ANALOGUES OF CLIQUES FOR ORIENTED COLORING

William F. Klostermeyer
Department of Computer and Information Sciences
University of North Florida
Jacksonville, FL 32224-2669, U.S.A.
AND
Gary MacGillivray
Department of Mathematics and Statistics
University of Victoria
Victoria, Canada

Abstract

We examine subgraphs of oriented graphs in the context of oriented coloring that are analogous to cliques in traditional vertex coloring. Bounds on the sizes of these subgraphs are given for planar, outerplanar, and series-parallel graphs. In particular, the main result of the paper is that a planar graph cannot contain an induced subgraph D with more than 36 vertices such that each pair of vertices in D are joined by a directed path of length at most two.

Keywords: graph coloring, oriented coloring, clique, planar graph.
2000 Mathematics Subject Classification: 05C15, 05C20, 05C69.

1. Introduction

A homomorphism of a directed graph (digraph) D_{1} to a digraph D_{2} is a function f that maps the vertices of D_{1} to the vertices of D_{2} such that if $x y$ is an arc of D_{1}, then $f(x) f(y)$ is an arc of D_{2}. The existence of a homomorphism of D_{1} to D_{2} is denoted by $D_{1} \rightarrow D_{2}$. If there exists a homomorphism $D_{1} \rightarrow D_{2}$, then we say that D_{1} is homomorphic to D_{2}.

Let D be an oriented graph, i.e., a digraph in which at most one of the arcs $u v, v u$ exists for each pair of vertices u, v. An oriented k-coloring of D is a homomorphism of D to some oriented graph T on k vertices. Since arcs joining non-adjacent vertices of T can be added without destroying the existence of a homomorphism $D \rightarrow T$, the oriented graph T can be taken to be a tournament. The oriented chromatic number of D, denoted $\chi_{o}(D)$, or simply χ_{o}, is the smallest integer k such that there is an oriented k-coloring of D. From the definition of an oriented coloring of digraph D, if $u \rightarrow v$ and $w \rightarrow u$, then each of u, v, w must receive distinct colors. In other words, adjacent vertices receive different colors and all arcs between vertices of color i and color $j, i \neq j$, must be oriented in the same direction.

Recent results concerning oriented chromatic number of digraphs can be found in $[2,3,4,6]$. Raspaud and Sopena proved that all oriented planar graphs have oriented chromatic number at most eighty [4]. It was shown in [8] that there exists an orientation of a planar graph with oriented chromatic number at least sixteen. Tightening this bound is a significant problem in the domain of oriented coloring.

Complete subgraphs (cliques) on k vertices obviously prevent an undirected graph from being $(k-1)$-colored. Similarly, a subgraph that is a tournament on k vertices is a similar obstruction for oriented coloring. The objective of this paper is to study another fundamental obstruction for oriented coloring, which we shall term ocliques. Ocliques will be defined in Section 2. In Sections 3 through 5, we bound the maximum cardinalities of ocliques in outerplanar, planar, and series-parallel graphs.

2. Preliminaries

Recall that the famous Kuratowski/Wagner theorem states that a graph G is planar if and only if it contains neither a K_{5} minor nor a $K_{3,3}$ minor [9]. Similarly, a graph is outerplanar, i.e., it can be embedded in the plane with all vertices bordering the outside face, if and only if it contains neither a K_{4} minor nor a $K_{2,3}$ minor. A graph is series-parallel if and only if it contains no K_{4} minor.

Let P_{n} denote a path with n vertices. In a digraph, vertex x dominates vertex y if $x \rightarrow y$ is an arc. We say that vertices x and y are adjacent if x dominates y or y dominates x and in either event we also say that x and y are neighbors. We say that vertex set A dominates vertex set B if, for each pair of vertices $x \in A, y \in B, x$ dominates y.

Define an oclique to be an oriented graph D such that for any two distinct vertices $x, y \in V(D)$ there exists a directed $x y$ path of length at most two or a directed $y x$ path of length at most two. Let $\omega_{o}(D)$ denote the cardinality of the largest induced subgraph of D that is an oclique (i.e., the number of vertices it contains) in oriented graph D.

The next fact is implicit in Sopena [7].
Fact 1. Let D be an oriented graph. Then $\chi_{o}(D) \geq \omega_{o}(D)$.
The following results states that, in terms of the number of colors used, ocliques play the same role in oriented colorings as cliques do in colorings.

Corollary 2. Let D be an oriented graph with n vertices. Then $\chi_{o}(D)=n$ if and only if D is an oclique.

Proof. Suppose D is an oclique. By Fact $1, \chi_{o}(D) \geq n$. Since the identity mapping is a homomorphism $D \rightarrow D$, this implies $\chi_{o}(D)=n$.

Now suppose D is not an oclique. Then there exist nonadjacent vertices x and y that are not joined by a directed path of length two. Let D^{\prime} be the digraph that results from identifying x and y, and creating the new vertex z. Since x and y are not joined by a directed path of length two, D^{\prime} is an oriented graph. The mapping that sends x and y to z and every other vertex of D to its clone in D^{\prime} is a homomorphism $D \rightarrow D^{\prime}$. Thus, $\chi_{o}(D) \leq n-1$.
The next proposition is straightforward.
Proposition 3. If D is an oclique, then $G[D]$ has diameter at most two.
The following lemma is used several times. The proof is trivial and is omitted.

Lemma 4. Let D be an oclique whose underlying graph has a cut vertex, v, whose deletion partitions $G[D]$ into components $C_{1}, C_{2} \ldots, C_{k}, k \geq 2$. Then either $V\left(C_{i}\right)$ dominates v, or v dominates $V\left(C_{i}\right)$, for all $i, 1 \leq i \leq k$.

We use the term 2-path to mean a directed path of length two. If D is a directed graph, then $G=G[D]$ denotes the underlying undirected graph of D. Also, let $\operatorname{dist}(u, v)$ denote the length of the shortest directed $u v$ path in digraph D.

3. Outerplanar Ocliques

Sopena [7] proved that every oriented outerplanar graph admits a homomorphism to the quadratic residue tournament on seven vertices ($V=$ $\{0,1, \ldots, 6\}$ and $u v \in E$ if and only if $u-v=1,2$, or $4 \bmod 7$). Thus we have the following.

Fact 5. Every outerplanar oclique has at most seven vertices.
Proposition 6. Let D be an outerplanar oclique with $|V| \geq 6$. Then $G[D]$ has minimum degree two.

Proof. Since $G[D]$ is outerplanar, it is well-known that $\delta(G[D]) \leq 2$. Suppose x has degree one in $G=G[D]$. Without loss of generality, $x \rightarrow y$ in D. Since D is an oclique, the vertex y dominates all vertices in $V-\{x, y\}$. Fix an outerplanar embedding of D. Let $z_{1}, z_{2}, z_{3}, z_{4}$ be vertices in $V-\{x, y\}$ such that the arcs $x y, y z_{1}, y z_{2}, y z_{3}, y z_{4}$ occur consecutively in clockwise order about y in the embedding. But, any directed path of length at most two joining z_{1} and z_{4} creates a cycle that separates x from z_{2} or z_{3}.
An outerplanar oclique on seven vertices, called O_{7}, is shown in Figure 1. Two additional outerplanar ocliques on seven vertices can be constructed from O_{7} by adding an arc (oriented in either direction) between the leftmost vertex and the rightmost vertex. Another pair of ocliques on seven vertices can be formed from O_{7} by adding an arc (oriented in either direction) between the third and fifth vertices from the left.

Figure 1. Outerplanar oclique O_{7}
Proposition 7. Every outerplanar oclique on seven vertices contains O_{7} as a spanning subgraph.

Proof. Let D be an outerplanar oclique with seven vertices and fix an outerplanar embedding of $G[D]$. We consider two cases.

Case 1. Suppose $G[D]$ has a cut-vertex v. Clearly, each component of $D-v$ must be an outerplanar oclique and each vertex in each component of $G[D]-v$ must be adjacent to v. It is not hard to see that there can be at most two components in $G[D-v]$. Observe that each of these components can have at most three vertices, else $G[D]$ cannot be outerplanar. It follows that D is the digraph O_{7}.

Case 2. Suppose $G[D]$ is 2 -connected. Since $G[D]$ is outerplanar, it has a Hamiltonian cycle C. Let $C=u_{0} u_{1} u_{2} u_{3} u_{4} u_{5} u_{6}$. Since $G[D]$ has diameter two, there is at least one edge u_{i}, u_{i+2} (addition modulo 7). Assume without loss of generality that $u_{0} u_{2}$ is an edge in $G[D]$. For u_{1} being distance at most two from any other vertex, u_{4} and u_{5} have to be adjacent to either u_{0} or u_{2}. If we have edges $u_{4} u_{2}$ and $u_{5} u_{0}$, then the distance between u_{3} and u_{6} is greater than two (in $G[D]$). Therefore u_{4} and u_{5} are either both adjacent to u_{0} or both adjacent to u_{2}. Assume without loss of generality that u_{4} and u_{5} are both adjacent to u_{0}. In order for the distance between u_{3} and u_{6} to be less than three, we need edge $u_{0} u_{3}$. Thus the degree of u_{0} is six.

Consider now D. Without loss of generality, assume $u_{0} u_{1}$ is an edge in D. For u_{4}, u_{5} and u_{6} being (oriented) distance at most two from u_{1}, we necessarily have edges $u_{4} u_{0}, u_{5} u_{0}$ and $u_{6} u_{0}$. By symmetry, because of edge $u_{6} u_{0}$, we necessarily have edges $u_{0} u_{2}$ and $u_{0} u_{3}$. Finally, for u_{1} and u_{3} (respectively, u_{4} and u_{6}) being oriented distance at most two from each other, $u_{1} u_{2} u_{3}$ (respectively $u_{4} u_{5} u_{6}$) is necessarily a directed 2 -path (in any direction) so that O_{7} is a spanning subgraph of D.

4. Planar Graphs

As a consequence of Raspaud and Sopena's theorem, we know that if D is an orientation of a planar graph, then $\omega_{o}(D) \leq 80$.

The following is quite simple.
Fact 8. If D is a bipartite planar oclique, then D has at most six vertices.
Proof. Let $V=A \cup B$ denote the bipartition of D. It is clear that each vertex in A must be adjacent to each vertex in B. Hence one part must contain fewer than three vertices. It is easy to verify that neither $K_{2, p}, p>4$ nor $K_{1, q}, q>4$ can be oriented to be an oclique.

The following implication of Fact 8 is used several times, so we state it as a corollary.

Corollary 9. The complete bipartite graph $K_{2,5}$ cannot be oriented to be an oclique.

Lemma 10. Let D be a planar oclique with $|V| \geq 10$. Then $G[D]$ has minimum degree at least two.

Proof. Suppose vertex x has degree one in $G[D]$. Without loss of generality $x \rightarrow y$ in D. Since D is an oclique, the vertex y dominates all vertices in $V-\{x, y\}$. Then $G[V-\{x, y\}]$ is an outerplanar oclique and by Fact 5 has at most seven vertices, thus $G[D]$ can have at most nine vertices.

The vertex v on 2-path $u \rightarrow v \rightarrow w$ is designated as the intermediate vertex.

Theorem 11. Let D be an orientation of a triangle-free planar graph such that D is an oclique. Then D has at most fourteen vertices.

Proof. Suppose the theorem is false and let $G[D]$ be planar and trianglefree, where D is an oclique with at least fifteen vertices. It is known that since the diameter of $G[D]$ is two, $G[D]$ has a vertex, v, of degree at least ten $[1,5]$; see also
http://www.unc.edu/~rpratt/degdiam.html
Then in D, at least five of v 's neighbors are, without loss of generality, dominated by v. These neighbors induce an independent set, since $G[D]$ is triangle-free. We claim that an independent set with five vertices, all dominated by a sixth vertex is a forbidden configuration for a planar oclique, meaning that such a subgraph cannot exist in D if D is a planar oclique.

We prove this is a forbidden configuration. Fix a planar embedding of D, and let v dominate $v_{1}, v_{2}, \ldots, v_{5}$ where the v_{i} vertices are arranged around v in clockwise order. Each pair v_{i}, v_{j} must be connected by a 2 -path using an intermediate vertex $w_{k} \neq v$. One can easily verify that at least three such w_{k} vertices are needed to connect five independent vertices via 2-paths. Suppose that v_{1}, w_{1}, v_{5} is a 2-path, assuming without loss of generality that $v_{1} \rightarrow w_{1}$. This forms a cycle in the underlying graph, $v, v_{1}, w_{1}, v_{5}, v$.

We consider two cases.

Case 1. Suppose v_{2}, w_{2}, v_{4} is a 2 -path where $w_{2} \neq w_{1}$. Then v_{3}, w_{2}, v_{5} and v_{3}, w_{2}, v_{1} are 2 -paths (note that if $v_{3} \rightarrow w_{2}$, then $w_{2} \rightarrow v_{5}, w_{2} \rightarrow v_{1}$ and vice versa). But now there can be no 2 -path between v_{1} and v_{4}.

Case 2. Suppose v_{2}, w_{1}, v_{4} is a 2 -path. Then v_{3}, w_{1}, v_{5} is a 2 -path, where $v_{3} \rightarrow w_{1}$. But now there can be no 2 -path between v_{1} and v_{3}.

Theorem 12. If D is a planar oclique, then D has at most 36 vertices.
Proof. Suppose the theorem were false and let D be an oclique with at least 37 vertices. Fix a planar embedding of $G[D]$. Let v be a vertex of degree at most five, which exists because $G[D]$ is planar [9]. By Lemma $10, v$ has degree at least two. Let $v_{1}, v_{2}, \ldots, v_{r}$, where $2 \leq r \leq 5$, be the neighbors of v. There are at least 31 additional vertices that v is connected to via a 2 -path. Since $G[D]$ has diameter two, the subgraph induced by $V(G[D])-\left\{v, v_{1}, \ldots, v_{r}\right\}$ is outerplanar and, as such, 3-colorable. Hence there exists an independent set, I, of at least eleven vertices among these 31 or more vertices. Partition $I=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ into sets, $S_{1}, S_{2} \ldots, S_{r}$, according to which v_{i} vertex is the intermediate vertex on a $v \rightarrow v_{i} \rightarrow u_{j}$ 2-path or a $u_{j} \rightarrow v_{i} \rightarrow v$ 2-path. That is, v_{i} dominates each vertex in S_{i} (or vice versa). Of course, a vertex u_{j} may have several such 2 -paths to/from vertex v. We deal with this by re-numbering the v_{i} vertices as necessary so that we can fix a partition $S_{1}, S_{2} \ldots, S_{r}$ of I so that the set S_{i} of vertices with intermediate vertex v_{i} is at least as large as the set of vertices with intermediate vertex v_{i+q}, for all $q>0$. Furthermore, we require that if $u_{j} \in S_{i}$, then there is no 2-path connecting u_{j} with v via any v_{p} where $p<i$.

Since there are at least eleven vertices in the union of the S_{i} sets, the pigeonhole principle assures us that either (i) $\left|S_{1}\right| \geq 5$ or (ii) $\left|S_{1}\right|=4$ and $\left|S_{2}\right|=4$ or (iii) $\left|S_{1}\right| \geq 3,\left|S_{2}\right|=3,\left|S_{3}\right|=3$ or (iv) $\left|S_{1}\right|=4,\left|S_{2}\right| \geq 2,\left|S_{3}\right| \geq$ $2,\left|S_{4}\right| \geq 2,\left|S_{5}\right| \geq 1$ or (v) $\left|S_{1}\right|=3,\left|S_{2}\right| \geq 2,\left|S_{3}\right| \geq 2,\left|S_{4}\right| \geq 2,\left|S_{5}\right| \geq 1$ or (vi) $\left|S_{1}\right|=4,\left|S_{2}\right|=3,\left|S_{3}\right|=2,\left|S_{4}\right|=1,\left|S_{5}\right|=1$ or (vii) $\left|S_{1}\right|=4,\left|S_{2}\right|=$ $3,\left|S_{3}\right|=\left|S_{4}\right|=2$.
(Note that (iv), (v), and (vi) are similar, we separate them to clarify the details as we proceed below). A basic diagram to aid the reader's understanding is given in Figure 2.

Denote the vertices in S_{1} as a_{1}, a_{2}, \ldots in clockwise order around v_{1} and the vertices S_{2} as b_{1}, b_{2}, \ldots in clockwise order around v_{2}. Assume, without
loss of generality, that v dominates v_{1} and thus, v_{1} dominates a_{1}, a_{2}, \ldots. A basic illustration is given in Figure 2.

In case (i), we have the forbidden configuration described in the proof of Theorem 11 .

Figure 2. Possible structure of S_{1}, S_{2}
In case (ii), $\left|S_{1}\right|=4,\left|S_{2}\right|=4$. Vertex v_{1} cannot be an intermediate vertex between any two of the b_{i} vertices in S_{2}, because in that case, one of the b_{i} vertices would belong in S_{1}. Then the 2 -path between b_{1} and b_{3} uses intermediate vertex $z \neq v_{1}$. Consider the 2 -path between a_{1} and a_{4}. First suppose this 2-path uses intermediate vertex $w \neq v_{2}, w \neq z$. Then there can be no 2 -path between a_{2} and b_{2}, as the cycles $v_{1}, a_{1}, w, a_{4}, v_{1}$ and $v_{2}, b_{1}, z, b_{3}, v_{2}$ are disjoint separating cycles, separating a_{2} from b_{2}. If however, $z=w$, we have the following. A 2 -path between a_{2} and b_{2} must use intermediate vertex z. And though b_{1} and b_{3} may have 2 -paths to the S_{1} vertices via intermediate vertex v_{1}, b_{2} cannot, nor can b_{2} use z as an intermediate vertex to both a_{1} and a_{4}.

On the other hand, v_{2} may be an intermediate vertex between a_{1} and a_{4}. But then case (i) applies as one of a_{1} or a_{4} could be moved to set S_{2}.

In case (iii), $\left|S_{1}\right| \geq 3,\left|S_{2}\right|=3,\left|S_{3}\right|=3$. Denote the vertices in S_{3} as c_{1}, c_{2}, c_{3}. Vertex v_{1} cannot be an intermediate vertex between any two of the b_{i} vertices in S_{2} because in that case, one of the b_{i} vertices would belong in S_{1}. Likewise v_{3} cannot be an intermediate vertex between two vertices in S_{2}, else a c_{i} vertex would belong to S_{2}. Similarly, neither v_{1} nor v_{2} can serve as intermediate vertices for any pair of vertices in S_{3}.

Consider the 2 -paths between b_{1} and b_{3}, as well as between c_{1} and c_{3} via intermediate vertices, w, z, respectively. First suppose $w \neq z$. Then it is not possible to form a 2-path between b_{2} and c_{2}. On the other hand, suppose $w=z$. Then b_{2} cannot have a 2 -path to both c_{1} and c_{3}.

Now examine case (iv), with $\left|S_{1}\right|=4,\left|S_{2}\right| \geq 2,\left|S_{3}\right| \geq 2,\left|S_{4}\right| \geq 2$, $\left|S_{5}\right| \geq 1$. Denote the vertices in S_{3} as c_{1}, c_{2} in clockwise order around v_{3}. To connect the four vertices in S_{1} via 2-paths, at least three intermediate vertices are needed. If only two are used, then a $K_{3,3}$ subgraph results, because v_{1} dominates all the vertices in S_{1} and one can easily verify that an orientation of $K_{2,4}$ is the only way to connect four independent vertices by 2 -paths using two intermediate vertices. For the purposes of the argument in case (iv) (and later in case (vi)), only two such intermediate vertices need to be specified.

Consider the 2-path between a_{1} and a_{4}, using intermediate vertex w. Any two vertices in S_{1} may have at most one common neighbor in the set $\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$, else $G[D]$ has a $K_{3,3}$ subgraph. We may assume, without loss of generality, that $w \neq v_{2}, w \neq v_{3}$ (else we can replace one of S_{2}, S_{3} with S_{4}). The 2-path between a_{1} and a_{4} creates a cycle C containing the vertices v_{1}, a_{1}, w, a_{4}. There also exists an intermediate vertex $z \neq w, z \neq v_{i}$, $1 \leq i \leq 5$, such that z is used to form another 2-path between two vertices in S_{1} besides a_{1} and a_{4}.

First suppose that z is not adjacent to w. Regardless of the routing of C within the given embedding of $G[D], C$ separates each of $b_{1}, b_{2}, c_{1}, c_{2}$ from z. This forces that v_{1} is the intermediate vertex on 2 -paths between $b_{1}, b_{2}, c_{1}, c_{2}$ and z. Then 2-paths cannot be formed between all the vertices in S_{2} and S_{3}.

On the other hand, suppose that each intermediate vertex, other than w itself, between vertices in S_{1} is adjacent to w. Denote these intermediate vertices as $z_{1}, z_{2}, \ldots, z_{q}, q \geq 2$. Then in D, w cannot dominate (or be dominated by) the set $\left\{a_{2}, a_{3}, z_{1}, z_{2}, \ldots, z_{q}\right\}$, else there can be either no 2 path between a_{2} and a_{4} or no 2-path between a_{1} and a_{3}. Now we have that each vertex in S_{2} and S_{3} must be adjacent to v_{1}, which precludes the formation of 2-paths between the vertices in S_{2} and S_{3} (again, recalling that v_{1} cannot be an intermediate vertex between vertices in S_{2} and S_{3}).

Now consider case (v). Extending the argument of case (iv), we show that it is forbidden to have $\left|S_{1}\right|=3,\left|S_{2}\right| \geq 2,\left|S_{3}\right| \geq 2,\left|S_{4}\right| \geq 2,\left|S_{5}\right| \geq 1$. We use the same terminology as in case (iv) when referring to vertices. Let w be the intermediate vertex on a 2 -path between a_{1} and a_{3}. As in case (iv),
we may assume, without loss of generality, that $w \neq v_{2}, w \neq v_{3}$ (else we can replace one of S_{2}, S_{3} with S_{4}).

The case when z is not adjacent to w follows identically (with a_{3} in the place of a_{4}) as in case (iv). However, some differences arise when z is adjacent to w. Assume without loss of generality that a_{3} dominates w and w dominates a_{1} (the argument is symmetric in the other event). In this case, we suppose that w dominates both z and a_{2} in D, otherwise the argument proceeds as in case (iv), as each vertex in S_{2} and S_{3} would have to be adjacent to v_{1}. Each vertex in S_{2} and S_{3} must be adjacent to at least one of v_{1} or w, in order to have a 2 -path to a_{2} and z.

If the vertices in S_{2} and S_{3} use but two intermediate vertices to form 2-paths between them, then each vertex in S_{2} and S_{3} must be adjacent to both (as an orientation of $K_{2,4}$ is the only way to connect four independent vertices by 2-paths using two intermediate vertices). The resulting graph has a $K_{3,3}$ minor.

So we assume the vertices in $S_{2} \cup S_{3}$ use at least three intermediate vertices to form the 2-paths between them. Of course, none of these intermediate vertices can be v_{1}. And at most one can be w, so let us use x, x^{\prime} to denote two intermediate vertices not equal to w. Note that x and x^{\prime} must each be adjacent to at least one of v_{1} or w.

Suppose w is the intermediate vertex on the $b_{1} b_{2} 2$-path and the $c_{1} c_{2}$ 2-path. But then the planarity of $G[D]$ makes it impossible to form at least one of the remaining two 2-paths between pairs of the form $b_{i} c_{j}$.

On the other hand, suppose x is the intermediate vertex on the $b_{1} b_{2} 2$ path. Then the cycle (in $G[D]) v_{2}, b_{1}, w, a_{3}, v_{1}, v, v_{2}$ (or $v_{2}, b_{1}, v_{1}, v, v_{2}$) along with the corresponding cycle containing either edge $b_{2} w$ or $b_{2} v_{1}$ (rather than $b_{1} w$ or $b_{1} v_{1}$) force c_{1} and c_{2} to be adjacent to w, in order to have a 2-path to/from x. Which then makes it impossible for both c_{1} and c_{2} to each have a 2-path to each of a_{1} and a_{3} (since w dominates only one of a_{1}, a_{3}).

The argument for case (vi) is again nearly identical to case (iv). The only difference being the following. Suppose that the intermediate vertex w between a_{1} and a_{4} is v_{2}. Then we must replace S_{2} as we did in case (iv), but we replace it with both S_{4} and S_{5} (since we know that w cannot be v_{4} or v_{5}, else $G[D]$ has a $K_{3,3}$ subgraph. In the language of case (iv), we then let c_{1} be the lone vertex in S_{4} and c_{2} be the lone vertex in S_{5} and the argument proceeds as in case (iv) (even though, for example, there may be a 2-path between c_{1} and c_{2} via v_{5}).

Case (vii) follows exactly as case (iv).

5. Series-Parallel Graphs

It is proved in [7] that orientations of graphs having treewidth at most two have oriented chromatic number at most seven. Since series-parallel graphs have treewidth at most two, $\omega_{o}(D) \leq 7$ for any digraph D whose underlying graph is series-parallel. The proof in [7] is based on graph homomorphisms. We present an alternate, direct proof of this result based on graph minors/subgraphs. Our method of proof yields that Proposition 7 also holds for series-parallel ocliques.

We first state a lemma given in [9], page 251.
Lemma 13 [9]. Let H be a graph with $\Delta(H) \leq 3$. Then H is a minor of G if and only if G contains a subdivision of H.

The following is easily verified by inspection.
Fact 14. No subdivision of $K_{2,3}$, other than $K_{2,3}$ itself, can be oriented to be an oclique.

One can easily confirm that there exist ocliques whose underlying graph is $K_{2,3}$.

Theorem 15. Any oclique whose underlying graph is series-parallel has at most seven vertices. Further, there are seven such ocliques on seven vertices, and each contains O_{7} as a spanning subgraph.

Proof. Suppose by way of contradiction that D is an oclique with at least eight vertices; so $G[D]$ is a series-parallel graph. If $G[D]$ contains no $K_{2,3}$ minor, then $G[D]$ is outerplanar, and the first part of the theorem follows from Fact 5. So suppose $G[D]$ contains a $K_{2,3}$ minor. By Lemma 13, we may assume that $G[D]$ contains a $K_{2,3}$ subdivision. Because of Fact 14, we shall focus attention on $K_{2,3}$ itself and not worry about its subdivisions. Let $H=(A, B, E)$ be a $K_{2,3}$ subgraph of $G[D]$. Let $A=\left\{a_{1}, a_{2}\right\}$ and $B=\left\{b_{1}, b_{2}, b_{3}\right\}$. Let $V(G[D])-V(H)=\left\{g_{1}, g_{2}, \ldots\right\}$

Some key facts are now stated, which form the heart of the argument.
(1) B induces an independent set in $G[D]$.

Proof of (1). Otherwise, $G[D]$ contains a K_{4} minor.
Likewise we have:
(1a) Every path in $G[D]$ joining two distinct vertices of B contains a vertex in A.

Proof. Otherwise there is a K_{4} minor.
Note that (1a) implies that if g_{i} is adjacent to g_{j}, then $N\left(g_{i}\right) \cap B=N\left(g_{j}\right) \cap B$. It also implies that each g_{i} is adjacent to at most one vertex of B.
(2) Each g_{i} vertex must be adjacent to at least one of a_{1}, a_{2}.

Proof of (2). This is in order that the diameter of G be at most two and follows from (1a), since no g_{i} can be adjacent to two vertices from B.
(3) Each g_{i} vertex must have degree at least two.

Proof of (3). Otherwise, say g_{i} is adjacent to only a_{1}, since we know from (2) that g_{i} must be adjacent to one of a_{1}, a_{2}. The logic from Lemma 4 then tells us that a_{1} must dominate (or be dominated by) B in D. As B is an independent set and vertices in B have no common neighbors other than vertices in A, it is then not possible to orient the edges in $G[D]$ to form 2-paths between the three vertices in B.
(4) $I=\left\{g_{1}, g_{2}, \ldots\right\}$ is an independent set.

Proof of (4). As stated above, each vertex in I must be adjacent to at least one of a_{1}, a_{2} in order for D to be an oclique. Let us assume that g_{1} is adjacent to g_{2}. By the note following (1a), if both g_{1} and g_{2} have a neighbor in B (and each can have at most one), then they are adjacent to the same vertex of B. Thus, there are two possibilities to consider, as (2) assures us that one of the following must occur.
(a) g_{1} and g_{2} have a common neighbor in A. Then using the logic from (3), each of g_{1}, g_{2} must be adjacent to another vertex from H (and it may be that each is adjacent to a different vertex). Then $G[D]$ contains a K_{4} minor.
(b) g_{1} is adjacent to a_{1} and g_{2} is adjacent to a_{2}. Then either g_{1} and g_{2} have a neighbor in B, in which case $G[D]$ has a K_{4} minor, which violates (1a), or (a) applies.
(5) g_{i} cannot be adjacent to all of a_{1}, a_{2} and b_{1}, b_{2}, b_{3}.

Proof of (5). Otherwise, $G[D]$ has a K_{4} minor.
Combining the above, we deduce that each g_{i} has degree two. If two g_{i} 's are both adjacent to a_{1}, and a_{2}, then $G[D]$ contains a $K_{2,5}$ subgraph. But, since no vertex in $I=\left\{g_{1}, g_{2}, \ldots\right\}$ can be an intermediate vertex on a 2 -path
joining two vertices of I, in this case it follows from the structure of $G[D]$ that D cannot be oriented to be an oclique. Hence at most one g_{i} is adjacent to both a_{1} and a_{2}.

If three g_{i} 's are each adjacent to a_{1} and b_{1}, say, then without loss of generality each must dominate a_{1}, in order that the g_{i} 's can have 2-paths to $b_{q}, q \neq 1$. But then, by the structure of $G[D]$, we cannot form 2-paths amongst the three g_{i} 's.

Suppose for the moment that a_{1} is not adjacent to a_{2} in $G[D]$, and consider the possible neighbors of g_{1} and g_{2}. It follows from our work above that there are three possibilities (up to relabelling the elements of A, B and I):
(i) Both g_{1} and g_{2} are adjacent to a_{1} and b_{1};
(ii) g_{1} is adjacent to a_{1} and b_{1}, and g_{2} is adjacent to a_{1} and b_{2};
(iii) g_{1} is adjacent to a_{1} and a_{2}, and g_{2} is adjacent to a_{1} and b_{1}. We show that, in each case, $G[D]$ cannot be oriented as an oclique.

In case (i), without loss of generality, we must have that g_{1} and g_{2} both dominate a_{1}, in order for there to be 2-paths to b_{2} and b_{3}. In order for there to be 2 -paths from the g_{i} 's to a_{2}, both g_{1} and g_{2} must dominate b_{1}. But now there cannot be a 2 -path joining g_{1} and g_{2}. In case (ii), without loss of generality, we must have that g_{1} and g_{2} both dominate a_{1}, in order for there to be 2 -paths b_{3}. Again, we have that there cannot be a 2 -path joining g_{1} and g_{2}. In case (iii), without loss of generality, g_{2} must dominate a_{1}. In turn, a_{1} must dominate b_{2}, b_{3} and g_{1} so that 2-paths between g_{1} and these vertices are formed. Similarly, g_{1} must dominate a_{2}, which must dominate b_{1} and b_{3}. But now there cannot be a 2 -path joining b_{2} and b_{3}.

It follows from the above argument that a_{1} and a_{2} must be adjacent. We assume from now on that this is the case. As above, one of cases (i), (ii) and (iii) must arise. Cases (ii) and (iii) can be eliminated similarly to the arguments above.

Suppose g_{1} and g_{2} are both adjacent to a_{1} and b_{1}. In order for g_{1} and g_{2} to have 2-paths to b_{2} and b_{3}, without loss of generality, both of g_{1} and g_{2} must dominate a_{1}, which in turn must dominate b_{2} and b_{3}. There must be a 2-path joining g_{1} and g_{2}. Without loss of generality, again, assume it is $g_{1} \rightarrow b_{1} \rightarrow g_{2}$. Then, a_{1} must dominate a_{2} so that g_{2} can have a 2 -path to a_{2}. In order for there to be a 2 -path joining b_{2} and b_{3}, without loss of generality (still), b_{2} dominates a_{2} and a_{2} dominates b_{3}. This implies that b_{1} dominates a_{1}, so that it can be joined to b_{2} by a 2 -path. The subgraph induced by the edges whose orientation has been determined so far - all
edges in the subgraph induced by $A \cup B \cup\left\{g_{1}, g_{2}\right\}$ except the edge joining b_{1} and a_{2} is O_{7}. Two seven vertex ocliques whose underlying graph is seriesparallel and contains $K_{2,3}$ arise from the two choices for the orientation of this edge.
We claim that we must have $|I|=2$. Suppose I contains a third vertex, g_{3}. From our work above, g_{3} cannot be adjacent to a_{1} and b_{1}. The other possibilities for neighbors of g_{3} give rise to cases (ii) or (iii), using g_{3} in place of g_{2}.

It now follows that there are exactly seven ocliques whose underlying graph is series-parallel: the five mentioned in Section 3, and the two arising in the proof above. All of these contain O_{7} as a spanning subgraph. This completes the proof.

6. Conclusions

We state our main conjecture.

Conjecture 1. Let D be an orientation of a planar graph such that for any two vertices $x, y \in V(G)$ there exists an $x y$ directed path or a $y x$ directed path of length at most two. Then D has at most fifteen vertices.

It is interesting to note that Sopena's planar graph with $\chi_{o}=16$ has $\omega_{o}=15[7]$.

It is obvious that k-cliques are not the only "obstruction" to k-coloring an undirected graph. Imperfect graphs illustrate this concept. Hadwiger's conjecture perhaps lies at the heart of this issue: it claims that each k chromatic graph contains a subgraph that "becomes K_{k} via edge contractions" [9]. It would be interesting to formulate an analogous conjecture for oriented coloring, as there are infinitely many digraphs having $\chi_{o}>\omega_{o}$, such as the directed cycle on n vertices, where $n>5$ and n is not divisible by 3 . Such graphs can have $\omega_{o}=3$ and $\chi_{o}=4$.

Acknowledgements

We thank the anonymous referees for their valuable comments.

References

[1] P. Hell and K. Seyffarth, Largest planar graphs of diameter two and fixed maximum degree, Discrete Math. 111 (1993) 313-322.
[2] A. Kostochka, E. Sopena, and X. Zhu, Acyclic and oriented chromatic numbers of graphs, J. Graph Theory 24 (1997) 331-340.
[3] J. Nešetřil, A. Raspaud, and E. Sopena, Colorings and girth of oriented planar graphs, Discrete Math. 165/166 (1997) 519-530.
[4] A. Raspaud and E. Sopena, Good and semi-strong colorings of oriented planar graphs, Info. Proc. Letters 51 (1994) 171-174.
[5] K. Seyffarth, Maximal planar graphs of diameter two, J. Graph Theory 13 (1989) 619-648.
[6] E. Sopena, The chromatic number of oriented graphs, J. Graph Theory 25 (1997) 191-205.
[7] E. Sopena, Oriented graph coloring, Discrete Math. 229 (2001) 359-369.
[8] E. Sopena, There exist oriented planar graphs with oriented chromatic number at least sixteen, Info. Proc. Letters 81 (2002) 309-312.
[9] D. West, Introduction to Graph Theory (Prentice Hall, Upper Saddle River, NJ, 2001) (2nd edition).

