $i \in \mathbf{N}_{0}=\{0,1,2, \ldots\}$ and let $\alpha \in \mathbf{R}$ be such that $\frac{i}{i+1}<\alpha \leq \frac{i+1}{i+2}$. If G is a graph of order n, then $\gamma_{\alpha}(G) \leq \frac{i+1}{i+2} n<\frac{n}{2-\alpha}$.

Proof. If $\frac{i}{i+1}<\alpha \leq \frac{i+1}{i+2}$ for some $i \in \mathbf{N}_{0}$, then $i+1<\frac{1}{1-\alpha} \leq i+2$ and $\frac{i+1}{i+2}<\frac{1}{2-\alpha}$. These inequalities easily imply the desired result.

Corollary 2.3 (Corollary 10 in [3]). If $\alpha \in\left(0, \frac{1}{2}\right]$ and G is a graph of order n, then $\gamma_{\alpha}(G) \leq \frac{n}{2}$.

The following observation shows that the bound given in Theorem 2.1 and Corollary 2.2 is essentially best-possible.

Observation 2.4. Let $i \in \mathbf{N}_{0}=\{0,1,2, \ldots\}$ and let $\alpha \in \mathbf{R}$ be such that $\frac{i}{i+1}<\alpha \leq \frac{i+1}{i+2}$. For every $\epsilon>0$, there is a connected graph G of order n such that $\gamma_{\alpha}(G) \geq\left(\frac{i+1}{i+2}-\epsilon\right) n$.

Proof. For $l \geq 1$ let the connected graph $G(l)$ arise from the disjoint union of l cliques $H_{1}, H_{2}, \ldots, H_{l}$ of order $i+2$ and one isolated vertex v by joining v and one vertex u_{j} of H_{j} by a new edge for $1 \leq j \leq l$.

Let D be a minimum α-dominating set of $G(l)$. If $V_{H_{j}} \backslash\left\{u_{j}\right\} \subseteq D$ for some $1 \leq j \leq l$, then $\left|D \cap V_{H_{j}}\right| \geq i+1$. If $V_{H_{j}} \backslash\left\{u_{j}\right\} \nsubseteq D$ for some $1 \leq j \leq l$, then there is a vertex $u_{i}^{\prime} \in V_{H_{j}} \backslash\left(\left\{u_{j}\right\} \cup D\right)$ with $d_{G(l)}\left(u_{j}^{\prime}\right)=i+1$ and thus $\left|D \cap V_{H_{j}}\right| \geq\left\lceil\alpha d_{G(l)}\left(u_{j}\right)\right\rceil=\lceil\alpha(i+1)\rceil=i+1$. Altogether, we obtain $\gamma_{\alpha}(G(l)) \geq l(i+1)$ and thus $\frac{\gamma_{\alpha}(G(l))}{n_{G(l)}} \geq \frac{l(i+1)}{l(i+2)+1}$. Since $\lim _{l \rightarrow \infty} \frac{l(i+1)}{l(i+2)+1}=\frac{i+1}{i+2}$, the desired result follows.

Note that the graphs we considered for the proof of Observation 2.4 were connected but not 2-connected. In fact, we believe the following.

Conjecture 2.5. If $\alpha \in(0,1)$ and G is a 2-(vertex-) connected graph of order n, then $\gamma_{\alpha}(G) \leq\lceil\alpha(n-1)\rceil$.

Using a probabilistic argument, our next result shows that the bound in Conjecture 2.5 , i.e., $\approx \alpha n$, is essentially the right bound for graphs with a sufficiently large minimum degree.

Theorem 2.6. For $\alpha \in(0,1)$ and $\epsilon>0$ there is some constant $\delta_{\alpha, \epsilon}$ depending only on α and ϵ such that $\gamma_{\alpha}(G) \leq(\alpha+\epsilon) n$ for all graphs G of order n with minimum degree at least $\delta_{\alpha, \epsilon}$.

Proof. Let G be a graph of order n and minimum degree δ. Without loss of generality, we may assume that $\alpha+\frac{\epsilon}{2} \leq 1$. Independently for each vertex $u \in V_{G}$ we introduce a random indicator variable Y_{u} such that $\operatorname{Pr}\left[Y_{u}=1\right]=$ $\alpha+\frac{\epsilon}{2}$ and $\operatorname{Pr}\left[Y_{u}=0\right]=1-\left(\alpha+\frac{\epsilon}{2}\right)$. Let $D_{0}=\left\{u \in V_{G} \mid Y_{u}=1\right\}$ and

$$
D_{1}=\left\{u \in V_{G} \mid Y_{u}=0 \text { and }\left|N_{G}(u) \cap D_{0}\right|<\alpha d_{G}(u)\right\}
$$

Clearly, $D_{0} \cup D_{1}$ is an α-dominating set of G. The expected value of $\left|D_{0}\right|$ is $\mathrm{E}\left[\left|D_{0}\right|\right]=\left(\alpha+\frac{\epsilon}{2}\right) n$. It remains to estimate the expected value $\mathrm{E}\left[\left|D_{1}\right|\right]$.

For $u \in V_{G}$ let $Z_{u}=\left|N_{G}(u) \cap D_{0}\right|=\sum_{v \in N_{G}(u)} Y_{v}$, i.e., Z_{u} is the sum of mutually independent indicator variables. Clearly, $\mathrm{E}\left[Z_{u}\right]=\left(\alpha+\frac{\epsilon}{2}\right) d_{G}(u)$. Using Corollary A.1.14 in [1] - a well-known bound of large deviation whose origin goes back to Chernoff [2] - we obtain that there is some constant $c(\alpha, \epsilon)>0$ depending only on α and ϵ such that

$$
\begin{aligned}
\operatorname{Pr}\left[\left|N_{G}(u) \cap D_{0}\right|<\alpha d_{G}(u)\right] & =\operatorname{Pr}\left[Z_{u}<\alpha d_{G}(u)\right] \\
& =\operatorname{Pr}\left[\left(\alpha+\frac{\epsilon}{2}\right) d_{G}(u)-Z_{u}>\frac{\epsilon}{2} d_{G}(u)\right] \\
& \leq \operatorname{Pr}\left[\left|Z_{u}-\left(\alpha+\frac{\epsilon}{2}\right) d_{G}(u)\right|>\frac{\epsilon}{2} d_{G}(u)\right] \\
& =\operatorname{Pr}\left[\left|Z_{u}-\mathrm{E}\left[Z_{u}\right]\right|>\frac{\epsilon}{2 \alpha+\epsilon} \mathrm{E}\left[Z_{u}\right]\right] \\
& \leq 2 e^{-c(\alpha, \epsilon) \mathrm{E}\left[Z_{u}\right]} \\
& =2 e^{-c(\alpha, \epsilon)\left(\alpha+\frac{\epsilon}{2}\right) d_{G}(u)} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\mathrm{E}\left[\left|D_{1}\right|\right] & =\sum_{u \in V_{G}} \operatorname{Pr}\left[u \in D_{1}\right] \\
& =\sum_{u \in V_{G}} \operatorname{Pr}\left[Y_{u}=0\right] \cdot \operatorname{Pr}\left[\left|N_{G}(u) \cap D_{0}\right|<\alpha d_{G}(u)\right] \\
& \leq \sum_{u \in V_{G}}\left(1-\left(\alpha+\frac{\epsilon}{2}\right)\right) 2 e^{-c(\alpha, \epsilon)\left(\alpha+\frac{\epsilon}{2}\right) d_{G}(u)} \\
& \leq n\left(1-\left(\alpha+\frac{\epsilon}{2}\right)\right) 2 e^{-c(\alpha, \epsilon)\left(\alpha+\frac{\epsilon}{2}\right) \delta} .
\end{aligned}
$$

Since (for fixed α and ϵ and hence also fixed $c(\alpha, \epsilon)$)

$$
\lim _{\delta \rightarrow \infty}\left(1-\left(\alpha+\frac{\epsilon}{2}\right)\right) 2 e^{-c(\alpha, \epsilon)\left(\alpha+\frac{\epsilon}{2}\right) \delta}=0
$$

the desired result follows.
We proceed to some best-possible bounds for bipartite graphs and for cacti, i.e., graphs all cycles of which are edge-disjoint.

Proposition 2.7. Let $\alpha \in(0,1)$.
(i) If G is a bipartite graph of order n, then $\gamma_{\alpha}(G) \leq \frac{1}{2} n$.
(ii) If G is a non-bipartite cactus of order n and the length of a shortest odd cycle in G is at least $g_{\text {odd }}$, then $\gamma_{\alpha}(G) \leq \frac{1}{2}\left(1+\frac{1}{g_{\text {odd }}}\right) n$.

Proof. (i) Since the smaller partite set of G is an α-dominating set of G, the result is obvious.
(ii) Let G be a non-bipartite cactus of order $n \geq 2$ such that the length of a shortest odd cycle in G is at least $g_{\text {odd }}$. We may assume, without loss of generality, that G is connected. We prove the bound by induction on the number b of blocks of G.

First we assume that $b=1$, i.e., G is an odd cycle of length at least $g_{\text {odd }}$. This implies

$$
\gamma_{\alpha}(G)=\left\lceil\frac{n}{2}\right\rceil=\frac{n+1}{2} \leq \frac{1}{2}\left(1+\frac{1}{g_{\text {odd }}}\right) n .
$$

Now let $b>1$ and let $B=\left(V_{B}, E_{B}\right)$ be an endblock of G, i.e. G has exactly one cutvertex v. As above, we see that there is an α-dominating set D_{B} of B such that $\left|D_{B}\right| \leq \frac{1}{2}\left(1+\frac{1}{g_{\text {odd }}}\right)\left|V_{B}\right|$ and $v \in D_{B}$.

Let $H_{1}, H_{2}, \ldots, H_{l}$ be the components of $G-V_{B}$. Clearly, H_{i} is a cactus having less blocks than G such that H_{i} is either bipartite or the length of a shortest odd cycle in H_{i} is at least $g_{\text {odd }}$ for $1 \leq i \leq l$. By (i) and the induction hypothesis, there is an α-dominating set D_{i} of H_{i} such that $\left|D_{i}\right| \leq \frac{1}{2}\left(1+\frac{1}{g_{\text {odd }}}\right)\left|V_{H_{i}}\right|$ for $1 \leq i \leq l$.

Since $v \in D_{B}$, it follows that $D=D_{B} \cup D_{1} \cup D_{2} \cup \ldots \cup D_{l}$ is an α dominating set of G such that $|D| \leq \frac{1}{2}\left(1+\frac{1}{g_{\text {odd }}}\right)\left(\left|V_{B}\right|+\left|V_{H_{1}}\right|+\left|V_{H_{2}}\right|+\ldots+\right.$ $\left.\left|V_{H_{l}}\right|\right)=\frac{1}{2}\left(1+\frac{1}{g_{\text {odd }}}\right) n$ and the proof is complete.

The term $\frac{n}{2}$ in Corollary 2.3 and Proposition 2.7 is a well-known upper bound for the (ordinary) domination number $\gamma(G)$ of a graph G of order n without isolated vertices [7].

The graphs for which the equality $\gamma(G)=\frac{n}{2}$ holds have been wellstudied and characterized in [4] and [8]. The main obstacle for proving an analogous characterization for the α-domination number is the fact that - in contrast to the (ordinary) domination number - this parameter has no monotonicity with respect to spanning subgraphs, i.e., if $G=\left(V_{G}, E_{G}\right)$ and $H=\left(V_{H}, E_{H}\right)$ are graphs such that $V_{G}=V_{H}$ and $E_{H} \subseteq E_{G}$, then $\gamma(H) \geq \gamma(G)$ but no such estimate holds for γ_{α}. As an example consider the star $K_{1,5}$ of order 6 , the complete graph K_{6} of order 6 and the tree E that arises by subdividing two edges of $K_{1,3}$. Clearly, $K_{1,5}$ and E are two spanning subgraphs of K_{6} but $1=\gamma_{\frac{2}{5}}\left(K_{1,5}\right)<2=\gamma_{\frac{2}{5}}\left(K_{6}\right)<3=\gamma_{\frac{2}{5}}(E)$.

We close with a corresponding characterization for trees.

Theorem 2.8. If $\alpha \in(0,1)$ and T is a tree of order n, then $\gamma_{\alpha}(T)=\frac{n}{2}$ if and only if T has a perfect matching M such that $\min \left\{d_{T}(u), d_{T}(v)\right\}<\left\lceil\frac{1}{1-\alpha}\right\rceil$ for all $u v \in M$.

Proof. We first prove the 'if'-part. Let T be a tree that has a perfect matching M such that $\min \left\{d_{T}(u), d_{T}(v)\right\}<\left\lceil\frac{1}{1-\alpha}\right\rceil$ for all $u v \in M$. Let D be a minimum α-dominating set of T. If there is some edge $u_{0} v_{0} \in M$ such that $u_{0}, v_{0} \notin D$, then $d_{T}\left(u_{0}\right)-1 \geq\left|N_{G}\left(u_{0}\right) \cap D\right| \geq \alpha d_{T}\left(u_{0}\right)$ and $d_{T}\left(v_{0}\right)-1 \geq\left|N_{G}\left(v_{0}\right) \cap D\right| \geq \alpha d_{T}\left(v_{0}\right)$. This implies the contradiction $\min \left\{d_{T}\left(u_{0}\right), d_{T}\left(v_{0}\right)\right\} \geq\left\lceil\frac{1}{1-\alpha}\right\rceil$. Therefore, $|\{u, v\} \cap D| \geq 1$ for all $u v \in M$.

In view of Proposition 2.7, this implies

$$
\frac{n}{2}=|M| \leq \sum_{u v \in M}|\{u, v\} \cap D|=|D|=\gamma_{\alpha}(T) \leq \frac{n}{2}
$$

and the proof of the ' if '-part is complete.
Now we prove the 'only if'-part by induction on the order n of T. If $n \leq 2$, then the result is immediate. Now let T be a tree of order $n \geq 3$ such that $\gamma_{\alpha}(T)=\frac{n}{2}$. Let u be an endvertex of T and let v be the unique neighbour of u in T.

If v is adjacent to an endvertex u^{\prime} of T different from u, then let $T^{\prime}=$ $T-\{u\}$. It is obvious that there is a minimum α-dominating set D^{\prime} of T^{\prime} that contains v. Therefore, D^{\prime} is also an α-dominating set of T and we obtain the contradiction $\gamma_{\alpha}(T) \leq \gamma_{\alpha}\left(T^{\prime}\right) \leq \frac{n-1}{2}$. Hence u is the unique endvertex of T adjacent to v and all components $T_{1}, T_{2}, \ldots, T_{l}$ of $T-\{u, v\}$ are trees of order at least two. For $1 \leq i \leq l$ let D_{i} be a minimum α-dominating set of T_{i}. Since the set $\{v\} \cup D_{1} \cup D_{2} \cup \ldots \cup D_{l}$ is an α-dominating set of T, we obtain

$$
\frac{n-2}{2}=\gamma_{\alpha}(T)-1 \leq \sum_{i=1}^{l}\left|D_{i}\right|=\sum_{i=1}^{l} \gamma_{\alpha}\left(T_{i}\right) \leq \sum_{i=1}^{l} \frac{\left|V_{T_{i}}\right|}{2}=\frac{n-2}{2} .
$$

This easily implies that $\gamma_{\alpha}\left(T_{i}\right)=\frac{\left|V_{T_{i}}\right|}{2}$ and, by induction, the tree T_{i} has a perfect matching M_{i} for $1 \leq i \leq l$. Clearly, $M=\{u v\} \cup M_{1} \cup M_{2} \cup \ldots \cup M_{l}$ is a perfect matching of T.

For contradiction we assume that $\min \left\{d_{T}\left(u_{0}\right), d_{T}\left(v_{0}\right)\right\} \geq\left\lceil\frac{1}{1-\alpha}\right\rceil$ for some edge $u_{0} v_{0} \in M$. Since T is a tree, it is straightforward to verify that the set

$$
\begin{aligned}
D= & \left\{w \in V_{T} \mid \operatorname{dist}_{G}\left(w, u_{0}\right) \text { is odd and } \operatorname{dist}_{G}\left(w, u_{0}\right)<\operatorname{dist}_{G}\left(w, v_{0}\right)\right\} \\
& \cup\left\{w \in V_{T} \mid \operatorname{dist}_{G}\left(w, v_{0}\right) \text { is odd and } \operatorname{dist}_{G}\left(w, v_{0}\right)<\operatorname{dist}_{G}\left(w, u_{0}\right)\right\}
\end{aligned}
$$

is an α-dominating set of T such that $u_{0}, v_{0} \notin D$ and $|\{u, v\} \cap D|=1$ for all $u v \in M \backslash\left\{u_{0} v_{0}\right\}$. This leads to the contradiction $\gamma_{\alpha}(T) \leq|D|=\frac{n-2}{2}$ and the proof is complete.
Note that $\left\lceil\frac{1}{1-\alpha}\right\rceil=2$ for $\alpha \in\left(0, \frac{1}{2}\right]$. Thus for these values of α the trees described by the condition given in Theorem 2.8 correspond exactly to the trees T of order n that satisfy $\gamma(T)=\frac{n}{2}$ (every non-endvertex of these trees is adjacent to a unique endvertex).

References

[1] N. Alon and J. Spencer, The probabilistic method, 2nd ed., (Wiley-Interscience Series in Discrete Math. and Optimization, 2000).
[2] H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations, Ann. Math. Stat. 23 (1952) 493-507.
[3] J.E. Dunbar, D.G. Hoffman, R.C. Laskar and L.R. Markus, α-domination, Discrete Math. 211 (2000) 11-26.
[4] J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, On graphs having domination number half their order, Period. Math. Hungar. 16 (1985) 287-293.
[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs (Marcel Dekker, New York, 1998).
[6] F. Dahme, D. Rautenbach and L. Volkmann, α-domination perfect trees, manuscript (2002).
[7] O. Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Publ., 38 (Amer. Math. Soc., Providence, RI, 1962).
[8] C. Payan and N.H. Xuong, Domination-balanced graphs, J. Graph Theory 6 (1982) 23-32.
[9] D.R. Woodall, Improper colourings of graphs, Pitman Res. Notes Math. Ser. 218 (1988) 45-63.

