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Abstract

We examine decompositions of complete graphs with an even num-
ber of vertices, K2n, into n isomorphic spanning trees. While meth-
ods of such decompositions into symmetric trees have been known, we
develop here a more general method based on a new type of vertex
labelling, called flexible q-labelling. This labelling is a generalization
of labellings introduced by Rosa and Eldergill.
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1. Introduction

There are many results on decompositions of complete graphs into isomor-
phic trees of smaller order. Research of this problem was initiated by Ringel
[5]. An overview of this and related topics can be found in [1]. Surprisingly
enough, almost nothing has been published on factorizations into isomor-
phic spanning trees. A simple arithmetic condition shows that only complete
graphs with an even number of vertices can be factorized into spanning trees.
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177–1009.
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It is a well known fact that each such graph K2n can be factorized into hamil-
tonian paths P2n. On the other hand, it is easy to observe that each K2n

can be also factorized into double stars; that is, two stars K1,n−1 joined by
an edge. But what about trees between these two extremal cases? Here we
present several classes of trees that allow factorizations of complete graphs
with an even number of vertices.

Many factorization methods are based on graph labellings. Roughly
speaking, a labelling works as follows. We assign to each vertex different
label of the set {0, 1, 2, . . . , 2n−1}. Then each edge obtains a label, induced
by the labels of its endvertices. These labels are than used to guarantee that
each edge appears in exactly one factor. There are many different ways how
to induce the edge label. For a review of this topic, see [4]. We will mostly
rely on labellings defined by Rosa [6, 7] or generalized from these labellings
by Eldergill [2]. We also develop a new generalization of these labellings.

A tree is symmetric if there is an automorphism ψ and an edge xy such
that ψ(x) = y and ψ(y) = x.

2. Labellings

As we mentioned above, Rosa introduced some important types of vertex
labellings that we list now. However, before we do that we need to define a
few more notions.

Definition 1. Let G be a graph with at most n vertices. We say that the
complete graph Kn has a G-decomposition if there are subgraphs G0, G1,
G2, . . . , Gs of Kn, all isomorphic to G, such that each edge of Kn belongs
to exactly one Gi. The decomposition is cyclic if there exists an order-
ing (x1, x2, . . . , xn) of the vertices of Kn and isomorphisms φi : G0 → Gi,
i = 1, 2, . . . , s such that φi(xj) = xi+j for every j = 1, 2, . . . , n, where the
subscripts are taken modulo n. If G has exactly n vertices and none of
them is isolated, then G is called a factor and the decomposition is called a
G-factorization of Kn.

Graceful labellings (also called β-labellings) and ρ-labellings are being used
for decompositions of complete graphs K2n+1 into graphs with n edges. We
state here the definition of a ρ-labelling in a slightly modified form which
will suit better our further needs.

Definition 2. A labelling of a graph G with n edges is an injection λ
from the vertex set of G, V (G), into a subset S of the set {0, 1, 2, . . . , 2n}.
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The length of an edge (x, y) is defined as `(x, y) = min{|λ(x)−λ(y)|, 2n+1−
|(λ(x)−λ(y))|}. If the set of all lengths of the n edges is equal to {1, 2, . . . , n}
and S ⊆ {0, 1, . . . , 2n}, then λ is a ρ-labelling; if S ⊆ {0, 1, . . . , n} instead,
then λ is a graceful labelling.

Each graceful labelling is indeed a ρ-labelling as well. One can observe that
if a graph G with n edges has a graceful labelling or a ρ-labelling, then
K2n+1 can be cyclically decomposed into 2n−1 copies of G. It is so because
K2n+1 has exactly 2n + 1 edges of length i for every i = 1, 2, . . . , n and each
copy of G contains exactly one edge of each length.

Graceful labelling can be easily modified to produce a factorization of
K2n into n copies of a graph G with 2n− 1 edges. To observe that, we will
from now on simplify our notation and unify a vertex with its label by saying
“a vertex i” rather than “a vertex x with λ(x) = i”. We will also say that
a graph is graceful if it has a graceful labelling. To obtain a factorization,
we take one copy of a graceful graph H with n− 1 edges (notice the change
from n to n − 1). The vertices belong, according to our definition, to the
set S ⊆ {0, 1, . . . , n − 1}. Then we take another copy H ′ of H and label
its vertices such that for corresponding pairs of vertices i, i′ it holds that
i′ = i + n. Obviously, corresponding edges in H and H ′, respectively, then
have the same lengths. We now pick any pair of vertices i, i + n and join
them by an edge of length n. The graph arising this way is our graph G0

and together with its cyclically obtained counterparts G1, G2, . . . , Gn−1 it
forms a G-factorization of K2n.

The labelling described above was defined by Eldergill [2] together with
a similar generalization of the ρ-labelling.

Definition 3. A connected graph G is symmetric if it has a bridge (x, y)
and an automorphism ψ such that ψ(x) = y and ψ(y) = x. The isomorphic
components of G−(x, y) are called banks and denoted H and H ′, respectively.
A labelling of a symmetric graph G with 2n−1 edges and banks H and H ′ is
ρ-symmetric graceful if H has a ρ-labelling and ψ(i) = i + n for each vertex
i of H. A labelling of a symmetric graph G with 2n− 1 edges is symmetric
graceful if it is ρ-symmetric graceful and the bank H is moreover graceful.

In fact, a ρ-symmetric graceful labelling is a special form of a q-labelling
that was defined earlier by Rosa in [6]. Like a symmetric graceful labelling,
a ρ-symmetric graceful labelling of G also guarantees the existence of a
G-factorization of K2n as proved in [2]. It was actually proved only for
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symmetric trees, however, the assumption that the graph is acyclic is never
used in the proof and therefore the assertion holds for symmetric graphs as
defined above.

Theorem 4 (Eldergill). Let G be a symmetric graph with 2n − 1 edges.
Then there exists a cyclic G-decomposition of K2n if and only if G is ρ-
symmetric graceful.

Both symmetric graceful labelling and ρ-symmetric graceful labelling are too
restrictive, allowing only factorizations into symmetric graphs. Our goal is
to develop techniques that would be more general. We define new labelling
that is a generalization of Rosa’s q-labelling.

3. Flexible q-Labelling

Let us first look again at cyclic decompositions. What we do there can be al-
ternatively described as follows. Take K2n and G0 with vertices i1, i2, . . . , ik.
Recall that we have identified vertices with their labels, so each it is now
an element of the set {0, 1, . . . , 2n − 1}. If G is a factor of K2n, then
V (G) = {0, 1, . . . , 2n − 1}. If (r, s) is an edge of G0, then (r + j, s + j)
is an edge of Gj . Obviously, they both have the same length. If G0 has a
ρ-symmetric graceful labelling, than a particular edge (r, s) has exactly one
“symmetric copy” in G0, namely (r+n, s+n). We will call this pair of edges
twin edges. The only exception is the longest edge (r, r + n) with no twin
edge. So none of the first n−1 copies of Gn can contain an edge that belongs
to G0. But if we take the next copy of G0, Gn, we can see that it is actually
again the original graph G0 in which (r, s) becomes (r + n, s + n). This is
due to the symmetry of G0. However, this is not the only possible way how
to “rotate” symmetric graphs to get a decomposition of K2n. One can check
that if n is odd, say 2k + 1, then the copies G0, G2, G4, . . . , G2n−2 also form
a decomposition of K2n. It is so because for any given length m,m < n,
each edge (r, r + m) has its twin in the form (r + 2k + 1, r + m + 2k + 1).
Therefore the image of (r, r + m) in a factor G2j is (r + 2j, r + 2j + m) and
no edge appears in two factors. For the same reasons, the edge (r, r + n)
cannot appear in two factors as n is odd.

The reason why an edge (r, r + m) does not appear in two factors is
actually not that its twin is at distance n, but because the distance is odd.
To be more precise, it is so because while all images of (r, r + m) have
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the form (r + 2j, r + m + 2j) and none of them can be equal to an edge
(r +2t+1, r +m+2t+1) which would possibly collide with (r +2k +1, r +
m + 2k + 1) = (r + n, r + m + n). We use this observation to define a new
type of labelling which is a generalization of the q-labelling first defined by
Rosa [6].

Definition 5. Let G be a graph with 2n − 1 edges and λ : V (G) →
{0, 1, . . . , 2n− 1} be a vertex labelling. λ is called a flexible q-labelling if

(i) there is exactly one edge of length n,
(ii) for each m, 1 ≤ m ≤ n−1 there are exactly two edges of length m, and
(iii) if (r, r +m) with 1 ≤ m ≤ n− 1 is an edge of G, then the other edge of

length m in G is (r + 2s + 1, r + m + 2s + 1) for some s, 0 ≤ s ≤ n− 1,
where the labels are taken modulo 2n.

We will often need to distinguish the vertices of an edge of a given length
m. We will say that r is the original vertex or simply the origin of an edge
(r, s) = (r, r+m) whenever 1 ≤ m ≤ n−1. The other vertex s will be called
the terminal vertex. Using this terminology we can say that in a graph with
a flexible q-labelling the two edges with the same length m have always
origins of opposite parity.

We now show that if n is odd, then the existence of a flexible q-labelling
of G implies the existence of a G-decomposition of K2n. This decomposition
consists of subgraphs G0, G2, . . . , G2n−2 that are obtained from G0 by cyclic
shifts described in Definition 1. Such a decomposition will be called 2-cyclic.

Theorem 6. Let n = 2k + 1 and G be a graph with 2n − 1 edges and at
most 2n vertices that allows a flexible q-labelling. Then there exists a 2-cyclic
G-decomposition of K2n into n copies of G.

Proof. Take a subgraph G0 of K2n that has a flexible q-labelling and define
its copies G2, G4, . . . , G2n−2 as in Definition 1. Since there are n copies of
G0 and each has 2n − 1 edges, we only need to show that no edge belongs
to two different copies of G. Suppose it is not the case. We can assume
without loss of generality that an edge (0,m) of length m belongs to both
G0 and G2j , 1 ≤ j ≤ n − 1. First suppose that m < n. Then G0 contains
one more edge of length m, in particular the edge (2s + 1,m + 2s + 1)
for some s, 0 ≤ s ≤ n − 1. According to the definition of the 2-cyclic
decomposition, G2j contains exactly two edges of length m. One of them is
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the edge (2j, m + 2j) that can be identical to (0,m) only if j = 0, which is
impossible. Because G2j has a flexible q-labelling, the other edge of length m
must be (2j+2s+1,m+2j+2s+1) for some s, 0 ≤ s ≤ n−1. Obviously, this
edge can never be identical to (0,m). Therefore (2j +2s+1,m+2j +2s+1)
is identical to (2s + 1,m + 2s + 1). This is possible only if j = 0 which is
again a contradiction.

The case when m = n is essentially similar. Since G2j contains just one
edge of length n = 2k + 1, namely (2j, 2j + 2k + 1), it is obvious that this
can be identical to (0,m) = (0, 2k + 1) only if j = 0. This is impossible and
the proof is complete.

One can notice that while for short edges the proof does not depend on the
parity of n, the argument for the longest edge of length n does not hold if
n is even. In this case we need more complicated labelling, which can be
found in [3].

Now we present two infinite classes of asymmetric trees with flexible
q-labellings.

Construction 7. Let n = 2k+1. We construct a graph G which consists of
two stars, K1,k and K1,2k−1, joined by an extra edge into a double star, and
a path Pk+1 joined by an edge to one of the vertices of degree 1 of the smaller
star or to the central vertex of the other one. The first star, K1,k, has the
central vertex 1 and the leaves (i.e., vertices of degree 1) 2, 4, . . . , 2k. There
are edges of all odd lengths 1, 3, 5, . . . , 2k − 3, 2k − 1 = n− 2, namely edges
(1, 2), (1, 4), . . . , (1, 2k). The other star, K1,2k−1, has the central vertex 0
and odd leaves 3, 5, . . . , 2k−1. There are edges of odd lengths 3, 5, . . . , 2k−
3, 2k−1 = n−2, namely edges (0, 3), (0, 5), . . . , (0, 2k−1). The only missing
odd length is 1, which we obtain by joining the central vertices 0 and 1.
Thus we have all odd edges twice with odd and even origin for each length
as required. Moreover, there are edges (0, 2k + 2), (0, 2k + 4), . . . , (0, 4k) of
even lengths 2k, 2k − 2, 2k − 4, . . . , 4, 2, respectively, with all origins having
even labels.

The remaining even edges with odd origins we obtain by adding the path
Pk+1 induced on vertices 4k+1, 2k+1, 4k−1, 2k+3, 4k−3, . . . , 3k−1, 3k+1
when k is even and on vertices 4k + 1, 2k + 1, 4k− 1, 2k + 3, 4k− 3, . . . , 3k−
2, 3k + 2, 3k when k is odd. Their respective lengths are 2k, 2k − 2, 2k −
4, . . . , 4, 2. Now we just need to add the single edge of length n = 2k + 1,
joining Pk+1 to the other component. We can choose this edge to be any
one of the edges (0, 2k + 1), (2, 2k + 3), . . . , (2k, 4k + 1).
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In Figure 1 we present an example for n = 11 with the longest edge (0, 11).
The dashed edges are the ones joining the subgraphs K1,k,K1,2k−1, and
Pk+1.
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Figure 1

Construction 8. Let n = 2k + 1. This time we construct a graph G
which consists of three stars, K1,k−2,K1,k+1, and K1,2k, joined by two extra
edges. First we construct the star K1,2k with the central vertex 0. There are
k even leaves 4, 6, 8, . . . , 2k − 2, 2k, 4k inducing edges with all even lengths
4, 6, 8, . . . , 2k−2, 2k, and 2, respectively. Furthermore there are k odd leaves
1, 2k + 3, 2k + 5, . . . , 4k − 1 inducing edges with all odd lengths except for
2k + 1 = n, namely 1, 2k− 1, 2k− 3, . . . , 5, 3. Notice that the edge of length
1 has an even origin 0 while all other ones have odd origins.

Now we construct the star K1,k−2 with the central vertex 4k + 1. This
star has the leaves 2k + 4, 2k + 6, . . . , 4k − 2 and the edges have lengths
2k − 3, 2k − 5, . . . , 5, 3. Their origins are even. It remains to find edges of
odd lengths 1, 2k − 1 and 2k + 1 and edges of all even lengths. This will be
attained by constructing the star K1,k+1 with the central vertex 2k+1. There
will be the leaves 3, 5, . . . , 2k−1 giving edges of lengths 2k−2, 2k−4, . . . , 2.
All origins are now odd so the even edges satisfy our requirements. Notice
that one even length, 2k, with an odd origin is still missing. The first of
the two additional leaves is 2, producing an edge of length 2k − 1 and even
origin 2. The remaining leaf is 2k + 2, producing the edge of length 1 with
an odd origin. Now we join the stars K1,k−2 and K1,k+1, using the last even
edge of length 2k. We actually have two choices here, either (2k+1, 4k+1),
or (4k + 1, 2k − 1). In each case the origin (2k + 1 or 4k + 1, respectively)
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is odd. Finally we join one vertex of K1,2k by the edge of length 2k + 1 = n
with its counterpart in the other component to complete the tree. We can
for instance choose the edge (0, 2k + 1).

In Figure 2 we present an example for n = 11. The edge of lenth 2k = 10
is (11, 21). The dashed edges are the ones joining the subgraphs K1,k−2,
K1,k+1, and K1,2k.
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Figure 2

4. Concluding Remarks

We have defined a new type of labelling that allows 2-cyclic decompositions
of complete graphs into certain spanning trees that are not symmetric. How-
ever, our experience shows that there are infinite classes of trees for which
2-cyclic factorizations of K2n do not exist although there is no reason to a
priori assume that no factorizations into such trees exist. Therefore, more
powerful tools are needed. We believe that maybe some methods used in
design theory could be useful.
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