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Abstract

In this paper we consider the Cartesian product of an arbitrary
graph and a complete graph of order two. Although an upper and
lower bound for the domination number of this product follow easily
from known results, we are interested in the graphs that actually attain
these bounds. In each case, we provide an infinite class of graphs to
show that the bound is sharp. The graphs that achieve the lower bound
are of particular interest given the special nature of their dominating
sets and are investigated further.
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1. Introduction

The study of domination in graphs, which apparently began in the 1800’s
with the problem of finding the minimum number of queens needed to cover a
chessboard, has expanded in many directions. While it is difficult to compute
the domination number of an arbitrary graph, a number of general bounds
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are known. See Chapter 2 of [6] for a summary. In most of these results
a bound for the domination number is given in terms of other, more easily
computed, invariants of the graph, such as its minimum degree, maximum
degree, size, diameter, or girth, to name a few. Other efforts have been
directed at finding, or at least bounding, the domination number when the
graph is a product (Cartesian, categorical, etc.) of two graphs. The reader
is referred to [8], especially Chapter 8 and Appendix A, and to Chapter 7
of [7].

A conjecture made by V.G. Vizing in 1968 has been the motivating force
for much of the study of domination of Cartesian products.

Conjecture 1 ([12]). For every pair of graphs G and H, the domination
number of the Cartesian product of G and H is at least as large as the
product of their domination numbers.

In this paper we consider the Cartesian product of an arbitrary graph and
a complete graph of order two. An upper and a lower bound for the domi-
nation number of this Cartesian product follow easily from previous work.
We are interested in the graphs which assume either of these bounds, and
we provide an infinite class of graphs to show that each bound is sharp. The
graphs which achieve the lower bound turn out to be interesting in their
own right.

2. Notation and Definitions

We consider only finite, simple, undirected graphs. The vertex set of a
graph G will be denoted by V (G) and its edge set by E(G). The order of
G, denoted by |G|, is the cardinality of V (G). For a subset A of V (G), 〈A〉
is the subgraph of G induced by A. The open neighborhood of v ∈ V (G)
is N(v) = {u | uv ∈ E(G)}, and the open neighborhood of a subset D of
vertices is N(D) =

⋃
v∈D N(v). The respective closed neighborhoods are

N [v] = N(v) ∪ {v} and N [D] = N(D) ∪D. For X,Y ⊆ V (G) we say that
X dominates Y if Y ⊆ N [X]. The set D is called a dominating set for G if
D dominates V (G). The minimum cardinality of a dominating set for G is
the domination number of G and is denoted by γ(G). We will refer to any
dominating set of G having cardinality γ(G) as a γ(G)-set or simply as a
γ-set if the graph is clear from context. A set S ⊂ V (G) is a 2-packing of
G if N [x] ∩ N [y] = ∅ for every pair of distinct vertices x and y in S. The
2-packing number of G, denoted by P2(G), is the maximum cardinality of a
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2-packing in G. An equivalent way of defining a dominating set in G is that
it must contain at least one vertex from every closed neighborhood of G. It
follows immediately that γ(G) ≥ P2(G).

The Cartesian product of two graphs G and H is the graph G2H whose
vertex set is the Cartesian product of the sets V (G) and V (H). Two vertices
(u1, v1) and (u2, v2) are adjacent in G2H precisely when either u1 = u2 and
v1v2 ∈ E(H) or v1 = v2 and u1u2 ∈ E(G). If u ∈ V (G), then the subgraph of
G2H induced by {(u, v) | v ∈ V (H)} will be denoted by Hu. It is clear from
the definition of the Cartesian product that Hu ' H. Similarly, Gv is the
subgraph induced by {(u, v) | u ∈ V (G)}; it is isomorphic to G. We assume
throughout that the vertex set of the complete graph Kn is {1, 2, . . . , n}.

See [6] and [8] for any notation not defined here.

3. Bounds

Let G and H be arbitrary graphs. The following is a sample of some of the
bounds that have been shown for γ(G2H).

• (Vizing [11]) γ(G2H) ≤ min{γ(G)|H|, γ(H)|G|};
• (Jacobson and Kinch [9]) γ(G2H) ≥ max{ |H|

∆(H)+1γ(G), |G|
∆(G)+1γ(H)};

• (Jacobson and Kinch [10]) γ(G2H) ≥ max{γ(G)P2(H), γ(H)P2(G)};
• (El-Zahar and Pareek [2]) γ(G2H) ≥ min{|G|, |H|};
• (Clark and Suen [1]) γ(G2H) ≥ 1

2γ(G)γ(H).

In general, upper or lower bounds for γ(G2H) that hold for every pair of
graphs G and H seem to be difficult to derive. When conditions are imposed
on one or both of the two graphs it is sometimes possible to establish bounds
on γ(G2H) that improve upon one of those listed above. For example,
in [4] Hartnell and Rall showed that when one of G or H has a 2-packing
with certain characteristics, then the domination number of the Cartesian
product G2H is actually larger than that conjectured by Vizing. In [5]
upper and lower bounds for γ(G2H) were proved when additional conditions
were imposed on both graphs. For example, although Vizing’s conjecture
is known to hold if one of the graphs involved is a tree, in [5] the authors
proved the following stronger lower bound in a special case.

Theorem 1 ([5]). If T is any tree, then

γ(T2T ) ≥ γ(T )γ(T ) + (|T | − 2γ(T )).
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We consider here the Cartesian product of an arbitrary graph and a complete
graph of order two. The bounds obtained follow immediately from the first
and third in the above list. Indeed, for any graph G, the lower bound of
Jacobson and Kinch [10] yields

γ(G2K2) ≥ γ(G)P2(K2) = γ(G),

and Vizing’s upper bound from [11] implies

γ(G2K2) ≤ γ(G)|K2| = 2γ(G).

As an example of a graph that achieves the upper bound from above, let
G be the graph in Figure 1. We will show that γ(G2K2) = 2γ(G). The
domination number of G is three, and there are three cliques C1 = {a, b, c},
C2 = {d, e, u, v, w} and C3 = {x, y, z} that partition V (G).
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Figure 1: An example graph

Let D be any dominating set for G2K2. If each of |D∩(Ci×{1, 2})|, for 1 ≤
i ≤ 3, is at least 2, then |D| ≥ 6. So assume first that |D∩(C1×{1, 2})| < 2.
Without loss of generality we may assume that D ∩ (C1 × {2}) = ∅. This
implies that (a, 1) ∈ D and (d, 2), (e, 2) ∈ D. If, in addition, |D ∩ (C3 ×
{1, 2})| < 2, then following the same reasoning as above we get |D| ≥ 6.
Therefore, assume that |D∩ (C3×{1, 2})| ≥ 2. But now, since D dominates
(u, 1), it follows that either (u, 2) ∈ D or else D∩ (C2×{1}) 6= ∅, and hence
|D| ≥ 6.

Therefore, we assume that at least two vertices from C1 × {1, 2} and
at least two vertices from C3 × {1, 2} belong to D. The set D dominates
{(u, 1), (u, 2)}. If both of (u, 1) and (u, 2) belong to D, then |D| ≥ 6. If only
one of them, say (u, 2), is in D, then either D∩(C2×{1}) 6= ∅, which implies
|D| ≥ 6, or {(b, 1), (c, 1), (x, 1), (y, 1)} ⊆ D. But (a, 2) ∈ N [D], and so in
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the latter case it follows that |D ∩ (C1 × {1})| ≥ 3 or D ∩ (C1 × {2}) 6= ∅.
Finally, if neither of (u, 1) nor (u, 2) is in D, then |D ∩ (C2 × {1, 2})| ≥ 2.
Hence |D| ≥ 6 and we have shown that γ(G2K2) ≥ 6.
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Figure 2: A second example

One property used repeatedly in the previous example is that the vertex set
is partitioned into γ(G) cliques, and each of these cliques contains a vertex
that cannot be dominated from outside its own clique. This by itself is not
enough to force γ(G2K2) to be 2γ(G). This can be seen by considering the
graph H in Figure 2.

As with the graph in Figure 1, the vertex set of H partitions into γ(H) =
3 cliques, C1 = {r, s, t}, C2 = {u, v, w} and C3 = {x, y, z}. In addition, each
of these cliques contains a vertex that cannot be dominated from outside its
respective clique. However, the set {(r, 1), (w, 1), (y, 2), (r, 2), (w, 2)} domi-
nates H2K2, and thus γ(H2K2) < 2γ(H).

We now give a property of a graph G that is sufficient, although not
necessary, to force γ(G2K2) to be 2γ(G). For an integer k ≥ 2 we say a
graph G satisfies Property Pk if γ(G) = k and V (G) can be partitioned into
k cliques C1, C2, . . . , Ck in such a way that the following two conditions are
satisfied:
• For each 1 ≤ i ≤ k, the clique Ci contains a vertex hi such that N [hi] ⊆

Ci; and
• For every pair of disjoint subsets I and J of {1, 2, . . . , k}, if S ⊆ ⋃

i∈I Ci

and S dominates
⋃

j∈J(Cj − {hj}), then |S| ≥ |I|+ |J |.
Theorem 2. Let G be a graph that satisfies Property Pk. If H is any
spanning subgraph of G such that γ(H) = γ(G), then γ(H2K2) = 2γ(H).
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Proof. Assume H and G are as stated in the theorem. We first show that
any dominating set of G2K2 contains at least 2k vertices. Let D be any
dominating set of G2K2, and for i = 1, 2, let Di = D ∩ V (Gi). For ease of
reference we think of the vertices of G2K2 being laid out in two horizontal
rows, corresponding to the vertices of K2. We will say that a vertex (x, i)
or a set Ct × {i} is dominated “horizontally” if it is contained in the closed
neighborhood of Di. So, for example, if a vertex (x, 1) is not dominated
horizontally by D1, then it follows that (x, 2) ∈ D.

If |(Ct × {i}) ∩ D| ≥ 1 for 1 ≤ t ≤ k and for 1 ≤ i ≤ 2, then |D| ≥
2k = 2γ(G). Hence, we assume this is not the case. For i = 1, 2 let Ai be
the set of all cliques, Ct, such that Ct × {i} is not dominated horizontally.
Note that for i = 1 (respectively, i = 2) if Ct ∈ Ai, then (ht, 2) (respectively,
(ht, 1)) is in D. From the set Ai we single out two subsets:

A′i = {Ct ∈ Ai | (ht, i) is the only vertex of Ct × {i} not dominated
horizontally}; and

A′′i = {Cj ∈ Ai | for some x ∈ Cj , x 6= hj , the vertex (x, i) is not dominated
horizontally}.

For i = 1, 2, we denote by Ri the set of cliques, Cr, such that for some vertex
(y, i) in (Cr × {i}) ∩ D, there is a clique Ct ∈ A′i such that y ∈ NG(Ct).
Let Si be the set of all such vertices (y, i). Then by definition of A′i, the
set Si dominates

⋃
Ct∈A′i

((Ct × {i}) − {(ht, i)}). Since Gi is isomorphic to
G which satisfies Property Pk, it follows that |Si| ≥ |A′i| + |Ri|. Note that
(hj , i) 6∈ Si for any j. For each Cm ∈ A′′i we see that |(Cm×{j})∩D| ≥ 2 for
j ∈ {1, 2} − {i}. Hence we consider the vertex (hm, j) as being “assigned”
to Cm × {i} for counting purposes. Note that if Cp ∈ A2, then the vertex
(hp, 1) is in D, and so Cp 6∈ A1 and (hp, 1) 6∈ S1. Also, since (hj , 2) ∈ D for
every j such that Cj ∈ A1, it follows that (hj , 2) 6∈ S2. This implies that
|D| ≥ 2k = 2γ(G).

Since H2K2 is a spanning subgraph of G2K2, it follows that

γ(H2K2) ≥ γ(G2K2) ≥ 2k = 2γ(H).

We are now prepared to prove that the bounds of the following theorem are
sharp. As we will show, those graphs that achieve the lower bound of the
theorem possess minimum dominating sets that have special properties. We
shall derive many of the structural properties of such graphs in Section 4.
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Theorem 3 ([10], [11]). Let G be any graph. Then γ(G) ≤ γ(G2K2) ≤
2γ(G), and these bounds are sharp.

Proof. All that remains is to show that both bounds are achieved - in-
finitely often. We assume that V (K2) = {1, 2}. For a positive integer n ≥ 3,
let G be the complete bipartite graph K2,n, in which D = {u, v} is the
maximal independent set of order two. The set D is a minimum dominating
set for G, and G − N [u] = {v} while G − N [v] = {u}. Now it follows that
{(u, 1), (v, 2)} is a dominating set for G2K2, thus showing that the lower
bound of the theorem is achieved infinitely often.

To show that the upper bound is assumed for an infinite class of graphs,
we let Hk denote the graph obtained from the path Pk in the following way.
Replace each of the k − 2 vertices of degree two by a clique of order five
and each of the leaves by a clique of order three. Join each of two vertices
of each clique of order five to a vertex of the clique preceeding it in “the
path” and each of two other vertices to a clique following it in the path.
One vertex from each of the k cliques thus has all of its neighbors entirely
within its own clique. The graph in Figure 1 is H3. The domination number
of Hk is clearly k, and Hk satisfies Property Pk. By Theorem 2 we see that
γ(Hk2K2) = 2γ(Hk).

The following theorem gives a characterization of the graphs that assume
the lower bound of Theorem 3.

Theorem 4. For a connected graph G, γ(G2K2) = γ(G) if and only if G
has a γ-set D that partitions into two nonempty subsets D1 and D2 such
that G−N [D1] = D2 and G−N [D2] = D1.

Proof. Assume that γ(G2K2) = γ(G), and let A be a minimum dominat-
ing set for G2K2. Let A1 = A ∩ V (G1) and let B = {(u, 1) ∈ V (G1) |
(u, 1) 6∈ N [A1]}. Then for every (u, 1) ∈ B it must be the case that
(u, 2) ∈ A, for otherwise the vertex (u, 1) would not be dominated by A.
Let D1 = {v ∈ V (G) | (v, 1) ∈ A1} and let D2 = {v ∈ V (G) | (v, 1) ∈ B}.
By the way D1 and D2 are defined it follows that G − N [D1] = D2. Also,
since the only vertices in G2 that are dominated by A1 are those whose
first coordinate is in D1, it is clear that D2 dominates V (G) −D1. Hence,
G−N [D2] = D1. The set D = D1 ∪D2 is a minimum dominating set of G
having the required properties.

Conversely, assume that G has a minimum dominating set D that par-
titions into two nonempty subsets D1 and D2 such that G − N [D1] = D2
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and G−N [D2] = D1. It is straightforward to verify that the set (D1×{1})
∪ (D2 × {2}) dominates G2K2 and has cardinality γ(G).

The results of Theorem 3 can be generalized to the case of a complete
graph of order larger than two. For a general graph G the lower bound
is somewhat more cumbersome because if n is large enough (specifically, if
n > |G|−γ(G)+2), then V (G)×{1} is a γ(G2Kn)-set. The lower bound is
proved in Corollary 2.6 of [4], and the upper bound again follows from that
of Vizing in [11].

Theorem 5 ([4], [11]). Let G be any graph and let n ≥ 2 be any positive
integer. Then

min{|G|, γ(G) + n− 2} ≤ γ(G2Kn) ≤ nγ(G),

and these bounds are sharp.

Proof. As indicated above, the two inequalities follow from [4] and [11],
respectively. Let t be an integer such that t > (n − 2)/2. Let Gt be the
graph with vertex set V (Gt) = {r, a1, . . . , at, b1, . . . , bt, c1, . . . , ct} and edge
set determined by the 4-cycles, r, ai, bi, ci, r, 1 ≤ i ≤ t, sharing a com-
mon vertex r. It is clear that γ(Gt) = t + 1 and that {(r, 1), (r, 2), . . . ,
(r, n−1), (b1, n), (b2, n), . . . , (bt, n)} dominates Gt2Kn. Hence γ(Gt2Kn) =
γ(Gt) + n− 2. For graphs that assume the upper bound we will modify the
definition of Property Pk. Specifically, in the first condition of that defini-
tion we require that each clique Ci have n− 1 distinct vertices, each having
the property that all of its neighbors are inside Ci. Following a similar ar-
gument as that in the proof of Theorem 2, it can be seen that any graph
that is a spanning subgraph of, and has the same domination number as, a
graph satisfying this generalized Property Pk achieves the upper bound of
this theorem.

4. Graphs with Two-Colored γ-Sets

Let G = (V, E) be a connected graph. We say that G has a two-colored γ-set
if some minimum dominating set D of G partitions into disjoint subsets R
and B such that G − N [R] = B and G − N [B] = R. For convenience we
refer to R and B as the parts of D and to vertices in R as red vertices and
those in B as blue vertices. In addition, we let X = V − (R ∪B).
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As an example of such a graph consider the one in Figure 3 which is obtained
by deleting the edges of three vertex-disjoint 4-cycles from the complete
bipartite graph K6,6. The domination number of this graph is four and
we may let R = {1, 7} and B = {2, 8}. The set R ∪ B is a minimum
dominating set for this graph. For this particular graph the vertex set
can be partitioned into two-colored γ-sets. Using the obvious suggestive
notation, if R2 = {3, 9}, B2 = {4, 10}, R3 = {5, 11} and B3 = {6, 12}, then
{R ∪B, R2 ∪B2, R3 ∪B3} is such a partition.
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Figure 3: Bipartite graph with 2-colored γ-set

The example in Figure 4 shows that a graph can have a 2-colored γ-set
whereas it may not be possible to partition its entire vertex set into 2-
colored γ-sets. The set D = {u, v, w, x} is a minimum dominating set for
this graph and {u, v, w}, {x} is the required partition of D.

Graphs with two-colored γ-sets were introduced in [3], where Hartnell
and Rall gave a number of infinite classes of graphs that showed Vizing’s
conjecture, if true, is sharp. Many of these cases require one of the classes
to contain graphs with vertex sets that can be partitioned into two-colored
γ-sets. We are attempting to find a structural characterization of this class
of graphs. The following propositions give some of the properties of any G
with a two-colored γ-set.



398 B.L. Hartnell and D.F. Rall
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Figure 4: A non-partitionable example

Proposition 6. Let G be a connected graph with a two-colored γ-set D
having parts R and B. Then

1. Each of R and B is a 2-packing in G.
2. The set R ∪B is independent in G.
3. The minimum degree of G is at least two.
4. Every vertex of G belongs to at least one minimum dominating set.

Proof. Let X = V (G) − (R ∪ B) and assume that some vertex x of X is
adjacent to two red vertices, say r1 and r2. Then B ∪ (R − {r1, r2}) ∪ {x}
dominates G and has cardinality γ(G)−1. It follows from this contradiction
that each vertex in X has at most one neighbor in R and similarly at most
one in B. If two blue vertices, b1 and b2 were adjacent, then R∪ (B −{b2})
would dominate G. Hence, B and R are both 2-packings. If there exist
r ∈ R and b ∈ B such that rb ∈ E(G), then b 6∈ G−N [R], which contradicts
our assumption about R and B. Hence R ∪B is independent in G.

Note that by the proof of the first claim above, each vertex of X has
exactly one red neighbor and exactly one blue neighbor. Suppose there is a
red vertex r that has degree one, say N(r) ∩X = {u}. Since B dominates
X, there is a blue vertex b that is adjacent to u. For any vertex v 6= u in
N(b) ∩ X it follows that N(v) ∩ (R − {r}) 6= ∅ since R dominates X and
deg(r) = 1. Hence ((R ∪ B) − {r, b}) ∪ {u} dominates G, a contradiction.
Hence deg(r) ≥ 2. Similarly, every vertex of B has degree at least two, and
δ(G) ≥ 2. To prove the last claim let v be any vertex of X. Since R ∪B is
a two-colored γ-set, v has a red neighbor r and a blue neighbor b. It follows
that R ∪ {v} ∪ (B − {b}) is a γ(G)-set containing v.
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Note in particular that every vertex in X has exactly one neighbor in each
of R and B and every vertex of R ∪B has at least two neighbors in X.

Proposition 7. Let G be a connected graph with a two-colored γ-set D
having parts R and B. If r ∈ R and b ∈ B have a common neighbor x, then
r, b and x belong to a chordless 4-cycle. Hence, every vertex of G belongs to
a chordless 4-cycle.

Proof. If N(r) ∩N(b) ∩X = {x}, then (R ∪ B ∪ {x}) − {r, b} dominates
G. This contradicts our assumption that γ(G) = |R ∪B|. Therefore, if A =
N(r)∩N(b), then |A| ≥ 2. If x dominates 〈A〉, then again (R∪B∪{x})−{r, b}
dominates G. Hence, there is a vertex y ∈ A such that xy 6∈ E(G), and so
〈{r, x, b, y}〉 is a chordless 4-cycle.

Proposition 8. Let G be a connected graph with a two-colored γ-set D
having parts R and B. If G has a path of order four consisting of vertices
of degree two, then G ' C4.

Proof. Assume v, w, x and y are all of degree two such that N(w) = {v, x},
N(x) = {w, y}, N(v) = {u,w} and N(y) = {x, z}. Since D dominates G,
some vertex of N [w] and some vertex of N [x] belong to one of the parts.
Without loss of generality, assume v ∈ R and x ∈ B. By Proposition 7, v, w
and x belong to a chordless 4-cycle, and since v, w, x and y all have degree
two and G is connected, it follows that G ' C4.

Proposition 9. If G is not a 4-cycle but G has three vertices v, w and x of
degree two that induce a subgraph isomorphic to P3, then there is a vertex y
such that y is a cut-vertex of G and 〈{v, w, x, y}〉 ' C4.

Proof. Let N(v) = {u,w}, N(w) = {v, x} and N(x) = {w, y}. If v ∈
R ∪ B, then x ∈ R ∪ B, and so by Proposition 7, v, w and x belong to a
chordless 4-cycle, and it follows that u = y. Otherwise, w ∈ R ∪ B, and
since deg(v) = 2 = deg(x) it follows that u and y also both belong to R∪B.
Again by Proposition 7 each of the sets {u, v, w} and {w, x, y} is part of a
chordless 4-cycle. This implies that u = y, and the conclusion follows.

It is interesting at this point to note that no connected graph G has what
might be called a three-colored γ-set. For suppose G is a graph that has a
minimum dominating set D which is the disjoint union of sets R, B and W
such that G−N [R] = B ∪W , G−N [B] = R∪W and G−N [W ] = R∪B.
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Let X = V (G)− (R∪B ∪W ). Let x ∈ X, r ∈ N(x)∩R and b ∈ N(x)∩B.
It can easily be checked that (R∪B ∪W ∪ {x})−{r, b} is a dominating set
for G, and this contradicts the assumption that D = R ∪ B ∪W is a γ-set
of G. Similarly, no graph can have a k-colored γ-set for k > 3.

5. Structure

Throughout this section we assume G is a graph such that V (G) can be
partitioned into two-colored γ-sets D1, D2, . . . , Dt, where the parts of Di are
Ri and Bi. For ease of reference we say that such a graph is partitionable.
It is easy to show that the 4-cycle is the smallest such graph. Recall from
Section 4 that for each i, every vertex in V (G) − (Ri ∪ Bi) has exactly
one neighbor in each of Ri and Bi. For each i, let mi = |Ri| and let
ni = |Bi|. Relabel them if necessary so that mi ≤ ni for every i, and such
that m1 ≤ m2 ≤ · · · ≤ mt. Assume R1 = {u1, u2, . . . , um1} and let Xj =
N(uj)∩ (V (G)−D1), for 1 ≤ j ≤ m1. Since B2 is a 2-packing |B2∩Xj | ≤ 1
for every 1 ≤ j ≤ m1, and hence m1 ≥ n2 ≥ n3 ≥ · · · ≥ nt ≥ m1. It follows
immediately that |R1| = |B1| = |Ri| = |Bi| for every i and that G is regular
of degree 2(t− 1). This establishes the following result.

Proposition 10. Let G be a graph such that V (G) can be partitioned into
t two-colored γ-sets. Then G is regular of degree 2(t− 1) and both parts of
all the minimum dominating sets in the partition have the same cardinality.

The vertex set of the graph in Figure 5 can be partitioned into two-colored
γ-sets. Each of the parts of these minimum dominating sets has cardinality
five and the graph is 6-regular. The vertices labelled “1” form R1; those
labelled “2” form B1; those labelled “3” form R2, etc. The labelling scheme
is clear but not complete so as not to clutter the figure.

If G is bipartite satisfying the hypotheses of Proposition 10, we can say
more about its structure.

Proposition 11. Let G be a bipartite graph such that V (G) can be parti-
tioned into t two-colored γ-sets. Then G is regular of degree 2(t − 1) and
either G is a cycle of order four or both parts of all the sets in the partition
have the same even cardinality.

Proof. We use the notation set up before Proposition 10. All that remains
to be proved is that if G is not C4, then each part of a two-colored γ-set
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Figure 5: A partitionable example

in the partition contains an even number of vertices. Let C1 and C2 be the
partite sets of G. Since G is regular by Proposition 10, |C1| = |C2|. Suppose
R1 = {u1, u2, . . . , um1} and let B1 = {v1, v2, . . . , vm1}. Let X = V (G)−D1

and for each i, let Xi = N(ui) ∩X. Since G is bipartite, we conclude that
for every i, either Xi ⊆ C1 or Xi ⊆ C2. Let x denote the number of values
of i such that Xi ⊆ C1 and let y denote the number of values of i such that
Xi ⊆ C2. If x = 0 or y = 0, then it follows that X is independent and
2(t− 1) = 2. In this case G = C4. Otherwise, |⋃Xi⊆C1

Xi| = x2(t− 1). By
counting the edges between

⋃
Xi⊆C1

Xi and {vj | vj ∈ C2} in two different
ways and using the fact that |C1| = |C2| we conclude that m1 = 2x.

We close with a conjecture concerning the structure of the partitionable,
bipartite graphs.

Conjecture 2. If G is a connected, bipartite graph such that V (G) can be
partitioned into two-colored γ-sets, then G is the 4-cycle or G can be obtained
from K2t,2t by removing the edges of t vertex-disjoint 4-cycles.
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