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Abstract

A subgraph of a plane graph is light if the sum of the degrees of
the vertices of the subgraph in the graph is small. It is known that
a plane graph of minimum face size 5 contains light paths and a light
pentagon. In this paper we show that every plane graph of minimum
face size 5 contains also a light star K1,3 and we present a structural
result concerning the existence of a pair of adjacent faces with degree–
bounded vertices.
Keywords: plane graph, light graph, face size.
2000 Mathematics Subject Classification: 05C10.

1. Introduction

Throughout this paper we consider connected plane graphs without loops
or multiple edges. For a plane graph G, V (G) and F (G) denotes the set
of its vertices and faces. A k-vertex (k-face) will stand for a vertex (a face)
of degree (size) k, a ≥ k-vertex/≤ k-vertex (≥ k-face/≤ k-face) for those of
degree (size) at least k/at most k. Let Pr and Cr denote a path and a cycle,
respectively, on r vertices (an r-path and an r-cycle in the sequel). Let an
r-star be a graph Sr = K1,r = [x; a1, . . . , ar].

Let G be a family of graphs and let H be a finite family of graphs with
the property that each graph of G contains a proper subgraph isomorphic
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to at least one member of H. Let τ(H,G) be the smallest integer with the
property that every graph G ∈ G contains a subgraph K which is isomorphic
to one of the elements in H such that, for every vertex v ∈ V (K),

degG(v) ≤ τ(H,G).

If such a finite τ(H,G) does not exist we write τ(H,G) = +∞. We shall say
that the family H is light in the family G if τ(H,G) < +∞.

Similarly, let f(H,G) be the smallest integer with the property that
every graph G ∈ G contains a subgraph K which is isomorphic to one of the
elements of H such that

∑

v∈V (K)

degG(v) ≤ f(H,G).

Obviously, H is light in the family G if and only if f(H,G) < +∞.
Note that in the case |H| = 1 we obtain the definition of light graph

H in the family G, see [8], and we will use notation ϕ(H,G) and w(H,G)
instead of τ(H,G), f(H,G).

Let Gc(δ, ρ) be the family of all c-connected plane graphs with mini-
mum vertex degree at least δ and minimum face size at least ρ; we will use
G(δ, ρ) instead of G3(δ, ρ) and ϕ(H; δ, ρ) instead of ϕ(H,G(δ, ρ)) (similarly
for w, τ, f).

It is well known that every plane graph contains a vertex of degree
at most 5. The excellent Kotzig’s theorem [10] shows that each graph G ∈
G(3, 3) contains a light edge e = {u, v} such that degG(u)+degG(v) ≤ 13, the
bound being precise; thus, w(e; 3, 3) = 13 and ϕ(e; 3, 3) = 10. These results
were generalized in several directions and led to study of the existence of light
graphs and families of graphs for various values of parameters c, δ, ρ. For
the light graph problems, Fabrici and Jendrol’ [5] proved ϕ(Pk; 3, 3) = 5k
and ϕ(H; 3, 3) = +∞ for H 6∼= Pk. The situation is similar in families
G(4, 3) and G(3, 4) – the only light graphs are paths and ϕ(Pk; 4, 3) = 5k−7
for k ≥ 8 ([4]), 5bk

2c ≤ ϕ(Pk; 3, 4) ≤ 5
2k ([7]). For the values of w, it is

known that k log2 k ≤ w(Pk; 3, 3) ≤ k2 + 13k ([5, 3]). In [6] and [1] there
is proved that the family Tk of all trees on k vertices is light in G(3, 3) and
τ(Tk; 3, 3) = 4k + 3 for k ≥ 3, 8k − 5 ≤ f(Tk; 3, 3) ≤ 8k − 1 for k ≥ 5; in [2]
it is shown that τ(Tk; 4, 3) = 4k − 1 for k ≥ 4.

The aim of this paper is to extend the family of light graphs in the class
G(3, 5). From the result of Jendrol’ and Fabrici [5] it follows that a k-path
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Pk, k ≥ 1 is light in G(3, 5), and in [9] it is shown that ϕ(Pk; 3, 5) ≤ 5
3k.

The classical result of Lebesgue [11] implies that the 5-face C5 is light in
G(3, 5) and ϕ(C5; 3, 5) = 5. Jendrol’ and Owens [9] also showed that no
k-cycle Ck, k > 5, except, possibly, C14, is light in G(3, 5).

We prove

Theorem 1.1. Each G ∈ G(3, 5) contains a 3-star S3 = [x; a, b, c] such that
degG(x) = 3, degG(a) = degG(b) = 3, degG(c) ≤ 4. Moreover, the bounds 3
and 4 are best possible.

Corollary 1.2. S3 is light in G(3, 5), ϕ(S3; 3, 5) = 4, w(S3; 3, 5) = 13.

Theorem 1.3. Each G ∈ G(3, 5) contains a 5-face adjacent to a ≤ 6-face
such that every their vertex is of degree at most 9 in G.

Corollary 1.4. The family {C8, C9} is light in G(3, 5) and 6 ≤ τ({C8, C9};
3, 5) ≤ 9.

2. Proof of Theorem 1.1

The proof is by contradiction. Suppose that there exists a 3-connected plane
graph G of minimum face size 5 such that for S3 ⊆ G, S3 = [x; a, b, c] with
degG(x) = 3, at least one of a, b, c is a ≥ 5-vertex, or at least two of them
are ≥ 4-vertices.

It is a consequence of Euler’s theorem that
∑

v∈V (G)

(degG(v)− 4) +
∑

f∈F (G)

(degG(f)− 4) = −8.

According to this formula, assign to each vertex v ∈ V (G) the initial
charge µ(v) = degG(v) − 4 and to each face f ∈ F (G) the initial charge
µ(f) = degG(f) − 4. Thus

∑
x∈V (G)∪F (G) µ(x) = −8. Then, we define the

local redistribution of charges such that the sum of charges remains the
same and we show that the new charge function µ : V (G) ∪ F (G) → Q
is nonnegative. This will contradict the fact that

∑
x∈V (G)∪F (G) µ(x) =∑

x∈V (G)∪F (G) µ(x) = −8.
The local redistribution of charges is performed by the following rules:

Rule 1. Each k-vertex v, k ≥ 4 sends k−4
m(v) to each adjacent 3-vertex; m(v) is

the number of 3-vertices adjacent to x. If m(v) = 0, no charge is transferred.
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Rule 2. Each k-face f sends k−4
m(f) to each incident 3-vertex; m(f) is the

number of 3-vertices incident to f . If m(f) = 0, no charge is transferred.

Let µ̃ : V (G) ∪ F (G) → Q be the charge of vertices and faces of G after
applying Rules 1 and 2. A vertex x is called overcharged if µ̃(x) > 0, and it
is called undercharged if µ̃(x) < 0.

Rule 3. Each overcharged 3-vertex x sends µ̃(x)
m̃(x) to each adjacent under-

charged 3-vertex; m̃(x) is the number of undercharged 3-vertices adjacent
to x. If m̃(x) = 0, no charge is transferred.

Let µ be the charge of vertices and faces of G after applying Rules 1,2 and
3. Note that for faces and vertices of degree at least 4, µ̃ and µ is the same,
and for overcharged 3-vertex x, µ(x) ≥ 0. To show that µ is a nonnegative
function, several cases are considered.

(1) Let f be a k-face of G. If f is not incident with a 3-vertex, then
µ̃(f) = k − 4 > 0; otherwise µ̃(f) = k − 4−m(f) · k−4

m(f) = 0.

(2) Let x be a k-vertex of G, k ≥ 4. If x is not adjacent with a 3-vertex,
then µ̃(x) = k − 4 ≥ 0; otherwise µ̃(x) = k − 4−m(x) · k−4

m(x) = 0.

(3) Let x be a 3-vertex; denote u, v, w the neighbours of x.

(3.1) Let x be incident with three 5-faces; denote i, j and k, l (j being
adjacent to k) the remaining neighbours of u and v, respectively. If u, v, w
are ≥ 4-vertices, then µ̃(x) ≥ −1 + 3 · 5−4

3 = 0. Suppose that u, v are 3-
vertices. Then w is a ≥ 5-vertex and at least one vertex from each pair i, j
and k, l is a ≥ 4-vertex. Hence, either µ̃(x) ≥ −1 + 1

5 + 2 · 1
4 + 1

3 = 1
30 > 0

or µ̃(x) ≥ −1 + 1
5 + 2 · 1

3 + 1
5 = 1

15 > 0.
Suppose that u is a 3-vertex and v, w are ≥ 4-vertices. If at least one of

them is a ≥ 5-vertex, µ̃(x) ≥ −1 + 1
5 + 1

3 + 2 · 1
4 = 1

30 > 0; so we can assume
that v, w are 4-vertices. If i, j are ≥ 4-vertices, then µ̃(x) ≥ −1 + 3 · 1

3 = 0,
so, without loss of generality suppose that i is a 3-vertex; then j is a ≥ 5-
vertex. Moreover, we can suppose that w is the only ≥ 4-vertex sharing
the common face ω with x, u, i (otherwise µ̃(x) ≥ −1 + 3 · 1

3 = 0). Denote
by z the fifth vertex of ω. Then the remaining neighbour of i is a ≥ 5-
vertex, the remaining neighbour (distinct from i, w) of z is a ≥ 4-vertex and
µ̃(u) ≥ −1+ 1

5 +2 · 1
3 + 1

4 = 7
60 > 0, µ̃(i) ≥ −1+ 1

5 +2 · 1
3 + 1

4 = 7
60 > 0. Thus

i, u are overcharged and u has only one undercharged 3-neighbour; hence,
µ(x) ≥ −1 + 2 · 1

3 + 1
4 + 7

60 = 1
30 > 0.
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(3.2) Let x be incident with two 5-faces and one≥ 6-face α. If all neighbours
of x are ≥ 4-vertices, then µ̃(x) ≥ −1 + 3 · 5−4

3 = 0. Suppose that two of
neighbours of x are 3-vertices. Then the third one is a ≥ 5-vertex and we
have µ̃(x) ≥ −1 + 1

5 + 2 · 1
4 + 1

3 = 1
30 > 0 (if both 3-vertices are adjacent to

α) or µ̃(x) ≥ −1 + 1
5 + 1

5 + 1
4 + 6−4

5 = 1
20 > 0.

Let x be adjacent with exactly one 3-vertex u and remaining neighbours
be ≥ 4-vertices. If ≥ 4-vertices are adjacent to α, then µ̃(x) ≥ −1 + 2 · 1

4 +
6−4
4 = 0; if at least one of them is a ≥ 5-vertex, µ̃(x) ≥ −1+ 1

3 + 1
4 + 6−4

5 + 1
5 =

11
60 > 0. In the remaining case at least one neighbour of u is a ≥ 4-vertex,
hence, µ̃(x) ≥ −1+2 · 13 + 6−4

5 = 1
15 > 0 or µ̃(x) ≥ −1+ 1

3 + 1
4 + 6−4

4 = 1
12 > 0.

(3.3) Let x be incident with one 5-face and two ≥ 6-faces. If x is adjacent
to a ≥ 5-vertex, we have µ̃(x) ≥ −1 + 1

5 + 2 · 6−4
5 + 1

5 > 0 or µ̃(x) ≥
−1 + 1

5 + 1
3 + 6−4

5 + 1
4 > 0. Otherwise x is adjacent to at least two ≥ 4-

vertices, so µ̃(x) ≥ −1 + 1
3 + 2 · 6−4

5 > 0 or µ̃(x) ≥ −1 + 6−4
4 + 6−4

5 + 1
4 > 0.

(3.4) Let x be incident to ≥ 6-faces. Then µ̃(x) ≥ −1 + 3 · 6−4
6 > 0.

To show that the bounds 3 and 4 are best possible, consider the graph
of the dodecahedron and subdivide each its edge by a new vertex. We
obtain a plane graph G′ consisting only of 10-faces. For j = 1, . . . , 12 let
αj = xj

1x
j
2 . . . xj

10 be an arbitrary face of G′ such that xj
i is of degree 2 for i

even. Into αj insert a 5-cycle Cj = yj
1y

j
2 . . . yj

5 and add new edges yj
i x

j
2i for

i = 1, . . . 5. It is easy to see that, in the graph so obtained, each 3-vertex is
adjacent to at least one 4-vertex.

3. Proof of Theorem 1.3

The proof is by contradiction. Suppose that there exists a 3-connected plane
graph G with minimum face size 5 such that each its 5-face is adjacent only
with ≥ 7-faces, or if it is adjacent with a ≤ 6-face, then at least one of their
vertices is of degree ≥ 10.

We use again the Discharging method; the charge ν : V (G)∪F (G) → Q
of vertices and faces of G is assigned according to the formula (which is
another consequence of the Euler theorem)

∑

v∈V (G)

(2 · degG(v)− 6) +
∑

f∈F (G)

(degG(f)− 6) = −12,

so, ν(v) = 2degG(v) − 6, ν(f) = degG(f) − 6. The local redistribution of
charges is performed according to the following rules:
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Rule 1. Each k-vertex x sends 2k−6
m(x) to each incident ≤ 6-face; m(x) is the

number of ≤ 6-faces incident to x. If m(x) = 0, no charge is transferred.

Let ν̃ be the charge of vertices and faces after application of Rule 1; like in
Section 2, we will use the notion of overcharged and undercharged faces.

Rule 2. Each face α with ν̃(α) > 0 sends ν̃(α)
m̃(α) to each adjacent under-

charged 5-face; m̃(α) is the number of undercharged 5-faces incident to α.
If m̃(α) = 0, no charge is transferred.

Let ν be the charge of vertices and faces after application of Rules 1 and 2.
To show that ν is a nonnegative function, it is enough to count it only for
5-faces, since, due to the definition of discharging rules, vertices are either
completely discharged (here ν(x) = ν̃(x) = 0) or they keep their charge (in
this case, ν(x) = ν̃(x) = 2k − 6 ≥ 0); the same holds for ≥ 7-faces and
≤ 6-faces overcharged after Rule 1.

If a 5-face α is incident with a ≥ 6-vertex, then ν̃(α) ≥ −1 + 2·6−6
6 = 0,

and if α is incident to at least two≥ 4-vertices, then ν̃(α) ≥ −1+2· 2·4−6
4 = 0;

so we can suppose that α is incident with four 3-vertices and one ≤ 5-vertex.

(1) Let α be incident with five 3-vertices. Then each face β adjacent to α is
either a ≥ 7-face or a ≤ 6-face containing a ≥ 10-vertex. If β is a ≥ 7-face
and γ, ω are faces incident both with β, α, then β does not send a charge
to γ, ω by Rule 2 (ν̃(γ) > 0, ν̃(ω) > 0), thus m̃(β) ≤ degG(β) − 2 and β
sends at least 7−6

7−2 = 1
5 to α by Rule 2.

If β is a 6-face, then it is incident with a ≥ 10-vertex, thus, ν̃(β) ≥
0 + 2·10−6

10 = 7
5 and β sends at least

7
5
6 > 1

5 to α by Rule 2.
If β is a 5-face, then, again, it is incident with a ≥ 10-vertex, thus,

ν̃(β) ≥ −1 + 2·10−6
10 = 2

5 . Since β is incident with at most two undercharged
5-faces, it sends at least 1

5 to α.
Therefore, α receives at least 1

5 from each of its neighbouring faces and
ν(α) ≥ −1 + 5 · 1

5 = 0.

(2) Let α be incident with four 3-vertices and a vertex y of degree 4 or 5.
Consider three neighbouring faces of α which are not incident with edges
having y as endvertex. They are either ≥ 7-faces or ≤ 6-faces containing
≥ 10-vertices. Using the same arguments as above, these faces send at least
1
5 to α, thus, ν(α) ≥ −1 + 2·4−6

4 + 3 · 1
5 > 0.
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In [9] there is an example of a pentagonal plane graph with the property
that each pair of adjacent 5-faces contains a 6-vertex. This implies the lower
bound for the number τ({C8, C9}; 3, 5).

4. Concluding Remarks

1. Theorem 1.3 implies that the graphs of Figure 1 are light in G(3, 5) (since
each of them is the subgraph of the pair of adjacent 5-faces or of the 5-face
which is adjacent with a 6-face).

Figure 1: Some light graphs in G(3, 5)

2. Corollary 1.4 also gives an example of two cycles such that each of them
is not light in G(3, 5), but the family comprised of them is light. This leads
to the following

Problem 4.1. Determine all pairs {Ci, Cj} of cycles such that neither Ci

nor Cj is light in G(3, 5), but the family {Ci, Cj} is light. In general, for
given n, determine all families {Ci1 , . . . , Cin} such that no subfamily is light
in G(3, 5), but the whole family is light.

The condition on minimum face size 5 cannot be omitted: for the family
G(3, 3), the graph of n-wheel, n being large shows that no family of cycles
is light (since each of them contains the n-vertex); similarly, for the family
G(3, 4), the dual of n-sided antiprism (i.e., the dual of the unique 4-regular
plane graph consisting of 2n 3-faces and two nonadjacent m-faces) shows
that no family of even cycles is light.

3. Providing the additional information on degrees of face vertices, Theo-
rem 1.3 can be also viewed as a strengthening of the theorem of Wernicke
[12] on existence of 5-face adjacent to a ≤ 6-face in every plane graph of
minimum face size 5. We believe that it is possible, in the similar way, also
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to strengthen Franklin’s theorem about the triple of neighbouring faces.
According to this, we formulate the following

Problem 4.2. Find the maximum number n0 and the minimum numbers
k(n0), t(n0) with the property that each plane graph of minimum face size 5
contains a chain (that is, the path in the dual graph) of n0 faces of size
≤ k(n0) such that each of their vertices is of degree at most t(n0). Determine
the corresponding values k(n), t(n) for each integer n ≤ n0.

From Theorem 1.3 we obtain k(2) = 6, 6 ≤ t(2) ≤ 9. In order to be
t(n) < +∞, n ≤ 6 is necessary, as seen from the following example: Choose
m arbitrarily large and consider the plane graph K2,m. Let αi = uxivyi, i =
1, . . . , m be a 4-face of K2,m such that u, v are its m-vertices. Insert into αi

a copy Ci of the configuration of Figure 2 (arisen from the dodecahedron by
splitting its one edge to half-edges); let ai, bi, ei and f i be counterparts of
a, b, e and f in Ci. Next, for each i = 1, . . . , m identify the vertex ai with u,
the vertex bi with v and join the half-edge fi with ei+1 (index modulo m).

Figure 2: The splitted dodecahedron

In the resulting graph, any chain of at least 7 faces contains an ≥ m-vertex.
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(Math. Slovaca) 5 (1955) 111–113.

[11] H. Lebesgue, Quelques consequences simples de la formule d’Euler, J. Math.
Pures Appl. 19 (1940) 19–43.
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