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Abstract

Let α ∈ (0, 1) and let G = (VG, EG) be a graph. According to
Dunbar, Hoffman, Laskar and Markus [3] a set D ⊆ VG is called an
α-dominating set of G, if |NG(u)∩D| ≥ αdG(u) for all u ∈ VG \D. We
prove a series of upper bounds on the α-domination number of a graph
G defined as the minimum cardinality of an α-dominating set of G.
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1. Introduction

Let α ∈ (0, 1) and let G = (VG, EG) be a simple and finite graph. The
neighbourhood and the degree of a vertex u ∈ VG in the graph G are denoted
by NG(u) and dG(u), respectively. For all further notation and terminology
we refer the reader to [5].

In [3] Dunbar, Hoffman, Laskar and Markus introduce the concept of
an α-dominating set. They define a set D ⊆ VG to be an α-dominating set
of G, if |NG(u) ∩D| ≥ αdG(u) for all u ∈ VG \D, i.e., for every vertex that
does not belong to D at least the α-fraction of its neighbours belongs to D.

In the present paper we prove a series of upper bounds on the α-
domination number γα(G) of a graph G defined as the minimum cardinality
of an α-dominating set of G. For further results on this parameter we refer
the reader to [3] and [6].

2. Results

Our first bound follows easily from a colouring result of Cowen and Emerson
(cf. Theorem 5.1 in [9]). In order to make our presentation self-contained
we include a short proof using a classical Erdős-type exchange argument.

Theorem 2.1. If α ∈ (0, 1) and G is a graph of order n, then γα(G) ≤
(1− 1

d 1
1−α

e)n.

Proof. Let r = d 1
1−αe and let VG = V1 ∪ V2 ∪ . . . ∪ Vr be a partition of VG

such that
∑r

i=1

∑
u∈Vi

|NG(u) ∩ Vi| is minimum. Note that r(1− α) ≥ 1.
If |NG(u0) ∩ Vi0 | > (1 − α)dG(u0) for some i0 ∈ {1, 2, . . . , r} and

some u0 ∈ Vi0 , then there is some index i1 with 1 ≤ i1 ≤ r such that
|NG(u0) ∩ Vi1 | < (1 − α)dG(u0). If V ′

i0
= Vi0 \ {u0}, V ′

i1
= Vi1 ∪ {u0} and

V ′
l = Vl for 1 ≤ l ≤ r with l 6∈ {i0, i1}, then

r∑

i=1

∑

u∈V ′i

|NG(u) ∩V ′
i | =

r∑

i=1

∑

u∈Vi

|NG(u) ∩Vi|−2|NG(u0) ∩Vi0 |+2|NG(u0) ∩Vi1 |

<
r∑

i=1

∑

u∈Vi

|NG(u) ∩ Vi|

which is a contradiction.



Some Remarks on α-Domination 425

For each i ∈ {1, 2, . . . , r} we therefore have |NG(u) ∩ Vi| ≤ (1− α)dG(u) for
all u ∈ Vi, which implies that VG \ Vi is an α-dominating set of G. Since
max{|Vi| | 1 ≤ i ≤ r} ≥ n

r , the desired bound follows.

The following corollary is actually equivalent to Theorem 2.1.

Corollary 2.2. Let i ∈ N0 = {0, 1, 2, . . .} and let α ∈ R be such that
i

i+1 < α ≤ i+1
i+2 . If G is a graph of order n, then γα(G) ≤ i+1

i+2n < n
2−α .

Proof. If i
i+1 < α ≤ i+1

i+2 for some i ∈ N0, then i + 1 < 1
1−α ≤ i + 2 and

i+1
i+2 < 1

2−α . These inequalities easily imply the desired result.

Corollary 2.3 (Corollary 10 in [3]). If α ∈ (0, 1
2 ] and G is a graph of order

n, then γα(G) ≤ n
2 .

The following observation shows that the bound given in Theorem 2.1 and
Corollary 2.2 is essentially best-possible.

Observation 2.4. Let i ∈ N0 = {0, 1, 2, . . .} and let α ∈ R be such that
i

i+1 < α ≤ i+1
i+2 . For every ε > 0, there is a connected graph G of order n

such that γα(G) ≥ ( i+1
i+2 − ε)n.

Proof. For l ≥ 1 let the connected graph G(l) arise from the disjoint union
of l cliques H1, H2 ,. . . , Hl of order i+2 and one isolated vertex v by joining
v and one vertex uj of Hj by a new edge for 1 ≤ j ≤ l.

Let D be a minimum α-dominating set of G(l). If VHj \ {uj} ⊆ D
for some 1 ≤ j ≤ l, then |D ∩ VHj | ≥ i + 1. If VHj \ {uj} 6⊆ D for some
1 ≤ j ≤ l, then there is a vertex u′i ∈ VHj \ ({uj}∪D) with dG(l)(u′j) = i+1
and thus |D∩VHj | ≥ dαdG(l)(uj)e = dα(i+1)e = i+1. Altogether, we obtain
γα(G(l)) ≥ l(i+1) and thus γα(G(l))

nG(l)
≥ l(i+1)

l(i+2)+1 . Since liml→∞
l(i+1)

l(i+2)+1 = i+1
i+2 ,

the desired result follows.

Note that the graphs we considered for the proof of Observation 2.4 were
connected but not 2-connected. In fact, we believe the following.

Conjecture 2.5. If α ∈ (0, 1) and G is a 2-(vertex-)connected graph of
order n, then γα(G) ≤ dα(n− 1)e.
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Using a probabilistic argument, our next result shows that the bound in
Conjecture 2.5, i.e., ≈ αn, is essentially the right bound for graphs with a
sufficiently large minimum degree.

Theorem 2.6. For α ∈ (0, 1) and ε > 0 there is some constant δα,ε depend-
ing only on α and ε such that γα(G) ≤ (α + ε)n for all graphs G of order n
with minimum degree at least δα,ε.

Proof. Let G be a graph of order n and minimum degree δ. Without loss
of generality, we may assume that α+ ε

2 ≤ 1. Independently for each vertex
u ∈ VG we introduce a random indicator variable Yu such that Pr[Yu = 1] =
α + ε

2 and Pr[Yu = 0] = 1− (α + ε
2). Let D0 = {u ∈ VG | Yu = 1} and

D1 = {u ∈ VG | Yu = 0 and |NG(u) ∩D0| < αdG(u)}.

Clearly, D0 ∪D1 is an α-dominating set of G. The expected value of |D0| is
E[|D0|] = (α + ε

2)n. It remains to estimate the expected value E[|D1|].
For u ∈ VG let Zu = |NG(u)∩D0| =

∑
v∈NG(u) Yv, i.e., Zu is the sum of

mutually independent indicator variables. Clearly, E[Zu] = (α + ε
2)dG(u).

Using Corollary A.1.14 in [1] – a well-known bound of large deviation whose
origin goes back to Chernoff [2] – we obtain that there is some constant
c(α, ε) > 0 depending only on α and ε such that

Pr[|NG(u) ∩D0| < αdG(u)] = Pr[Zu < αdG(u)]

= Pr
[(

α +
ε

2

)
dG(u)− Zu >

ε

2
dG(u)

]

≤ Pr
[∣∣∣∣Zu −

(
α +

ε

2

)
dG(u)

∣∣∣∣ >
ε

2
dG(u)

]

= Pr
[
|Zu − E[Zu]| > ε

2α + ε
E[Zu]

]

≤ 2e−c(α,ε)E[Zu]

= 2e−c(α,ε)(α+ ε
2
)dG(u).
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Therefore,

E[|D1|] =
∑

u∈VG

Pr[u ∈ D1]

=
∑

u∈VG

Pr[Yu = 0] · Pr[|NG(u) ∩D0| < αdG(u)]

≤
∑

u∈VG

(
1−

(
α +

ε

2

))
2e−c(α,ε)(α+ ε

2
)dG(u)

≤ n

(
1−

(
α +

ε

2

))
2e−c(α,ε)(α+ ε

2
)δ.

Since (for fixed α and ε and hence also fixed c(α, ε))

lim
δ→∞

(
1−

(
α +

ε

2

))
2e−c(α,ε)(α+ ε

2
)δ = 0,

the desired result follows.

We proceed to some best-possible bounds for bipartite graphs and for cacti,
i.e., graphs all cycles of which are edge-disjoint.

Proposition 2.7. Let α ∈ (0, 1).

(i) If G is a bipartite graph of order n, then γα(G) ≤ 1
2n.

(ii) If G is a non-bipartite cactus of order n and the length of a shortest
odd cycle in G is at least godd, then γα(G) ≤ 1

2(1 + 1
godd

)n.

Proof. (i) Since the smaller partite set of G is an α-dominating set of G,
the result is obvious.

(ii) Let G be a non-bipartite cactus of order n ≥ 2 such that the length
of a shortest odd cycle in G is at least godd. We may assume, without loss
of generality, that G is connected. We prove the bound by induction on the
number b of blocks of G.

First we assume that b = 1, i.e., G is an odd cycle of length at least
godd. This implies

γα(G) =
⌈
n

2

⌉
=

n + 1
2

≤ 1
2

(
1 +

1
godd

)
n.
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Now let b > 1 and let B = (VB, EB) be an endblock of G, i.e. G has exactly
one cutvertex v. As above, we see that there is an α-dominating set DB of
B such that |DB| ≤ 1

2(1 + 1
godd

)|VB| and v ∈ DB.
Let H1, H2, . . . ,Hl be the components of G − VB. Clearly, Hi is a

cactus having less blocks than G such that Hi is either bipartite or the
length of a shortest odd cycle in Hi is at least godd for 1 ≤ i ≤ l. By (i) and
the induction hypothesis, there is an α-dominating set Di of Hi such that
|Di| ≤ 1

2(1 + 1
godd

)|VHi | for 1 ≤ i ≤ l.
Since v ∈ DB, it follows that D = DB ∪ D1 ∪ D2 ∪ . . . ∪ Dl is an α-

dominating set of G such that |D| ≤ 1
2(1 + 1

godd
)(|VB|+ |VH1 |+ |VH2 |+ . . . +

|VHl
|) = 1

2(1 + 1
godd

)n and the proof is complete.

The term n
2 in Corollary 2.3 and Proposition 2.7 is a well-known upper

bound for the (ordinary) domination number γ(G) of a graph G of order n
without isolated vertices [7].

The graphs for which the equality γ(G) = n
2 holds have been well-

studied and characterized in [4] and [8]. The main obstacle for proving an
analogous characterization for the α-domination number is the fact that
— in contrast to the (ordinary) domination number — this parameter has
no monotonicity with respect to spanning subgraphs, i.e., if G = (VG, EG)
and H = (VH , EH) are graphs such that VG = VH and EH ⊆ EG, then
γ(H) ≥ γ(G) but no such estimate holds for γα. As an example consider
the star K1,5 of order 6, the complete graph K6 of order 6 and the tree E
that arises by subdividing two edges of K1,3. Clearly, K1,5 and E are two
spanning subgraphs of K6 but 1 = γ 2

5
(K1,5) < 2 = γ 2

5
(K6) < 3 = γ 2

5
(E).

We close with a corresponding characterization for trees.

Theorem 2.8. If α ∈ (0, 1) and T is a tree of order n, then γα(T ) = n
2 if and

only if T has a perfect matching M such that min{dT (u), dT (v)} < d 1
1−αe

for all uv ∈ M .

Proof. We first prove the ‘if’-part. Let T be a tree that has a perfect
matching M such that min{dT (u), dT (v)} < d 1

1−αe for all uv ∈ M . Let
D be a minimum α-dominating set of T . If there is some edge u0v0 ∈ M
such that u0, v0 6∈ D, then dT (u0) − 1 ≥ |NG(u0) ∩ D| ≥ αdT (u0) and
dT (v0) − 1 ≥ |NG(v0) ∩ D| ≥ αdT (v0). This implies the contradiction
min{dT (u0), dT (v0)} ≥ d 1

1−αe. Therefore, |{u, v} ∩ D| ≥ 1 for all uv ∈ M .



Some Remarks on α-Domination 429

In view of Proposition 2.7, this implies

n

2
= |M | ≤

∑

uv∈M

|{u, v} ∩D| = |D| = γα(T ) ≤ n

2

and the proof of the ‘if’-part is complete.

Now we prove the ‘only if’-part by induction on the order n of T . If n ≤ 2,
then the result is immediate. Now let T be a tree of order n ≥ 3 such
that γα(T ) = n

2 . Let u be an endvertex of T and let v be the unique
neighbour of u in T .

If v is adjacent to an endvertex u′ of T different from u, then let T ′ =
T−{u}. It is obvious that there is a minimum α-dominating set D′ of T ′ that
contains v. Therefore, D′ is also an α-dominating set of T and we obtain
the contradiction γα(T ) ≤ γα(T ′) ≤ n−1

2 . Hence u is the unique endvertex
of T adjacent to v and all components T1, T2, . . . , Tl of T −{u, v} are trees
of order at least two. For 1 ≤ i ≤ l let Di be a minimum α-dominating set
of Ti. Since the set {v}∪D1 ∪D2 ∪ . . .∪Dl is an α-dominating set of T , we
obtain

n− 2
2

= γα(T )− 1 ≤
l∑

i=1

|Di| =
l∑

i=1

γα(Ti) ≤
l∑

i=1

|VTi |
2

=
n− 2

2
.

This easily implies that γα(Ti) = |VTi
|

2 and, by induction, the tree Ti has a
perfect matching Mi for 1 ≤ i ≤ l. Clearly, M = {uv} ∪M1 ∪M2 ∪ . . .∪Ml

is a perfect matching of T .
For contradiction we assume that min{dT (u0), dT (v0)} ≥ d 1

1−αe for some
edge u0v0 ∈ M . Since T is a tree, it is straightforward to verify that the set

D = {w ∈ VT | distG(w, u0) is odd and distG(w, u0) < distG(w, v0)}
∪ {w ∈ VT | distG(w, v0) is odd and distG(w, v0) < distG(w, u0)}

is an α-dominating set of T such that u0, v0 6∈ D and |{u, v}∩D| = 1 for all
uv ∈ M \ {u0v0}. This leads to the contradiction γα(T ) ≤ |D| = n−2

2 and
the proof is complete.

Note that d 1
1−αe = 2 for α ∈ (0, 1

2 ]. Thus for these values of α the trees
described by the condition given in Theorem 2.8 correspond exactly to the
trees T of order n that satisfy γ(T ) = n

2 (every non-endvertex of these trees
is adjacent to a unique endvertex).
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