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Abstract

A vertex v in a graph G = (V, E) is k-simplicial if the neighborhood
N(v) of v can be vertex-covered by k or fewer complete graphs. The
main result of the paper states that a planar graph of order at least
four has at least four 3-simplicial vertices of degree at most five. This
result is a strengthening of the classical corollary of Euler’s Formula
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that a planar graph of order at least four contains at least four vertices
of degree at most five.
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1. Introduction

A simple consequence of the classical Euler Formula for planar graphs is
that any planar graph of order at least four has at least four vertices of
degree at most five. Grünbaum and Motzkin [4] showed that this result is
best possible.

In this paper we strengthen the result on the number of vertices of
degree at most five in the following sense. A vertex is 3-simplicial if its
neighborhood can be vertex-covered by at most three cliques. Clearly any
vertex of degree at most three is 3-simplicial. But a vertex of degree four
needs at least one edge in its neighborhood to make it 3-simplicial. And
a vertex of degree five needs a triangle or two independent edges in its
neighborhood to make it 3-simplicial. Our main result is that each planar
graph of order at least four has at least four 3-simplicial vertices of degree
at most five. We also exhibit an infinite class of planar graphs that contain
exactly four 3-simplicial vertices. So our result is in a sense best possible.
But in our example the four 3-simplicial vertices are all of degree two. Hence
it is natural to ask, (if the order is large enough) whether excluding vertices
of degree two forces more than four 3-simplicial vertices. The icosahedron
is a particularly intriguing example because all twelve of its vertices have
degree five and all twelve are 3-simplicial.

In Section 3 we prove our main result. In Section 4 we prove the analog
for outerplanar graphs: an outerplanar graph of order at least four has at
least four 2-simplicial vertices of degree at most three unless it is the 3-sun
or K1,3. This result is best possible.

2. Preliminaries

Let G = (V, E) be a graph. The neighborhood N(v) of a vertex v of G
consists of all vertices adjacent to v. A vertex v in G is k-simplicial if
the neighborhood N(v) of v can be vertex-covered by k or fewer complete
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graphs. That is, there are (not necessarily distinct) cliques C1, C2, . . . , Ck in
G such that each vertex in N(v) lies in at least one Ci. The simpliciality σ(v)
of a vertex v is the smallest k such that v is k-simplicial. Clearly, we have
σ(v) ≤ d(v), where d(v) is the degree of v. By definition v is k-simplicial
for all k ≥ σ(v). A proper clique cover of N(v) is a covering of N(v) by
mutually disjoint non-empty cliques. So, if the simpliciality of v is m, then
any proper clique cover of N(v) consists of m or more cliques. Of course the
number of cliques in a proper clique cover of N(v) is at most d(v).

Notice that our notion of a 1-simplicial vertex coincides with the now
classical notion of “simplicial vertex” (a vertex of which the neighborhood is
a single clique). This concept plays a central role in the algorithmic theory
of chordal graphs [2]. The notion of a k-simplicial vertex was introduced by
Jamison and Mulder [3], who showed that 3-simplicial vertices always exist
in a certain class of graphs representable by sufficiently overlapping subtrees
of a binary tree. This is analogous to the representation of chordal graphs
by intersecting subtrees of a tree [1].

3. Planar Graphs

We now embark on the proof of the main result. Recall that the order of a
graph is the number of its vertices and the size is the number of its edges.

Theorem 1. Every planar graph G = (V, E) of order at least four has at
least four vertices that are both 3-simplicial and of degree at most 5.

Proof. For brevity, a vertex z in a planar graph that is both 3-simplicial
and has d(z) ≤ 5 will be called a good vertex of that graph.

First we assume that G is 2-connected. Consider a fixed plane drawing
of G. We follow the ideas introduced by Lebesgue [5] to extend Euler’s
formula on planar graphs. Let F be the set of faces of G. For any face f
in F , we denote the number of edges on f by l(f). We write v ∈ f if v is a
vertex incident with f . Let v be any vertex of G, and set

w(v) =
∑

f3v

1
l(f)

.

Note that the number of terms in this sum is precisely the degree d(v) of v.
Then we have

∑

v∈V

w(v) =
∑

v∈V

∑

f3v

1
l(f)

=
∑

f∈F

∑

v∈f

1
l(f)

=
∑

f

1
l(f)

∑

v∈f

1 =
∑

f

1 = |F |.
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Now we use Euler’s formula |V | − |E|+ |F | = 2 and the basic edge-counting
formula 2|E| = ∑

u∈V d(u). Then we get

2 = |V | − |E|+ |F | =
∑

v∈V

1− 1
2

∑

v∈V

d(v) +
∑

v∈V

w(v)

=
∑

v∈V

(1− 1
2
d(v) + w(v)).

For v in V , we write ρ(v) = 1− 1
2d(v)+w(v). Then the above formula reads

as follows:

(1)
∑

v∈V

ρ(v) = 2.

Note that this equation implies that there must be enough vertices v with
a positive ρ(v), which sum up to at least 2. Now we prove two claims for
ρ(v).

Claim 1. If ρ(v) > 0, then v is a good vertex.

Since G is 2-connected, we have d(v) ≥ 2. If d(v) ≤ 3, then v is trivially a
good vertex. If d(v) = 4, then either v is incident with a triangular face, in
which case v is good, or every face incident with v has length at least 4. In
the latter case we would have w(v) ≤ 4× 1

4 = 1, so that ρ(v) ≤ 1− 1
24+1 = 0.

If d(v) = 5, then either v is incident with at least three triangular faces,
in which case v is good, or v is incident with three or more faces of length
at least 4. In the latter case we would have w(v) ≤ 1

3 + 1
3 + 3× 1

4 = 1 5
12 , so

that ρ(v) ≤ 1− 1
2 × 5 + 1 5

12 < 0.
Finally, if d(v) ≥ 6, then we would have ρ(v) ≤ 1 − 1

2d(v) + 1
3d(v) =

1− 1
6d(v) ≤ 0. This proves Claim 1.

Claim 2. ρ(v) ≤ 7
12 , for any vertex v.

Since G is 2-connected, we have d(v) ≥ 2. Note that we have ρ(v) ≤
1− 1

6d(v). Hence, if d(v) ≥ 3, then ρ(v) ≤ 1
2 . If d(v) = 2, then v is incident

with two faces. Since G has at least five vertices, at least one of the faces
incident with v is not triangular. Therefore we have w(v) ≤ 1

3 + 1
4 = 7

12 ,
which settles Claim 2.
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Note that equation (1) and Claim 2 imply that there are at least four vertices
with ρ(v) > 0, so that, by Claim 1, the theorem is proved in the case G is
2-connected.

We prove the general case by induction on the number of vertices of G.
In a planar graph with four vertices all vertices are good. So let G have
at least five vertices. By the above argument, we may assume that G is
not 2-connected. If G is not connected, then, by induction, each component
of more than three vertices has at least four good vertices. All smaller
components have only good vertices. So G itself must have at least four
good vertices.

Now assume that G is connected but has a cut-vertex z. Let H1,H2, . . . ,
Hm denote the components of G−z, and let Bi denote the subgraph induced
by Hi ∪ {z}, for i = 1, 2, . . . m. Note that m ≥ 2. Now we say that Bi

is a small branch (respectively, big branch) if Bi has order at most three
(respectively, four or more). By induction, each big branch has at least
four good vertices. Of course, in each small branch, all vertices are good.
When the branches are glued back together at z, the only neighborhood
that changes is that of z. Hence z is the only vertex whose simpliciality and
degree can differ in G from what they are in the branches. Therefore each
big branch will contribute at least three good vertices to G itself, and each
small branch will contribute at least one. Since G has at least five vertices,
it follows that G has at least four good vertices, which proves the theorem.

In search of an extremal graph satisfying the conditions of Theorem 1, the
following Theorem is obtained leading to a class of a planar graphs with
exactly four 3-simplicial vertices. See Figure 1 for an instance from the
class.

Theorem 2. For each composite, positive integer m, there is a plane graph
G of order 4m + 2 with all faces bounded by 4-cycles, exactly four vertices
of degree 2, and the other 4m− 2 vertices of degree 4.

Proof. Let m = (a + 1)(b + 1) be a composite number with a ≥ 1 and
b ≥ 1. Now form a (2a + 1)× (2b + 1) rectangular grid which can be viewed
as a plane drawing of the Cartesian product of the two paths P2a+1 and
P2b+1. Let v1, v2, . . . , v2a+1 be the vertices along the top row of this grid.
As illustrated in the figure, place a vertices w1, w2, . . . , wa in a vertical row
above va+1, with w1 at the top and wa closest to va+1. Introduce another
vertex u between va+1 and wa. Join the vertices va+1, u, wa, wa−1, . . . , w1
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into a path. Now join vi and v2a+2−i to wi for 1 ≤ i ≤ a, to form “tents”
over the top row of the grid.

Figure 1. A planar graph with exactly four 3-simplicial vertices. (One of the
vertices is at infinity.)

Repeat this for each side of the grid. Now adjoin a vertex at infinity which
is joined to the top tent vertex over each side. Figure 1 illustrates this
construction for a = 2 and b = 3. Note that the vertex at infinity is not
drawn. The four u-vertices are the vertices of degree 2. All other vertices
are of degree 4, and all faces are 4-gons. It remains to count the number of
vertices. There are

(2a + 1)(2b + 1) vertices in the grid,
2a w-vertices extending out from the top and bottom,
2b w-vertices extending out from the sides,
4 u-vertices of degree 2,
1 vertex at infinity.

Thus the number of vertices is 4ab + 2a + 2b + 1 + 2a + 2b + 4 + 1 =
4(ab + a + b + 1) + 2 = 2m + 2 as claimed.
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4. Outerplanar Graphs

In this section we study the outerplanar case. It turns out that now we can
find at least four 2-simplicial vertices of degree at most three, whenever the
order is at least four, unless the graph is one of two exceptional graphs.

The 3-sun, or the triangle of triangles is the graph on six vertices consist-
ing of a central triangle and three extra vertices each adjacent to a different
pair of vertices of the central triangle. The 3-sun is a chordal graph and a
maximal outerplanar graph as well. The 3-sun has three vertices of degree
two and three vertices of degree four. The vertices of degree four have sim-
pliciality 3. The vertices of degree two have simpliciality 1, so that they are
2-simplicial as well. They are mutually non-adjacent. The star K1,3 also
has three mutually non-adjacent 2-simplicial vertices.

Theorem 3. Let G be an outerplanar graph of order at least four. Then G
contains at least four 2-simplicial vertices of degree at most three unless G
is the 3-sun or K1,3.

Proof. Assume the contrary, and let G be a counterexample of minimum
order, and amongst the counterexamples of minimum order one of maximum
size. Now we call a vertex good if it is 2-simplicial and has degree at most
three. Let G be embedded in the plane with an outerplanar embedding.

Claim. G is 2-connected.

If G is disconnected, then we can join two components by an edge. Thus we
obtain an outerplanar graph which still has less then four good vertices but
has more edges than G. Since this contradicts the maximality of the size of
G, it follows that G is connected.

Suppose G has a cutvertex z. Let H1,H2, . . . , Hm denote the compo-
nents of G − z, and let Bi denote the subgraph induced by Hi ∪ {z}, for
i = 1, 2, . . .m. Note that m ≥ 2. Again say Bi is a small branch (respec-
tively, big branch) if Bi has order at most three (respectively, four or more).
By the choice of G as a counterexample of minimal order, each big branch
has at least four good vertices — unless it happens to be a 3-sun or K1,3.
As before all vertices are good in each small branch. When the branches
are glued back together at z, the only neighborhood that changes is that of
z. Hence z is the only vertex whose simpliciality and degree can differ in
G from what they are in the branches. Therefore each big branch (except
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a 3-sun or K1,3) will contribute at least three good vertices to G itself, and
each small branch will contribute at least one. Thus, since G is a counterex-
ample, it has at most three branches and no big branch (except possibly a
3-sun or K1,3). It follows that G must consist of either (1) two branches of
order two, or (2) three branches of order two, (3) one branch of order three
and one of order two, or (4) a 3-sun or K1,3 branch and one branch of order
two. The K1,2 which arises in case (1) has only three vertices, and the K1,3,
which arises from case (2), is excluded by the theorem. Since the five graphs
that arise from cases (3) and (4) all have four good vertices, this settles the
proof of the Claim.

Let C be the cycle that is the boundary of the outerface. Then C is
of length at least four. If G = C, then all vertices of G are of degree two,
whence all are good. This is impossible, so C must have chords. Take any
chord xy. Then {x, y} is a cutset in G that cuts G into two components H1

and H2. Let Gi be the subgraph of G induced by xy and Hi, for i = 1, 2. If
both G1 and G2 are of order at least four, then they both contain at least
two good vertices distinct from x and y (note that in the 3-sun the three
good vertices are mutually non-adjacent.) So G is not a counterexample
after all. Hence at least one of G1 and G2 is of order three, say it consist of
x, y and a third vertex z. Then z is necessarily a vertex of degree two in G
with x and y as its neighbors. We call such a vertex z of degree two on the
outerface with its neighbors x and y joined by a short chord a cap on the
chord xy.

Thus we have shown that every chord of C implies the existence of a
cap on that chord. The only way that a chord can have two caps is that G is
a 4-cycle with exactly one chord. But this is not a counterexample. So each
chord gives rise to exactly one cap. Clearly caps are good vertices. So G has
at most three caps, whence has at most three chords. Let D be the cycle in
G obtained after removing all the caps of G. If D is of length at least four,
then there is an edge uv of D on the outerface. If u is of degree three then
one of its neighbors is a cap, say w. Then both u and w are good vertices.
If u is a vertex of degree two, then let w be the neighbor of u distinct from
v. Then again u and w are two good vertices. Similarly, we find two good
vertices amongst v and its neighbors distinct from u. Hence G has four good
vertices. To avoid this D must be a triangle. If D has no caps, then G has
only the three vertices of D. If D has one cap, then all four vertices of G are
good. If D has two caps, then G is a 5-cycle with two chords and again has
four good vertices. Finally, if every edge of D is capped, then D is the 3-sun,
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which was excluded in theorem as an exceptional case. This concludes the
proof of the Theorem.

Consider K22Pn, the cartesian product of an edge with the path on n ver-
tices. This is a triangle-free outerplanar graph with exactly four vertices of
degree two, 2n − 4 vertices of degree three, and all (inner) faces 4-cycles.
This yields an infinite family of graphs where Theorem 3 is best possible.
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