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Abstract
For a permutation π of the vertex set of a graph G, the graph πG

is obtained from two disjoint copies G1 and G2 of G by joining each v
in G1 to π(v) in G2. Hence if π = 1, then πG = K2 × G, the prism
of G. Clearly, γ(G) ≤ γ(πG) ≤ 2γ(G). We study graphs for which
γ(K2 × G) = 2γ(G), those for which γ(πG) = 2γ(G) for at least one
permutation π of V (G) and those for which γ(πG) = 2γ(G) for each
permutation π of V (G).
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1. Introduction

We generally follow the notation and terminology of [4]. Specifically, in
a graph G = (V (G), E(G)), if S, T ⊆ V (G), then the set of all edges of G
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with one endvertex in S and the other endvertex in T is denoted by E(S, T ).
Further, N(v) = {u ∈ V (G) : uv ∈ E(G)} and N [v] = N(v)∪{v} denote the
open and closed neighbourhoods, respectively, of a vertex v of G. The closed
neighbourhood of a set S ⊆ V (G), denoted by N [S], is the set ∪s∈SN [s] and
the open neighbourhood N(S) of S is ∪s∈SN(s). We will also need the set
N{S} = N(S)−S. If s ∈ S, then the private neighbourhood of s relative to
S, denoted by pn(s, S), is the set N [s]−N [S −{s}]. A vertex in pn(s, S) is
called a private neighbour, abbreviated pn, of s relative to S.

As usual γ(G) denotes the domination number of G. The set S ⊆ V (G)
is called a γ-set if it is a dominating set with |S| = γ(G). For A,B ⊆ V (G),
we abbreviate “A dominates B” to “A Â B”; if B = V (G) we write A Â G
and if B = {b} we write A Â b. The subgraph induced by B is denoted by
〈B〉. A universal vertex is one that is adjacent to all other vertices of the
graph. The double star S(k, l) is the graph obtained by joining the central
vertices of the stars K1,k and K1,l.

For a permutation π of the vertex set of a graph G, the graph πG is
obtained from two disjoint copies G1 and G2 of G by joining each v in G1 to
π(v) in G2, that is, V (πG) = V (G1)∪V (G2) and E(G) = E(G1)∪E(G2)∪
{{v, π(v)} : v ∈ V (G1), π(v) ∈ V (G2)}. Hence if π = 1, then πG = K2 ×G;
this graph is sometimes referred to as the prism of (or over) G. Thus we may
also think of πG, where π is an arbitrary permutation of V (G), as a type of
prism of G. If C5 has vertex sequence 0, 1, 2, 3, 4 and π is the permutation
i → 2i(mod 5), then πC5 is the Petersen graph; other Petersen-type graphs
are obtained similarly. Clearly, γ(G) ≤ γ(πG) ≤ 2γ(G).

We are mostly interested in graphs where the domination number of
(some of) the prisms is equal to twice the domination number of the graph.
We investigate graphs for which γ(K2 ×G) = 2γ(G), called prism doublers,
those for which γ(πG) = 2γ(G) for some but not all permutations π of
V (G), called partial doublers, and those for which γ(πG) = 2γ(G) for each
permutation π of V (G), called universal doublers. As we shall see, the double
star S(2, 2) is an example of a graph which satisfies γ(πG) = 2γ(G) for π = 1
but not for all permutations π of V (G), i.e., a prism doubler but not a
universal doubler, P5 is an example of a graph that satisfies γ(πG) = 2γ(G)
for at least one permutation π of V (G) but not for π = 1, i.e., a partial
doubler, and C6 is an example of a universal doubler. In addition, the graph
G obtained from C4 by joining one of its vertices to two new vertices is an
example of a graph that satisfies γ(πkG) = γ(G) + k for some permutation
πk of V (G), 0 ≤ k ≤ γ(G).
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For any vertex v of G, we denote the corresponding vertex in the subgraph
Gi, i = 1, 2, of πG by vi. Similarly, any set X ⊆ V (G) will be denoted by Xi

when considered in the subgraph Gi of πG. Conversely any set Xi ⊆ V (Gi)
(vertex vi ∈ V (Gi) respectively) will be denoted by X (v respectively) in G.

2. Universal Doublers

The following lemma collects some useful facts about graphs with isolated
vertices.

Lemma 1. (a) (Ore, see [6]) If γ(G) > |V (G)|/2, then G has an isolated
vertex.

(b) If G has an isolated vertex v and π is a permutation of V (G) such
that π(v) = v, then γ(πG) < 2γ(G).

Proof. (b) Suppose G has an isolated vertex v. Let G′ be the (possibly
empty) subgraph induced by the other vertices of G. Suppose π is a per-
mutation of V (G) with π(v) = v, and let π′ be the permutation of V (G′)
induced by π. Then γ(πG) = γ(π′G′) + 1 < 2γ(G′) + 2 = 2γ(G).

Proposition 2. A graph G is a universal doubler if and only if for each
X ⊆ V (G) with 0 < |X| < γ(G), |V (G)−N [X]| ≥ 2γ(G)− |X|.

Proof. Consider any X ⊆ V (G) with 0 < |X| < γ(G), and let Y =
V (G) − N [X]. Suppose |Y | < 2γ(G) − |X|. If |Y | < γ(G), let D be any
γ-set of G, and if |Y | ≥ γ(G), let D be any dominating set of G with
|D| = |Y |. Let π be any permutation of V (G) such that π(Y ) ⊆ D. Then
W = X1 ∪D2 Â πG (since X1 Â V (G1) − Y1 and D2 Â V (G2) ∪ Y1), and
|W | = |X1|+ |D2| < 2γ(G).

Conversely, let π be a permutation of V (G) such that γ(πG) < 2γ(G)
and let W = X1 ∪ D2 be a γ-set of πG, where X1 = W ∩ V (G1) and
D2 = W ∩ V (G2). Without loss of generality let |X1| < γ(G).

If X1 6= φ, then |D2| = γ(πG)− |X| < 2γ(G)− |X|. Since D2 Â Y1 and
each vertex of D2 covers at most one vertex of Y1, we have |Y1| ≤ |D2|, so
|Y | < 2γ(G)− |X| as desired.

If X1 = φ, then D2 Â V (πG), which means D2 = V (G2), since each
vertex of G2 covers just one vertex of G1. Then |V (G)| = |D2| < 2γ(G),
so by Lemma 1(a), G has an isolated vertex, say v. Let u = π−1(v). Then
NπG[v2] = {v2, u1}, so if we define X ′

1 = {u1} and D′
2 = D2 − {v2}, then
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W ′ = X ′
1 ∪ D′

2 is a γ-set of πG with X ′
1 6= φ, reducing to the previous

case.

The following corollary gives some degree properties of universal doublers.
First, recall that S ⊆ V (G) is a packing if the vertices in S have mutually
disjoint closed neighbourhoods, and that a packing which dominates G is
called an efficient dominating set [4, p. 108].

Corollary 3. Let G be a universal doubler. Then G has no isolated vertices
and every vertex of G that is contained in a minimum dominating set has
degree at least γ(G).

If G has an efficient dominating set, then γ(G) ≤
√
|V (G)|+ 0.25−0.5.

Otherwise, for any nonempty packing X contained in a minimum dominat-
ing set of G we have γ(G) ≤ |V (G)|/(|X|+ 2).

Proof. Let G satisfy the hypothesis. By Lemma 1(b), G has no isolated
vertex.

Let w be a vertex of G that is contained in some minimum dominating
set D of G. If γ(G) = 1, then since w is not isolated, we have deg(w) ≥ γ(G).
If γ(G) > 1, let X = D − {w}. Then 0 < |X| < γ(G), so by Proposition 2,
|V (G)−N [X]| ≥ 2γ(G)− |X| = γ(G) + 1. Since D is a dominating set, we
see {w} Â V (G)−N [X], which implies deg(w) ≥ γ(G).

Finally, suppose that X satisfies the hypotheses. If X dominates G,
then since X is a packing, |V (G)| ≥ γ(G)(γ(G) + 1), from which the de-
sired bound follows. Otherwise Proposition 2 applies to X, giving |V (G)| −
|X|(γ(G) + 1) ≥ 2γ(G)− |X| as needed.

Any vertex of P6 or C6 dominates at most three vertices and thus leaves at
least three vertices undominated; hence by Proposition 2, if G ∈ {P6, C6},
then γ(πG) = 4 for each permutation π of V (G). The next corollary allows
us to produce more universal doublers.

Corollary 4. Suppose G is an r-regular graph that has an efficient domi-
nating set and r ≥ γ(G). Then γ(πG) = 2γ(G) for each permutation π of
V (G).

Proof. Let X ⊆ V (G), with 0 < |X| < γ(G); then |N [X]| ≤ (r + 1)|X|.
Since G has an efficient dominating set, |V (G)| = (r+1)γ(G). Thus |V (G)−
N [X]| ≥ (r + 1)(γ(G)− |X|), which is at least 2γ(G)− |X| since r ≥ γ(G),
and the conclusion follows from Proposition 2.
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We use circulant graphs to obtain examples of universal doublers. Let r,
k be positive integers, and let n = k(r + 1). Let p be the largest odd
divisor of r + 1, and let m = (r + 1)/p. Define a graph Gr,k as follows. Let
V (Gr,k) = {0, 1, . . . , n−1}. Two distinct vertices v, w are adjacent if there is
some i with |i| ≤ (p−1)/2 and v−w ≡ i (mod pk). (Less formally, for each
vertex v, the closed neighbourhood N [v] consists of m runs of p vertices,
with equal spacing between the runs and one run centered on v.) Then Gr,k

is r-regular; since Gr,k has the efficient dominating set {ip : 0 ≤ i ≤ k − 1},
γ(Gr,k) = k. For r ≥ k, Corollary 4 implies γ(πGr,k) = 2γ(Gr,k) for each
permutation π of V (Gr,k).

The graph Gr,k is connected except when r = 2j − 1 for some positive
integer j, when p = 1 and Gr,k consists of k disjoint copies of the complete
graph Kr+1. When r > 1, and r, k are odd, we can change the edge
set to obtain a connected graph: say distinct v, w are adjacent if either
|v−w| = n/2 or there is i with |i| ≤ (r− 1)/2 and v−w ≡ i (mod n). The
resulting graph G∗

r,k is connected and r-regular with an efficient dominating
set {i(r + 1) : 0 ≤ i ≤ k − 1}; thus γ(G∗

r,k) = k. For r ≥ k, Corollary 4
implies γ(πG∗

r,k) = 2γ(G∗
r,k) for each permutation π of V (Gr,k).

Also, the 3-cube G = (K2)3 satisfies the hypotheses of Corollary 4 with
r = 3 and γ(G) = 2, hence γ(πG) = 4 for each permutation π of V (G).

3. Prism Doublers

In this section we consider graphs G where the domination number of the
(usual) prism of G is twice that of G. We begin with a lemma which will
allow us to study dominating sets of G instead of those of its prism.

Lemma 5. The set X with X ∩ V (G1) = A1, X ∩ V (G2) = B2 dominates
K2×G if and only if in G, every vertex not in A∪B is adjacent to a vertex
in A and to a vertex in B.

Proof. Suppose X Â K2 × G and consider v ∈ V (G) − (A ∪ B). Now,
v1 /∈ B1, thus B2 6Â v1 and therefore A1 Â v1, that is, v is adjacent in G
to a vertex in A. Similarly, since v2 /∈ A2, v is adjacent to a vertex in B.
Conversely, consider any xi ∈ V (Gi). If xi ∈ Ai∪Bi, then obviously X Â xi.
If xi /∈ Ai ∪Bi, then x is adjacent to a vertex in A and to a vertex in B and
hence A1 Â x1, B2 Â x2.
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If A and B are sets such that A ∪ B satisfies the conditions of Lemma
5, we say that (A,B) is a dominating pair of G. Clearly γ(K2 × G) =
min{|A| + |B| : (A,B) is a dominating pair of G}. Say that a dominating
pair (A,B) is minimum if |A|+ |B| = γ(K2×G). Given a set A, we say we
extend A to a dominating pair of G if we find a set B such that (A, B) is such
a pair. Note that (A,φ) is a dominating pair if and only if A = V (G), and
(A,A) is a dominating pair if and only if A Â G. More generally we have
the following result which we formulate as a corollary for easy reference.

Corollary 6. The pair (A,B) is a dominating pair of G if and only if
V (G)−N [A] ⊆ B and V (G)−N [B] ⊆ A.

If γ(G) = 1 and G has at least two vertices, then γ(K2 × G) = 2. Now
consider the case γ(G) = 2; we assume that G has no isolated vertices, for
otherwise it is easy to see that γ(K2 ×G) < 2γ(G).

Construct the class H of graphs as follows. For any H ∈ H, V (H) =
S ∪ T ∪ {u, v, w} and E(H) consists of edges such that

• N(u) = S, N(v) = T , N(w) = S ∪ T ,
• E(〈S〉) and E(〈T 〉) consist of any edges such that at least one of 〈S〉 and
〈T 〉 has a universal vertex,

• E(S, T ) is arbitrary.

Note that if (without loss of generality) x ∈ S is a universal vertex of 〈S〉,
then {x, v} is a γ-set of H for any H ∈ H, while ({u, v}, {w}) is a dominating
pair of H. Hence γ(H) = 2 and γ(K2 ×H) ≤ 3.

Proposition 7. If γ(G) = 2, then γ(K2 × G) = 4 if and only if G /∈ H
and for each γ-set X = {x1, x2} of G, |pn(xi, X)| ≥ 2 for each i, where
|pn(xi, X)| = 2 implies that pn(xi, X) does not dominate G− xj, i 6= j.

Proof. Suppose γ(K2 × G) = 4; clearly G /∈ H. Let X = {x, x′} be any
γ-set of G. If pn(x,X) = {y}, then ({x′, y}, {x′}) is a dominating pair of G
and γ(K2 × G) ≤ 3, a contradiction. Hence each vertex in X has at least
two X-pns. If Y = pn(x, X) dominates G − x′ and |Y | = 2, then (Y, {x′})
is a dominating pair, again a contradiction.

Conversely, suppose γ(K2 ×G) < 4 and suppose that (A,B) is a mini-
mum dominating pair of G such that |A| ≤ |B|. If A is empty then B = V (G)
so |V (G)| ≤ 3. Then γ(G) = 2 and Lemma 1(a) imply G has an isolated
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vertex, and the conclusion follows. So we may assume |A| = 1 and |B| ≤ 2,
say A = {w}, Y = V (G)−N [w]. If Y = {y}, then {y, w} is a γ-set of G in
which y has itself as its only pn and we are done.

By Corollary 6, Y ⊆ B and so |Y | ≤ |B| ≤ 2. Hence we may assume
that |Y | = 2; say Y = {u, v}. Then B = {u, v} and since (A,B) is a
dominating pair, B Â G − w and w Â G − {u, v}. Therefore, if there is a
vertex y in G that dominates {u, v}, then {y, w} is a γ-set of G such that
pn(y, {y, w}) = B Â G−w. If there is no such vertex y, then d(u, v) ≥ 3. If
d(u, v) ≥ 5, then in any shortest (u, v)-path there are at least two vertices
that are not dominated by {u, v}, contradicting the fact that B Â G − w.
Hence 3 ≤ d(u, v) ≤ 4.

If d(u, v) = 4, then w is the unique vertex of G not dominated by
{u, v}, and w lies on each (u, v)-path. Since γ(G) = 2, it follows that to
dominate {u, v, w}, there is at least one vertex that dominates (without loss
of generality) both u and w, as well as each central vertex on any (u,w)-path
of length two. Thus G ∈ H with E(S, T ) = φ. Similarly, if d(u, v) = 3, then
G ∈ H with E(S, T ) 6= φ.

This result can be generalized as follows. (Recall that N{X} = N [X]−X.)

Theorem 8. A graph G is a prism doubler if and only if for each pair of
sets X, Y ⊆ V (G) with 0 < |X| < γ(G) and Y = V (G)−N [X], either
(a) |Y | ≥ 2γ(G)− |X|, or
(b) |Y | = 2γ(G)− |X| − d for some d, 1 ≤ d ≤ |X|, and at least d vertices

(necessarily in N [X]) are required to dominate N{X} −N [Y ].

Proof. Suppose γ(K2 × G) = 2γ(G) and consider any X ⊆ V (G) with
0 < |X| < γ(G). Note that (X, X ∪ Y ) is a dominating pair of G. If
|Y | ≥ 2γ(G)−|X|, we are done. If |Y | < 2γ(G)−2|X|, then |X|+ |X∪Y | <
2|X|+2γ(G)− 2|X| = 2γ(G). Hence we assume that 2γ(G)− 2|X| ≤ |Y | ≤
2γ(G) − |X| − 1; say |Y | = 2γ(G) − |X| − d, where 1 ≤ d ≤ |X|. Suppose
there is Z ⊆ N [X] such that |Z| ≤ d − 1 and Z Â N{X} − N [Y ]. Then
N{X} ⊆ N [Y ]∪N [Z], hence V (G)−N [Y ∪Z] = V (G)−(N [Y ]∪N [Z]) ⊆ X
and so by Corollary 6, (X, Y ∪ Z) is a dominating pair of G. But
|X|+ |Y ∪Z| ≤ |X|+(2γ(G)−|X|−d)+(d−1) = 2γ(G)−1, a contradiction.
Hence (b) holds.

Conversely, suppose γ(K2 × G) < 2γ(G) and consider any minimum
dominating pair (X,D) of G. Since |X| + |D| < 2γ(G), we may assume
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|X| < γ(G) and |D| < 2γ(G) − |X|. If X is empty then D = V (G) so
γ(K2 × G) = |V (G)|. Thus |V (G)| < 2γ(G), so by Lemma 1(a), G has an
isolated vertex, say v. Then ({v}, D−{v}) is a minimum dominating pair, so
we may assume X is nonempty. Let Y = V (G)−N [X]. By Corollary 6, Y ⊆
D and so |Y | < 2γ(G)−|X|; hence (a) does not hold. If |Y | < 2γ(G)−2|X|,
then (b) does not hold either (because d is not in the stated range) and we
are done. Hence suppose |Y | = 2γ(G)−|X|−d for some d with 1 ≤ d ≤ |X|.
Let Z = D − Y ; then Y ∪ Z = D Â V (G)−X and so Z Â N{X} −N [Y ].
Further, |Z| = |D| − |Y | < (2γ(G) − |X|) − (2γ(G) − |X| − d) = d. Hence
(b) does not hold.

We now apply Proposition 7 and Theorem 8 to paths and cycles to show
that with the exception of P3, C3 (which have γ = 1), P6 and C6 (see
Section 2), no path or cycle is a prism doubler. Let Pn, Cn have vertex
sequence 1, 2, . . . , n.

• Note that P4, C4 have γ-sets in which a vertex has only one pn; hence
by Proposition 7, γ(K2 × P4), γ(K2 × C4) < 4. Also, P5 ∈ H, hence
γ(K2 × P5) < 4. For any two non-adjacent vertices x and y of C5,
X = {x, y} is a γ-set of C5, where x has two pns (one of which is x) and
pn(x,X) dominates V (G)− {y}. Thus γ(K2 × C5) < 4.

• For n ≥ 7, write n = 4i + r with 0 ≤ r ≤ 3. For G ∈ {Pn, Cn}, let
X = {4j − 1 : j = 1, . . . , i}, except for P4i let X = {4j − 1 : j =
1, . . . , i − 1} ∪ {4i}. Then |X| = i in all cases. Let Y = V (G) − N [X].
Except for G = P4i, Y = {4j − 3 : j = 1, . . . , i} ∪ {4i + j : 1 ≤ j ≤ r}.
For P4i, Y = {4j − 3 : j = 1, . . . , i} ∪ {4i − 2}. Thus |Y | = i + r except
for P4i, when |Y | = i+1. Then using γ(G) = dn/3e, it is straightforward
to verify |X| < γ(G) and |Y | < 2γ(G)− |X|.
In all cases, X contains neither vertices at distance less than four nor,
when G = Pn, any vertex adjacent to an end vertex. Therefore Y Â
V (G) −X. In particular, N{X} −N [Y ] = φ, so X does not satisfy the
conditions of Theorem 8, and thus γ(K2 ×G) < 2γ(G).

As an example of a prism doubler that is not a universal doubler, con-
sider the double star S(k, l) with k, l ≥ 2. Proposition 7 shows that
γ(K2 × S(k, l)) = 4. However, if k = 2, then Figure 1 illustrates a per-
mutation π such that γ(πS(k, l)) = 3. A similar result holds for the graph
Kn(k1, . . . , kn), ki ≥ n, obtained by joining ki new vertices to vertex vi of
Kn with V (Kn) = {v1, . . . , vn}.
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We now consider prism doublers with the additional properties that they
are regular and have efficient dominating sets; say that such a graph is a
perfect doubler.

Figure 1. γ(πG) = 3

Above we have shown that C3i is a perfect doubler only when i ≤ 2. Here
is an infinite family of examples: for each positive integer m, set Gm =
K2 × C4m. Then Gm is a 3-regular graph with 8m vertices, and has an
efficient dominating set {(0, 4j), (1, 4j + 2) : 0 ≤ j ≤ m − 1} of size 2m. It
can be proved by induction that Gm is a perfect doubler for each m. Also, as
shown in the previous section, the graphs Gr,k and G∗

r,k are perfect doublers
when r ≥ k.

A more interesting family of examples is provided by the hypercubes.
For a positive integer p, consider the (2p− 1)-dimensional binary hypercube
Gp = (K2)2

p−1. This graph is (2p − 1)-regular and has efficient dominating
sets (also known as perfect single-error-correcting codes), for example the
Hamming code Hp (see for Example [7, p. 423]). Thus γ(Gp) = 22p−1−p.
It has been shown (in [5] and independently in [8]) that γ(K2 × Gp) =
γ((K2)2

p
) = 22p−p = 2γ(Gp).

The ternary hypercubes with efficient dominating sets are also perfect
doublers [1]. That is, for p ≥ 1, let Tp = (K3)(3

p−1)/2. Then γ(Tp) =
3((3p−1)/2)−p and γ(K2 × Tp) = 2γ(Tp).

Here is a version of Theorem 8 useful for regular graphs with efficient
dominating sets.
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Corollary 9. Let G be an r-regular graph with an efficient dominating set.
Suppose that for each subset X of V (G) with r−1

r γ(G) < |X| < γ(G) and
(r − 1)γ(G) < |N{X}|, there does not exist any set W satisfying V (G) −
N [X] ⊆ W ⊆ V (G) and |W | < 2γ(G) − |X| and W Â V (G) −X. Then G
is a perfect doubler.

Proof. Suppose that G is an r-regular graph with an efficient dominating
set, but not a perfect doubler. Then there is some X ⊆ V (G) with 0 <
|X| < γ(G) for which conditions (a) and (b) of Theorem 8 both fail. Set
Y = V (G)−N [X].

Since (a) does not hold, |Y | < 2γ(G) − |X|. As |V (G)| = (r + 1)γ(G),
this implies (r − 1)γ(G) < |N [X]| − |X| = |N{X}|. The r-regularity of G
gives |N{X}| ≤ r|X|, so r−1

r γ(G) < |X|.
Since (b) does not hold, |Y | = 2γ(G)− |X| − d for some d, 1 ≤ d ≤ |X|,

and some vertex set S satisfies |S| < d and S Â N{X} − N [Y ]. Set W =
Y ∪ S. Then |W | < 2γ(G)− |X| and W Â V (G)−X.

We need the following definition from [3] to give another example of a perfect
doubler. Let k be an integer, k > 1, and let S = {1, 2, . . . , 2k − 1}. The
vertices of the odd graph Ok are the subsets of S of cardinality k − 1, and
two vertices of Ok are adjacent if they are disjoint sets.

Thus Ok is a k-regular graph with C(2k−1, k−1) vertices. For example,
O2

∼= K3 and O3 is isomorphic to the Petersen graph. Biggs has shown [2,
Sections 3j, 21b, 21j] that if Ok has an efficient dominating set, then k is
even. Such sets are known to exist for k = 2, 4, 6 and it is conjectured [3]
that there are no more.

We next show that O2 and O4 are perfect doublers. We will need the
following result, equivalent to [3, Section 2.3]: the distance between vertices
v, w of Ok is

(1) d(v, w) =

{
2|v ∩ w|+ 1 if |v ∩ w| < (k − 1)/2,

2(k − 1− |v ∩ w|) otherwise.

This implies that Ok has diameter k − 1.

Proposition 10. For G ∈ {O2, O4}, γ(K2 ×G) = 2γ(G).

Proof. Since O2
∼= K3, it suffices to consider O4, which is a 4-regular

graph with 35 vertices, diameter 3, and domination number 7; an efficient
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dominating set of O4 is {123, 145, 167, 246, 257, 347, 356}. Here and later,
we write vertices of O4 as strings of length 3.

By Corollary 9, we need only examine vertex sets X with 3
4γ(O4) <

|X| < γ(O4), which means |X| = 6. We also may assume 3γ(O4) < |N{X}|,
and then |X| = 6 implies |N [X]| ≥ 28. Since O4 is 4-regular and |X| = 6,
|N [X]| ≤ 30.

For a vertex set X, choose a maximum size packing X ′ inside X. For
distinct vertices v, w of X ′, it follows from (1) that |v ∩ w| = 1.

With X ⊆ V (O4) of size 6, consider the possibility |X ′| ≥ 5. At least
one of the indices 1, . . . , 7 must then occur at least 15/7 times among the
vertices of X ′; that is, some index occurs at least three times. Without loss
of generality, we may assume that 123, 145, 167 are in X ′. No other vertex
of X ′ can then contain 1 (otherwise such a vertex will have at least two
indices in common with one of 123, 145 or 167). Since vertices of X ′ are not
adjacent, some index occurs at least twice in the remaining members of X ′,
so we may assume 246 and 257 are in X ′. If |X ′| = 6, it is not difficult to
see that the last member of X ′ is either 347 or 356.

If |N [X]| = 30 then X = X ′, and by the previous paragraph, X consists
of all but one vertex, say z, of an efficient dominating set of O4. Then
V (O4) − N [X] = N [z] has 5 elements. Note that N [z] dominates a vertex
w ∈ V (O4)−N [z] if and only if d(z, w) = 2, that is, if and only if (by (1))
|z∩w| = 2. Thus N [z] dominates 12 vertices in V (O4)−N [z] and 17 vertices
in total. Two more vertices will cover at most 10 more vertices, so it is not
possible to find a set W of 7 vertices including those of N [z] that covers the
29 vertices of V (O4)−X.

For the remainder of the proof, it is helpful to consider the situation
where there is a vertex not in X that is covered by more than one vertex
in X. Without loss of generality, we may assume that 135 and 357 are in
X; these both cover 246. The vertices that are at distance 3 from both 135
and 357 may be divided into three families: F1 = {234, 236, 346}, F2 =
{245, 256, 456}, and F3 = {127, 147, 167}.

If |N [X]| = 29 then V (O4) contains one vertex doubly covered by X
and 28 that are singly covered. Thus one internal distance of the set X is 2,
and the other distances are 3. We may assume 135, 357 are the members of
X at distance 2; then the remaining four vertices of X are in F1 ∪ F2 ∪ F3.
Since the internal distances of each Fi are all 2, this is not possible.

If |N [X]| = 28, then from V (O4)−N [X] ⊆ W and |W | < 2γ(O4)− |X|
we see that W = V (O4)−N [X].
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If some vertex not in X is multiply covered by X, we may again assume
that 135, 357 ∈ X and 246 6∈ X. It then follows from |N [X]| ≥ 28 that three
vertices of X, say x1, x2, x3, are at distance 3 from each other and from each
of 135, 357. Since the internal distances of each Fi are all 2, each Fi contains
one xj . However, the four neighbours of 246 are 135 and 357 (which are in
X), 157 (which is adjacent to every member of F1), and 137 (adjacent to
every member of F2). Thus N(246) ⊆ N [X], so W = V (O4) − N [X] does
not cover 246.

The only other conceivable way to have |N [X]| = 28 is for X to have
one internal distance of 1, with the other distances being 3. Without loss of
generality, we may assume 123 and 567 are the adjacent members of X. Then
the other vertices v1, v2, v3, v4 of X have the form ei4ej with ei ∈ {1, 2, 3}
and ej ∈ {5, 6, 7}. But this implies that for some h, k we have |vh ∩ vk| = 2,
and then d(vh, vk) = 2. So |N [X]| = 28 cannot be achieved in this way.

Our work leads us to believe that something along the following lines is true.

Conjecture 11. Let G be a regular graph with an efficient dominating set.
If every sufficiently large packing in G extends to an efficient dominating
set, then G is a perfect doubler.

4. Partial Doublers

Recall that if γ(πG) = 2γ(G) for some but not all permutations π of V (G),
then G is called a partial doubler. As noted above, γ(K2×P5) < 4. However,
if π is the transposition which maps the central vertex of P5 to one of its
neighbours and vice versa, then γ(πP5) = 4, so P5 is a partial doubler. A
natural question which now arises is whether, for each integer k ≥ 2, there
exists a graph G and permutations π1, π2 such that γ(π1G) = γ(G) = k and
γ(π2G) = 2k, or more generally, permutations πi, 0 ≤ i ≤ γ(G), such that
γ(πiG) = γ(G) + i. We answer this question by constructing a large class G
of such graphs.

Construction. Let G be any isolate-free bipartite graph of order n with
bipartition (X, Y ), s = |X|, t = |Y |, s ≤ t, and note that X is a (not
necessarily minimum) dominating set of G such that each edge is incident
with exactly one vertex in X. Construct G∗ with V (G∗) = X ∪ Y ∪ A ∪ B
as follows. (The construction is illustrated in Figure 2 for G = C4, where
the black vertices are in X and the grey vertices are in Y .) First replace
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each edge xy ∈ E(G) with k ≥ 2 (not necessarily fixed) multiple edges, then
subdivide each of these new edges once (the white vertices of degree two
in Figure 2, where k = 2 in each case). Denote the set of new degree two
vertices incident with x and y by Axy. Join each vertex x ∈ X to a set Bx of
new vertices (the white vertices of degree one in Figure 2), where |Bx| ≥ 2
and Σx∈X(|Bx| − 2) ≥ t. Let A = ∪xy∈E(G)A

xy and B = ∪x∈XBx. Any
graph G∗ obtained in this way is in G.

Figure 2. An example of a graph C∗4 ∈ G

Note that X ∪ Y dominates G∗. Moreover, if D is any γ-set of G∗, then
X ⊆ D to dominate the set B of leaves. Since V (G∗) − N [X] = Y and
N(y) ∩ N(y′) = φ for distinct y, y′ ∈ Y , at least t vertices are required to
dominate Y . Thus γ(G∗) = s + t = n. For each k with 0 ≤ k ≤ n we now
define a permutation πk of V (G∗); we shall prove that γ(πkG

∗) = γ(G∗)+k.
Let πs = 1, the identity. For each i with 1 ≤ i ≤ s we define πs−i

recursively by means of transpositions. Choose x ∈ X, y ∈ Y such that
πs−i+1(x) = x, πs−i+1(y) = y, let ρi be the transposition (x, y) and define
πs−i = ρi ◦ πs−i+1. (Since |X| = s and πs = 1, this choice of x and y
is always possible.) Similarly, for each j with 1 ≤ j ≤ t we define πs+j

as follows. Choose any y ∈ Y such that πs+j−1(y) = y. Further, choose
x ∈ X such that πs+j−1 fixes three distinct vertices u, v, w ∈ Bx. Since
Σx∈X(|Bx| − 2) ≥ t, this choice of x is always possible. Let σj be the
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transposition (y, u) and define πs+j = σj ◦πs+j−1. The graphs πsC
∗
4 , πs−1C

∗
4

and πs+1C
∗
4 corresponding to C∗

4 of Figure 2 are illustrated in Figure 3.

Figure 3. Graphs Hs = πsC
∗
4 , Hs−1 = πs−1C

∗
4 and Hs+1 = πs+1C

∗
4

Theorem 12. For each k ∈ {0, . . . , n}, γ(πkG
∗) = γ(G∗) + k.

Proof. We begin by noting that the result holds for πs = 1, for if D is any
γ-set of K2 × G∗, then X1 ∪X2 ⊆ D to dominate the vertices in B1 ∪ B2.
This leaves the vertices in Y1∪Y2 undominated, and it it easy to see that at
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least t vertices are required to dominate Y1 ∪ Y2. But Y2 dominates Y1 ∪ Y2;
hence γ(K2 ×G∗) = 2s + t = γ(G∗) + s.

For arbitrary i, 1 ≤ i ≤ s, consider any γ-set D of πs−iG
∗ and note that

as above, X1∪X2 ⊆ D to dominate B1∪B2. Let X ′ = {x ∈ X : πs−i(x) ∈ Y }
and Y ′ = πs−i(X ′); observe that |X ′| = |Y ′| = i. In πs−iG

∗, X1 ∪ X2

dominates all vertices except (Y1 − Y ′
1) ∪ (Y2 − Y ′

2); again it is easy to see
that at least |Y − Y ′| = t− i vertices are required to dominate these. Using
(for example) Y2 − Y ′

2 , we obtain γ(πs−iG
∗) = 2s + t− i = γ(G∗) + s− i.

Finally, for arbitrary j, 1 ≤ j ≤ t, let D be a γ-set of πs+jG
∗ with

|D∩(X1∪X2)|maximum, consider any x ∈ X and suppose |{x1, x2}∩D| < 2.
By definition of πs+j there are at least two vertices v, w ∈ Bx that are fixed
by πs+j . Hence if (say) x1 /∈ D, then to dominate v1 and w1, {v1, v2}∩D 6= φ
and {w1, w2} ∩ D 6= φ. But then (D − {v1, v2, w1, w2}) ∪ {x1, x2} is a γ-
set which contradicts the choice of D. Therefore X1 ∪ X2 ⊆ D. As in
the case of πsG

∗, this leaves the vertices in Y1 ∪ Y2 undominated. Let
Y ′ = {y ∈ Y : πs+j(y) ∈ B} and note that |Y ′| = j. Then for any y′, y′′ ∈ Y ′,
N [y′] ∩ N [y′′] = φ and in πs+jG

∗, N [Y ′
1 ] ∩ N [Y ′

2 ] = φ. Therefore a set Z
of at least j vertices are needed to dominate Y ′

1 in πs+jG
∗, and j vertices

distinct from those in Z to dominate Y ′
2 . Further, at least |Y − Y ′| = t− j

vertices are required to dominate (Y1 − Y ′
1) ∪ (Y2 − Y ′

2). Hence

γ(πs+jG
∗) ≥ |X1|+ |X2|+ 2j + t− j

= 2s + j + t

= γ(G∗) + s + j.

Obviously X1∪X2∪Y ′
1 ∪Y2 dominates πs+jG

∗ and so γ(πs+jG
∗) = γ(G∗)+

s + j, as required.

Theorem 12 also holds if we require Σx∈X(|Bx| − 1) ≥ t in the construction
of G∗, but the proof is technically more difficult. The simplest example is
obtained by taking G = K2 with V (G) = {x, y}, replacing xy with K2,2

and joining x to two new vertices u and v. Then π0 = (x, y), π1 = 1 and
π2 = (y, u).
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