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Abstract

We examine subgraphs of oriented graphs in the context of oriented
coloring that are analogous to cliques in traditional vertex coloring.
Bounds on the sizes of these subgraphs are given for planar, outerpla-
nar, and series-parallel graphs. In particular, the main result of the
paper is that a planar graph cannot contain an induced subgraph D
with more than 36 vertices such that each pair of vertices in D are
joined by a directed path of length at most two.
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1. Introduction

A homomorphism of a directed graph (digraph) D1 to a digraph D2 is a
function f that maps the vertices of D1 to the vertices of D2 such that
if xy is an arc of D1, then f(x)f(y) is an arc of D2. The existence of a
homomorphism of D1 to D2 is denoted by D1 → D2. If there exists a
homomorphism D1 → D2, then we say that D1 is homomorphic to D2.
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Let D be an oriented graph, i.e., a digraph in which at most one of the
arcs uv, vu exists for each pair of vertices u, v. An oriented k-coloring of
D is a homomorphism of D to some oriented graph T on k vertices. Since
arcs joining non-adjacent vertices of T can be added without destroying the
existence of a homomorphism D → T , the oriented graph T can be taken to
be a tournament. The oriented chromatic number of D, denoted χo(D), or
simply χo, is the smallest integer k such that there is an oriented k-coloring
of D. From the definition of an oriented coloring of digraph D, if u → v
and w → u, then each of u, v, w must receive distinct colors. In other words,
adjacent vertices receive different colors and all arcs between vertices of color
i and color j, i 6= j, must be oriented in the same direction.

Recent results concerning oriented chromatic number of digraphs can
be found in [2, 3, 4, 6]. Raspaud and Sopena proved that all oriented planar
graphs have oriented chromatic number at most eighty [4]. It was shown in
[8] that there exists an orientation of a planar graph with oriented chromatic
number at least sixteen. Tightening this bound is a significant problem in
the domain of oriented coloring.

Complete subgraphs (cliques) on k vertices obviously prevent an undi-
rected graph from being (k − 1)-colored. Similarly, a subgraph that is a
tournament on k vertices is a similar obstruction for oriented coloring. The
objective of this paper is to study another fundamental obstruction for ori-
ented coloring, which we shall term ocliques. Ocliques will be defined in
Section 2. In Sections 3 through 5, we bound the maximum cardinalities of
ocliques in outerplanar, planar, and series-parallel graphs.

2. Preliminaries

Recall that the famous Kuratowski/Wagner theorem states that a graph G
is planar if and only if it contains neither a K5 minor nor a K3,3 minor [9].
Similarly, a graph is outerplanar, i.e., it can be embedded in the plane with
all vertices bordering the outside face, if and only if it contains neither a K4

minor nor a K2,3 minor. A graph is series-parallel if and only if it contains
no K4 minor.

Let Pn denote a path with n vertices. In a digraph, vertex x dominates
vertex y if x → y is an arc. We say that vertices x and y are adjacent if x
dominates y or y dominates x and in either event we also say that x and y
are neighbors. We say that vertex set A dominates vertex set B if, for each
pair of vertices x ∈ A, y ∈ B, x dominates y.
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Define an oclique to be an oriented graph D such that for any two distinct
vertices x, y ∈ V (D) there exists a directed xy path of length at most two or
a directed yx path of length at most two. Let ωo(D) denote the cardinality
of the largest induced subgraph of D that is an oclique (i.e., the number of
vertices it contains) in oriented graph D.

The next fact is implicit in Sopena [7].

Fact 1. Let D be an oriented graph. Then χo(D) ≥ ωo(D).

The following results states that, in terms of the number of colors used,
ocliques play the same role in oriented colorings as cliques do in colorings.

Corollary 2. Let D be an oriented graph with n vertices. Then χo(D) = n
if and only if D is an oclique.

Proof. Suppose D is an oclique. By Fact 1, χo(D) ≥ n. Since the identity
mapping is a homomorphism D → D, this implies χo(D) = n.

Now suppose D is not an oclique. Then there exist nonadjacent vertices
x and y that are not joined by a directed path of length two. Let D′ be
the digraph that results from identifying x and y, and creating the new
vertex z. Since x and y are not joined by a directed path of length two,
D′ is an oriented graph. The mapping that sends x and y to z and every
other vertex of D to its clone in D′ is a homomorphism D → D′. Thus,
χo(D) ≤ n− 1.

The next proposition is straightforward.

Proposition 3. If D is an oclique, then G[D] has diameter at most two.

The following lemma is used several times. The proof is trivial and is omit-
ted.

Lemma 4. Let D be an oclique whose underlying graph has a cut vertex, v,
whose deletion partitions G[D] into components C1, C2 . . . , Ck, k ≥ 2. Then
either V (Ci) dominates v, or v dominates V (Ci), for all i, 1 ≤ i ≤ k.

We use the term 2-path to mean a directed path of length two. If D is a
directed graph, then G = G[D] denotes the underlying undirected graph of
D. Also, let dist(u, v) denote the length of the shortest directed uv path in
digraph D.
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3. Outerplanar Ocliques

Sopena [7] proved that every oriented outerplanar graph admits a homo-
morphism to the quadratic residue tournament on seven vertices (V =
{0, 1, . . . , 6} and uv ∈ E if and only if u − v = 1,2, or 4 mod 7). Thus
we have the following.

Fact 5. Every outerplanar oclique has at most seven vertices.

Proposition 6. Let D be an outerplanar oclique with |V | ≥ 6. Then G[D]
has minimum degree two.

Proof. Since G[D] is outerplanar, it is well-known that δ(G[D]) ≤ 2. Sup-
pose x has degree one in G = G[D]. Without loss of generality, x → y in D.
Since D is an oclique, the vertex y dominates all vertices in V −{x, y}. Fix
an outerplanar embedding of D. Let z1, z2, z3, z4 be vertices in V − {x, y}
such that the arcs xy, yz1, yz2, yz3, yz4 occur consecutively in clockwise or-
der about y in the embedding. But, any directed path of length at most two
joining z1 and z4 creates a cycle that separates x from z2 or z3.

An outerplanar oclique on seven vertices, called O7, is shown in Figure 1.
Two additional outerplanar ocliques on seven vertices can be constructed
from O7 by adding an arc (oriented in either direction) between the left-
most vertex and the rightmost vertex. Another pair of ocliques on seven
vertices can be formed from O7 by adding an arc (oriented in either direc-
tion) between the third and fifth vertices from the left.

e e e e e e e- - - - - -s RRU

Figure 1. Outerplanar oclique O7

Proposition 7. Every outerplanar oclique on seven vertices contains O7 as
a spanning subgraph.

Proof. Let D be an outerplanar oclique with seven vertices and fix an
outerplanar embedding of G[D]. We consider two cases.
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Case 1. Suppose G[D] has a cut-vertex v. Clearly, each component of
D−v must be an outerplanar oclique and each vertex in each component of
G[D] − v must be adjacent to v. It is not hard to see that there can be at
most two components in G[D − v]. Observe that each of these components
can have at most three vertices, else G[D] cannot be outerplanar. It follows
that D is the digraph O7.

Case 2. Suppose G[D] is 2-connected. Since G[D] is outerplanar, it has
a Hamiltonian cycle C. Let C = u0u1u2u3u4u5u6. Since G[D] has diameter
two, there is at least one edge ui, ui+2 (addition modulo 7). Assume without
loss of generality that u0u2 is an edge in G[D]. For u1 being distance at most
two from any other vertex, u4 and u5 have to be adjacent to either u0 or
u2. If we have edges u4u2 and u5u0, then the distance between u3 and u6

is greater than two (in G[D]). Therefore u4 and u5 are either both adjacent
to u0 or both adjacent to u2. Assume without loss of generality that u4 and
u5 are both adjacent to u0. In order for the distance between u3 and u6 to
be less than three, we need edge u0u3. Thus the degree of u0 is six.

Consider now D. Without loss of generality, assume u0u1 is an edge
in D. For u4, u5 and u6 being (oriented) distance at most two from u1,
we necessarily have edges u4u0, u5u0 and u6u0. By symmetry, because of
edge u6u0, we necessarily have edges u0u2 and u0u3. Finally, for u1 and
u3 (respectively, u4 and u6) being oriented distance at most two from each
other, u1u2u3 (respectively u4u5u6) is necessarily a directed 2-path (in any
direction) so that O7 is a spanning subgraph of D.

4. Planar Graphs

As a consequence of Raspaud and Sopena’s theorem, we know that if D is
an orientation of a planar graph, then ωo(D) ≤ 80.

The following is quite simple.

Fact 8. If D is a bipartite planar oclique, then D has at most six vertices.

Proof. Let V = A ∪ B denote the bipartition of D. It is clear that each
vertex in A must be adjacent to each vertex in B. Hence one part must
contain fewer than three vertices. It is easy to verify that neither K2,p, p > 4
nor K1,q, q > 4 can be oriented to be an oclique.
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The following implication of Fact 8 is used several times, so we state it as a
corollary.

Corollary 9. The complete bipartite graph K2,5 cannot be oriented to be an
oclique.

Lemma 10. Let D be a planar oclique with |V | ≥ 10. Then G[D] has
minimum degree at least two.

Proof. Suppose vertex x has degree one in G[D]. Without loss of generality
x → y in D. Since D is an oclique, the vertex y dominates all vertices in
V −{x, y}. Then G[V −{x, y}] is an outerplanar oclique and by Fact 5 has
at most seven vertices, thus G[D] can have at most nine vertices.

The vertex v on 2-path u → v → w is designated as the intermediate vertex.

Theorem 11. Let D be an orientation of a triangle-free planar graph such
that D is an oclique. Then D has at most fourteen vertices.

Proof. Suppose the theorem is false and let G[D] be planar and triangle-
free, where D is an oclique with at least fifteen vertices. It is known that
since the diameter of G[D] is two, G[D] has a vertex, v, of degree at least
ten [1, 5]; see also

http://www.unc.edu/~rpratt/degdiam.html

Then in D, at least five of v’s neighbors are, without loss of generality,
dominated by v. These neighbors induce an independent set, since G[D]
is triangle-free. We claim that an independent set with five vertices, all
dominated by a sixth vertex is a forbidden configuration for a planar oclique,
meaning that such a subgraph cannot exist in D if D is a planar oclique.

We prove this is a forbidden configuration. Fix a planar embedding
of D, and let v dominate v1, v2, . . . , v5 where the vi vertices are arranged
around v in clockwise order. Each pair vi, vj must be connected by a 2-path
using an intermediate vertex wk 6= v. One can easily verify that at least three
such wk vertices are needed to connect five independent vertices via 2-paths.
Suppose that v1, w1, v5 is a 2-path, assuming without loss of generality that
v1 → w1. This forms a cycle in the underlying graph, v, v1, w1, v5, v.

We consider two cases.
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Case 1. Suppose v2, w2, v4 is a 2-path where w2 6= w1. Then v3, w2, v5

and v3, w2, v1 are 2-paths (note that if v3 → w2, then w2 → v5, w2 → v1 and
vice versa). But now there can be no 2-path between v1 and v4.

Case 2. Suppose v2, w1, v4 is a 2-path. Then v3, w1, v5 is a 2-path, where
v3 → w1. But now there can be no 2-path between v1 and v3.

Theorem 12. If D is a planar oclique, then D has at most 36 vertices.

Proof. Suppose the theorem were false and let D be an oclique with at
least 37 vertices. Fix a planar embedding of G[D]. Let v be a vertex of
degree at most five, which exists because G[D] is planar [9]. By Lemma
10, v has degree at least two. Let v1, v2, . . . , vr, where 2 ≤ r ≤ 5, be the
neighbors of v. There are at least 31 additional vertices that v is connected
to via a 2-path. Since G[D] has diameter two, the subgraph induced by
V (G[D]) − {v, v1, . . . , vr} is outerplanar and, as such, 3-colorable. Hence
there exists an independent set, I, of at least eleven vertices among these
31 or more vertices. Partition I = {u1, u2, . . . , uk} into sets, S1, S2 . . . , Sr,
according to which vi vertex is the intermediate vertex on a v → vi → uj

2-path or a uj → vi → v 2-path. That is, vi dominates each vertex in Si (or
vice versa). Of course, a vertex uj may have several such 2-paths to/from
vertex v. We deal with this by re-numbering the vi vertices as necessary so
that we can fix a partition S1, S2 . . . , Sr of I so that the set Si of vertices
with intermediate vertex vi is at least as large as the set of vertices with
intermediate vertex vi+q, for all q > 0. Furthermore, we require that if
uj ∈ Si, then there is no 2-path connecting uj with v via any vp where
p < i.

Since there are at least eleven vertices in the union of the Si sets, the
pigeonhole principle assures us that either (i) |S1| ≥ 5 or (ii) |S1| = 4 and
|S2| = 4 or (iii) |S1| ≥ 3, |S2| = 3, |S3| = 3 or (iv) |S1| = 4, |S2| ≥ 2, |S3| ≥
2, |S4| ≥ 2, |S5| ≥ 1 or (v) |S1| = 3, |S2| ≥ 2, |S3| ≥ 2, |S4| ≥ 2, |S5| ≥ 1 or
(vi) |S1| = 4, |S2| = 3, |S3| = 2, |S4| = 1, |S5| = 1 or (vii) |S1| = 4, |S2| =
3, |S3| = |S4| = 2.

(Note that (iv), (v), and (vi) are similar, we separate them to clar-
ify the details as we proceed below). A basic diagram to aid the reader’s
understanding is given in Figure 2.

Denote the vertices in S1 as a1, a2, . . . in clockwise order around v1 and
the vertices S2 as b1, b2, . . . in clockwise order around v2. Assume, without
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loss of generality, that v dominates v1 and thus, v1 dominates a1, a2, . . . .
A basic illustration is given in Figure 2.

In case (i), we have the forbidden configuration described in the proof
of Theorem 11.

c c ca3 a1a2

c

c c

c c c
b3 b2 b1

cv2

c v

c
w

v1

z′ z

Figure 2. Possible structure of S1, S2

In case (ii), |S1| = 4, |S2| = 4. Vertex v1 cannot be an intermediate vertex
between any two of the bi vertices in S2, because in that case, one of the bi

vertices would belong in S1. Then the 2-path between b1 and b3 uses interme-
diate vertex z 6= v1. Consider the 2-path between a1 and a4. First suppose
this 2-path uses intermediate vertex w 6= v2, w 6= z. Then there can be no
2-path between a2 and b2, as the cycles v1, a1, w, a4, v1 and v2, b1, z, b3, v2 are
disjoint separating cycles, separating a2 from b2. If however, z = w, we have
the following. A 2-path between a2 and b2 must use intermediate vertex z.
And though b1 and b3 may have 2-paths to the S1 vertices via intermediate
vertex v1, b2 cannot, nor can b2 use z as an intermediate vertex to both a1

and a4.
On the other hand, v2 may be an intermediate vertex between a1 and a4.

But then case (i) applies as one of a1 or a4 could be moved to set S2.
In case (iii), |S1| ≥ 3, |S2| = 3, |S3| = 3. Denote the vertices in S3 as

c1, c2, c3. Vertex v1 cannot be an intermediate vertex between any two of
the bi vertices in S2 because in that case, one of the bi vertices would belong
in S1. Likewise v3 cannot be an intermediate vertex between two vertices
in S2, else a ci vertex would belong to S2. Similarly, neither v1 nor v2 can
serve as intermediate vertices for any pair of vertices in S3.
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Consider the 2-paths between b1 and b3, as well as between c1 and c3 via
intermediate vertices, w, z, respectively. First suppose w 6= z. Then it is not
possible to form a 2-path between b2 and c2. On the other hand, suppose
w = z. Then b2 cannot have a 2-path to both c1 and c3.

Now examine case (iv), with |S1| = 4, |S2| ≥ 2, |S3| ≥ 2, |S4| ≥ 2,
|S5| ≥ 1. Denote the vertices in S3 as c1, c2 in clockwise order around v3.
To connect the four vertices in S1 via 2-paths, at least three intermediate
vertices are needed. If only two are used, then a K3,3 subgraph results,
because v1 dominates all the vertices in S1 and one can easily verify that an
orientation of K2,4 is the only way to connect four independent vertices by
2-paths using two intermediate vertices. For the purposes of the argument
in case (iv) (and later in case (vi)), only two such intermediate vertices need
to be specified.

Consider the 2-path between a1 and a4, using intermediate vertex w.
Any two vertices in S1 may have at most one common neighbor in the set
{v2, v3, v4, v5}, else G[D] has a K3,3 subgraph. We may assume, without
loss of generality, that w 6= v2, w 6= v3 (else we can replace one of S2, S3

with S4). The 2-path between a1 and a4 creates a cycle C containing the
vertices v1, a1, w, a4. There also exists an intermediate vertex z 6= w, z 6= vi,
1 ≤ i ≤ 5, such that z is used to form another 2-path between two vertices
in S1 besides a1 and a4.

First suppose that z is not adjacent to w. Regardless of the routing
of C within the given embedding of G[D], C separates each of b1, b2, c1, c2

from z. This forces that v1 is the intermediate vertex on 2-paths between
b1, b2, c1, c2 and z. Then 2-paths cannot be formed between all the vertices
in S2 and S3.

On the other hand, suppose that each intermediate vertex, other than
w itself, between vertices in S1 is adjacent to w. Denote these intermediate
vertices as z1, z2, . . . , zq, q ≥ 2. Then in D, w cannot dominate (or be
dominated by) the set {a2, a3, z1, z2, . . . , zq}, else there can be either no 2-
path between a2 and a4 or no 2-path between a1 and a3. Now we have
that each vertex in S2 and S3 must be adjacent to v1, which precludes the
formation of 2-paths between the vertices in S2 and S3 (again, recalling that
v1 cannot be an intermediate vertex between vertices in S2 and S3).

Now consider case (v). Extending the argument of case (iv), we show
that it is forbidden to have |S1| = 3, |S2| ≥ 2, |S3| ≥ 2, |S4| ≥ 2, |S5| ≥ 1. We
use the same terminology as in case (iv) when referring to vertices. Let w
be the intermediate vertex on a 2-path between a1 and a3. As in case (iv),
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we may assume, without loss of generality, that w 6= v2, w 6= v3 (else we can
replace one of S2, S3 with S4).

The case when z is not adjacent to w follows identically (with a3 in
the place of a4) as in case (iv). However, some differences arise when z is
adjacent to w. Assume without loss of generality that a3 dominates w and w
dominates a1 (the argument is symmetric in the other event). In this case,
we suppose that w dominates both z and a2 in D, otherwise the argument
proceeds as in case (iv), as each vertex in S2 and S3 would have to be
adjacent to v1. Each vertex in S2 and S3 must be adjacent to at least one
of v1 or w, in order to have a 2-path to a2 and z.

If the vertices in S2 and S3 use but two intermediate vertices to form
2-paths between them, then each vertex in S2 and S3 must be adjacent to
both (as an orientation of K2,4 is the only way to connect four independent
vertices by 2-paths using two intermediate vertices). The resulting graph
has a K3,3 minor.

So we assume the vertices in S2 ∪ S3 use at least three intermediate
vertices to form the 2-paths between them. Of course, none of these inter-
mediate vertices can be v1. And at most one can be w, so let us use x, x′ to
denote two intermediate vertices not equal to w. Note that x and x′ must
each be adjacent to at least one of v1 or w.

Suppose w is the intermediate vertex on the b1b2 2-path and the c1c2

2-path. But then the planarity of G[D] makes it impossible to form at least
one of the remaining two 2-paths between pairs of the form bicj .

On the other hand, suppose x is the intermediate vertex on the b1b2 2-
path. Then the cycle (in G[D]) v2, b1, w, a3, v1, v, v2 (or v2, b1, v1, v, v2) along
with the corresponding cycle containing either edge b2w or b2v1 (rather than
b1w or b1v1) force c1 and c2 to be adjacent to w, in order to have a 2-path
to/from x. Which then makes it impossible for both c1 and c2 to each have
a 2-path to each of a1 and a3 (since w dominates only one of a1, a3).

The argument for case (vi) is again nearly identical to case (iv). The
only difference being the following. Suppose that the intermediate vertex w
between a1 and a4 is v2. Then we must replace S2 as we did in case (iv), but
we replace it with both S4 and S5 (since we know that w cannot be v4 or v5,
else G[D] has a K3,3 subgraph. In the language of case (iv), we then let c1

be the lone vertex in S4 and c2 be the lone vertex in S5 and the argument
proceeds as in case (iv) (even though, for example, there may be a 2-path
between c1 and c2 via v5).

Case (vii) follows exactly as case (iv).
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5. Series-Parallel Graphs

It is proved in [7] that orientations of graphs having treewidth at most two
have oriented chromatic number at most seven. Since series-parallel graphs
have treewidth at most two, ωo(D) ≤ 7 for any digraph D whose underlying
graph is series-parallel. The proof in [7] is based on graph homomorphisms.
We present an alternate, direct proof of this result based on graph mi-
nors/subgraphs. Our method of proof yields that Proposition 7 also holds
for series-parallel ocliques.

We first state a lemma given in [9], page 251.

Lemma 13 [9]. Let H be a graph with ∆(H) ≤ 3. Then H is a minor of
G if and only if G contains a subdivision of H.

The following is easily verified by inspection.

Fact 14. No subdivision of K2,3, other than K2,3 itself, can be oriented to
be an oclique.

One can easily confirm that there exist ocliques whose underlying graph is
K2,3.

Theorem 15. Any oclique whose underlying graph is series-parallel has at
most seven vertices. Further, there are seven such ocliques on seven vertices,
and each contains O7 as a spanning subgraph.

Proof. Suppose by way of contradiction that D is an oclique with at least
eight vertices; so G[D] is a series-parallel graph. If G[D] contains no K2,3

minor, then G[D] is outerplanar, and the first part of the theorem follows
from Fact 5. So suppose G[D] contains a K2,3 minor. By Lemma 13, we
may assume that G[D] contains a K2,3 subdivision. Because of Fact 14, we
shall focus attention on K2,3 itself and not worry about its subdivisions.
Let H = (A,B,E) be a K2,3 subgraph of G[D]. Let A = {a1, a2} and
B = {b1, b2, b3}. Let V (G[D])− V (H) = {g1, g2, . . .}

Some key facts are now stated, which form the heart of the argument.

(1) B induces an independent set in G[D].

Proof of (1). Otherwise, G[D] contains a K4 minor.

Likewise we have:
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(1a) Every path in G[D] joining two distinct vertices of B contains a vertex
in A.

Proof. Otherwise there is a K4 minor.

Note that (1a) implies that if gi is adjacent to gj , then N(gi)∩B = N(gj)∩B.
It also implies that each gi is adjacent to at most one vertex of B.
(2) Each gi vertex must be adjacent to at least one of a1, a2.

Proof of (2). This is in order that the diameter of G be at most two and
follows from (1a), since no gi can be adjacent to two vertices from B.

(3) Each gi vertex must have degree at least two.

Proof of (3). Otherwise, say gi is adjacent to only a1, since we know
from (2) that gi must be adjacent to one of a1, a2. The logic from Lemma
4 then tells us that a1 must dominate (or be dominated by) B in D. As B
is an independent set and vertices in B have no common neighbors other
than vertices in A, it is then not possible to orient the edges in G[D] to form
2-paths between the three vertices in B.

(4) I = {g1, g2, . . .} is an independent set.

Proof of (4). As stated above, each vertex in I must be adjacent to at
least one of a1, a2 in order for D to be an oclique. Let us assume that g1 is
adjacent to g2. By the note following (1a), if both g1 and g2 have a neighbor
in B (and each can have at most one), then they are adjacent to the same
vertex of B. Thus, there are two possibilities to consider, as (2) assures us
that one of the following must occur.

(a) g1 and g2 have a common neighbor in A. Then using the logic from
(3), each of g1, g2 must be adjacent to another vertex from H (and it may
be that each is adjacent to a different vertex). Then G[D] contains a K4

minor.
(b) g1 is adjacent to a1 and g2 is adjacent to a2. Then either g1 and g2

have a neighbor in B, in which case G[D] has a K4 minor, which violates
(1a), or (a) applies.

(5) gi cannot be adjacent to all of a1, a2 and b1, b2, b3.

Proof of (5). Otherwise, G[D] has a K4 minor.

Combining the above, we deduce that each gi has degree two. If two gi’s
are both adjacent to a1, and a2, then G[D] contains a K2,5 subgraph. But,
since no vertex in I = {g1, g2, . . .} can be an intermediate vertex on a 2-path
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joining two vertices of I, in this case it follows from the structure of G[D]
that D cannot be oriented to be an oclique. Hence at most one gi is adjacent
to both a1 and a2.

If three gi’s are each adjacent to a1 and b1, say, then without loss of
generality each must dominate a1, in order that the gi’s can have 2-paths
to bq, q 6= 1. But then, by the structure of G[D], we cannot form 2-paths
amongst the three gi’s.

Suppose for the moment that a1 is not adjacent to a2 in G[D], and con-
sider the possible neighbors of g1 and g2. It follows from our work above that
there are three possibilities (up to relabelling the elements of A, B and I):

(i) Both g1 and g2 are adjacent to a1 and b1;
(ii) g1 is adjacent to a1 and b1, and g2 is adjacent to a1 and b2;
(iii) g1 is adjacent to a1 and a2, and g2 is adjacent to a1 and b1. We show

that, in each case, G[D] cannot be oriented as an oclique.

In case (i), without loss of generality, we must have that g1 and g2 both
dominate a1, in order for there to be 2-paths to b2 and b3. In order for there
to be 2-paths from the gi’s to a2, both g1 and g2 must dominate b1. But
now there cannot be a 2-path joining g1 and g2. In case (ii), without loss
of generality, we must have that g1 and g2 both dominate a1, in order for
there to be 2-paths b3. Again, we have that there cannot be a 2-path joining
g1 and g2. In case (iii), without loss of generality, g2 must dominate a1. In
turn, a1 must dominate b2, b3 and g1 so that 2-paths between g1 and these
vertices are formed. Similarly, g1 must dominate a2, which must dominate
b1 and b3. But now there cannot be a 2-path joining b2 and b3.

It follows from the above argument that a1 and a2 must be adjacent.
We assume from now on that this is the case. As above, one of cases (i), (ii)
and (iii) must arise. Cases (ii) and (iii) can be eliminated similarly to the
arguments above.

Suppose g1 and g2 are both adjacent to a1 and b1. In order for g1 and
g2 to have 2-paths to b2 and b3, without loss of generality, both of g1 and
g2 must dominate a1, which in turn must dominate b2 and b3. There must
be a 2-path joining g1 and g2. Without loss of generality, again, assume it
is g1 → b1 → g2. Then, a1 must dominate a2 so that g2 can have a 2-path
to a2. In order for there to be a 2-path joining b2 and b3, without loss of
generality (still), b2 dominates a2 and a2 dominates b3. This implies that
b1 dominates a1, so that it can be joined to b2 by a 2-path. The subgraph
induced by the edges whose orientation has been determined so far - all
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edges in the subgraph induced by A∪B∪{g1, g2} except the edge joining b1

and a2 is O7. Two seven vertex ocliques whose underlying graph is series-
parallel and contains K2,3 arise from the two choices for the orientation of
this edge.
We claim that we must have |I| = 2. Suppose I contains a third vertex, g3.
From our work above, g3 cannot be adjacent to a1 and b1. The other pos-
sibilities for neighbors of g3 give rise to cases (ii) or (iii), using g3 in place
of g2.

It now follows that there are exactly seven ocliques whose underlying
graph is series-parallel: the five mentioned in Section 3, and the two arising
in the proof above. All of these contain O7 as a spanning subgraph. This
completes the proof.

6. Conclusions

We state our main conjecture.

Conjecture 1. Let D be an orientation of a planar graph such that for any
two vertices x, y ∈ V (G) there exists an xy directed path or a yx directed
path of length at most two. Then D has at most fifteen vertices.

It is interesting to note that Sopena’s planar graph with χo = 16 has
ωo = 15 [7].

It is obvious that k-cliques are not the only “obstruction” to k-coloring
an undirected graph. Imperfect graphs illustrate this concept. Hadwiger’s
conjecture perhaps lies at the heart of this issue: it claims that each k-
chromatic graph contains a subgraph that “becomes Kk via edge contrac-
tions” [9]. It would be interesting to formulate an analogous conjecture for
oriented coloring, as there are infinitely many digraphs having χo > ωo, such
as the directed cycle on n vertices, where n > 5 and n is not divisible by 3.
Such graphs can have ωo = 3 and χo = 4.
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