GRAPHS WITH SMALL ADDITIVE STRETCH NUMBER

Dieter Rautenbach
Forschungsinstitut für Discrete Mathematik
Lennéstr. 2, D-53113 Bonn, Germany

e-mail: rauten@or.uni-bonn.de

Abstract

The additive stretch number $s_{\text {add }}(G)$ of a graph G is the maximum difference of the lengths of a longest induced path and a shortest induced path between two vertices of G that lie in the same component of G.

We prove some properties of minimal forbidden configurations for the induced-hereditary classes of graphs G with $s_{\text {add }}(G) \leq k$ for some $k \in \mathbf{N}_{0}=\{0,1,2, \ldots\}$. Furthermore, we derive characterizations of these classes for $k=1$ and $k=2$.

Keywords: stretch number, distance hereditary graph, forbidden induced subgraph.
2000 Mathematics Subject Classification: 05C12, 05C75.

1. Introduction

Let $G=(V, E)$ be a finite and simple graph. A path $P: x_{0} x_{1} x_{2} \ldots x_{l}$ in G is called induced, if for $0 \leq i<j \leq l$ we have $x_{i} x_{j} \in E$ if and only if $j-i=1$. For vertices x and y in G that lie in the same component of G let $P_{G}(x, y)$ and $p_{G}(x, y)$ denote a longest and a shortest induced path in G from x to y, respectively. Let $D_{G}(x, y)$ and $d_{G}(x, y)$ denote the lengths of $P_{G}(x, y)$ and $p_{G}(x, y)$, respectively.

In [3] Cicerone, D'Ermiliis and Di Stefano define the additive stretch number $s_{\text {add }}(G)$ of G as the maximum of $D_{G}(x, y)-d_{G}(x, y)$ over all pairs of vertices x and y of G that lie in the same component of G. A multiplicative
version of this parameter was introduced and studied in [2], [4] (cf. also [6]). Note that $s_{\text {add }}(G)=0$ holds for a graph G, if and only if G is distance hereditary $[1,5]$.

It is obvious from the definitions that the class of graphs G with $s_{\text {add }}(G) \leq k$ for some $k \in \mathbf{N}_{0}=\{0,1,2, \ldots\}$ is induced-hereditary, i.e., it is closed under forming induced subgraphs and can therefore be characterized in terms of minimal forbidden induced subgraphs. The final result of [3] is such a characterization of the class of graphs G with $s_{\text {add }}(G) \leq 1$. Since Cicerone et al. derive this result from the main result of [4], their proof is long and indirect.
The purpose of the present paper is to provide a direct approach, a simpler proof of their result and an extension of it. In the next section we collect some properties of 'forbidden configurations'. In Section 3, we derive characterizations of the induced-hereditary classes of graphs G with $s_{\text {add }}(G) \leq k$ for $k \in\{1,2\}$.

For plenty of references to related work and motivating comments on this concept we refer the reader to [2], [3] and [4].

2. Forbidden Configurations

Throughout this section let $G=(V, E)$ be a graph such that $s_{\text {add }}(G)>k$ for some $k \in \mathbf{N}_{0}$. Let $x, y \in V$ be such that
(i) $D_{G}(x, y)-d_{G}(x, y)>k$,
(ii) $d_{G}(x, y)$ is minimum subject to (i) and
(iii) $D_{G}(x, y)$ is minimum subject to (i) and (ii).

Clearly, $d_{G}(x, y) \geq 2$ and thus $D_{G}(x, y)+d_{G}(x, y)>2 d_{G}(x, y)+k \geq 4+k$.
Let $P_{G}(x, y): x=u_{0} u_{1} u_{2} \ldots u_{D-1} u_{D}=y$ be a longest induced path from x to y and let $p_{G}(x, y): x=v_{0} v_{1} v_{2} \ldots v_{d-1} v_{d}=y$ be a shortest induced path from x to y.

Since the paths are induced, $u_{i} u_{j} \notin E$ for $0 \leq i, j \leq D$ with $j-i \geq 2$ and $v_{i} v_{j} \notin E$ for $0 \leq i, j \leq d$ with $j-i \geq 2$. By Condition (ii) of the choice of x and y, we have $v_{1}, v_{d-1} \notin\left\{u_{1}, u_{2}, \ldots, u_{D-1}\right\}$ and $u_{1}, u_{D-1} \notin$ $\left\{v_{1}, v_{2}, \ldots, v_{d-1}\right\}$.

If for some $1 \leq j \leq d-1$ the vertex v_{j} has a neighbour in $\left\{u_{1}, u_{2}, \ldots\right.$, $\left.u_{D-1}\right\}$, then we define

$$
l_{j}=\min \left\{j^{\prime} \mid 1 \leq j^{\prime} \leq D-1 \text { and } v_{j} u_{j^{\prime}} \in E\right\}
$$

and

$$
r_{j}=\max \left\{j^{\prime} \mid 1 \leq j^{\prime} \leq D-1 \text { and } v_{j} u_{j^{\prime}} \in E\right\}
$$

and say that r_{j} and l_{j} are defined. Note that if $v_{j} \in\left\{u_{1}, u_{2}, \ldots, u_{D-1}\right\}$ for some $1 \leq j \leq d-1$, then $2 \leq j \leq d-2, v_{j}$ has a neighbour in $\left\{u_{1}, u_{2}, \ldots, u_{D-1}\right\}$ and r_{j} and l_{j} are defined. Furthermore, by Condition (ii), if $d_{G}(x, y) \geq 3$, then the indices r_{1}, l_{1}, r_{d-1} and l_{d-1} are defined. We collect some properties of $P_{G}(x, y)$ and $p_{G}(x, y)$.

Lemma 1.

(i) If r_{j} is defined for some $1 \leq j \leq d-1$, then $r_{j} \leq k+j+1$.
(ii) If r_{j} is defined for some $1 \leq j \leq d-2$, then $r_{j} \geq(D-d-k)+j+1$.
(iii) $r_{d-1} \geq D-k-2$.
(iv) If r_{j} is defined for some $1 \leq j \leq d-2-\left\lceil\frac{k}{2}\right\rceil$, then at least one of $r_{j+1}, r_{j+2}, \ldots, r_{j+\left\lceil\frac{k}{2}\right\rceil}$ is defined.

Proof. (i) For contradiction we assume that $r_{j}>j+k+1$ for some $1 \leq j \leq$ $d-1$. $x u_{1} u_{2} \ldots u_{r_{j}}$ is an induced path from x to $u_{r_{j}}$ and $x v_{1} v_{2} \ldots v_{j} u_{r_{j}}$ is a path from x to $u_{r_{j}}$. Note that the existence of a path of length l between two vertices always implies the existence of an induced path of length at most l between these vertices.

Hence $D_{G}\left(x, u_{r_{j}}\right)-d_{G}\left(x, u_{r_{j}}\right) \geq r_{j}-(j+1)>k$. Since either $d_{G}\left(x, u_{r_{j}}\right)$ $<d$ or $d_{G}\left(x, u_{r_{j}}\right)=d$ and $D_{G}\left(x, u_{r_{j}}\right)<D$, we obtain a contradiction to the choice of x and y. This implies (i).
(ii) For contradiction we assume that $r_{j} \leq(D-d-k)+j$ for some $1 \leq j \leq d-2$.
$v_{j} u_{r_{j}} u_{r_{j}+1} \ldots u_{D-1} y$ is an induced path from v_{j} to y and $v_{j} v_{j+1} \ldots v_{d-1} y$ is an induced path from v_{j} to y. Hence $D_{G}\left(v_{j}, y\right)-d_{G}\left(v_{j}, y\right) \geq\left(D-r_{j}+1\right)$ $-(d-j)>k$. Since $d_{G}\left(v_{j}, y\right)<d$, we obtain a contradiction to the choice of x and y. This implies (ii).
(iii) For contradiction we assume that $r_{d-1} \leq D-k-3$. $u_{r_{d-1}} u_{r_{d-1}+1} \ldots u_{D-1} y$ is an induced path from $u_{r_{d-1}}$ to y and $u_{r_{d-1}} v_{d-1} y$ is an induced path from $u_{r_{d-1}}$ to y. Hence $D_{G}\left(u_{r_{d-1}}, y\right)-d_{G}\left(u_{r_{d-1}}, y\right) \geq$ $\left(D-r_{d-1}\right)-2>k$. Since either $d_{G}\left(u_{r_{d-1}}, y\right)<d$ or $d_{G}\left(u_{r_{d-1}}, y\right)=d$ and $D_{G}\left(u_{r_{d-1}}, y\right)<D$, we obtain a contradiction to the choice of x and y. This implies (iii).
(iv) For contradiction we assume that r_{j} is defined and that r_{j+1}, $r_{j+2}, \ldots, r_{j+\left\lceil\frac{k}{2}\right\rceil}$ are not defined for some $1 \leq j \leq d-2-\left\lceil\frac{k}{2}\right\rceil$.
$v_{j+\left\lceil\frac{k}{2}\right\rceil} v_{j+\left\lceil\frac{k}{2}\right\rceil-1} \ldots v_{j} u_{r_{j}} u_{r_{j}+1} \ldots u_{D-1} y$ is an induced path from $v_{j+\left\lceil\frac{k}{2}\right\rceil}$ to y and $v_{j+\left\lceil\frac{k}{2}\right\rceil} v_{j+\left\lceil\frac{k}{2}\right\rceil+1} \ldots v_{d-1} y$ is an induced path from $v_{j+\left\lceil\frac{k}{2}\right\rceil}$ to y. Hence, by (i),

$$
\begin{aligned}
D_{G}\left(v_{j+\left\lceil\frac{k}{2}\right\rceil}, y\right)-d_{G}\left(v_{j+\left\lceil\frac{k}{2}\right\rceil}, y\right) & \geq\left(D-r_{j}+\left\lceil\frac{k}{2}\right\rceil+1\right)-\left(d-j-\left\lceil\frac{k}{2}\right\rceil\right) \\
& \geq D-d-r_{j}+k+j+1 \\
& \geq D-d>k
\end{aligned}
$$

Since $d_{G}\left(v_{j+\left\lceil\frac{k}{7}\right\rceil}, y\right)<d$, we obtain a contradiction to the choice of x and y. This implies (iv) and the proof is complete.

By symmetry, we obtain.

Corollary 2.

(i) If l_{j} is defined for some $1 \leq j \leq d-1$, then $l_{j} \geq(D-d-k)+j-1$.
(ii) If l_{j} is defined for some $2 \leq j \leq d-1$, then $l_{j} \leq k+j-1$.
(iii) $l_{1} \leq k+2$.
(iv) If l_{j} is defined for some $2+\left\lceil\frac{k}{2}\right\rceil \leq j \leq d-1$, then at least one of $l_{j-1}, l_{j-2}, \ldots, l_{j-\left\lceil\frac{k}{2}\right\rceil}$ is defined.

Using Lemma 1 , we can bound $D_{G}(x, y)-d_{G}(x, y)$.

Corollary 3. If $d_{G}(x, y)=2$ and r_{1} is defined, then $k+1 \leq D_{G}(x, y)-$ $d_{G}(x, y) \leq 2 k+2$ and if $d_{G}(x, y) \geq 3$, then $k+1 \leq D_{G}(x, y)-d_{G}(x, y) \leq 2 k$.

Proof. If $d_{G}(x, y)=2$ and r_{1} is defined, then (i) and (iii) of Lemma 1 imply $D-k-2 \leq r_{d-1}=r_{1} \leq k+1+1$ and hence $k+1 \leq D_{G}(x, y)-d_{G}(x, y)=$ $D-2 \leq 2 k+2$.

If $d_{G}(x, y) \geq 3$, then r_{1} is defined and $1<d-1$. Now (i) and (ii) of Lemma 1 imply $(D-d-k)+1+1 \leq r_{1} \leq k+1+1$ and hence $k+1 \leq$ $D-d \leq 2 k$.

The next lemma analyses the situation when the two paths $P_{G}(x, y)$ and $p_{G}(x, y)$ 'meet in reverse order'.

Lemma 4. There are no $k_{1}, k_{2} \in \mathbf{N}=\{1,2, \ldots\}$ with $k_{1}+k_{2} \geq k$ and $u_{j_{1}}=v_{j_{2}+k_{2}}$ and $u_{j_{1}+k_{1}}=v_{j_{2}}$ for some $1 \leq j_{1} \leq D-1-k_{1}$ and some $1 \leq j_{2} \leq d-1-k_{2}$ (cf. Figure 1 for an illustration).

Figure 1. Parts of $P_{G}(x, y)$ and $p_{G}(x, y)$
Proof. For contradiction, we assume that k_{1}, k_{2}, j_{1} and j_{2} exist as in the statement.

If $j_{1}=1$, then $x v_{j_{2}+k_{2}} \in E$ with $j_{2}+k_{2} \geq 2$ which is a contradiction. This implies $j_{1} \geq 2$. By symmetry, we obtain $2 \leq j_{1} \leq\left(D-1-k_{1}\right)-1$ and $2 \leq j_{2} \leq\left(d-1-k_{2}\right)-1$.

We assume that $j_{1}-j_{2}<(D-d-k)+k_{2}$. $u_{j_{1}} u_{j_{1}+1} \ldots u_{D-1} y$ is an induced path from $u_{j_{1}}=v_{j_{2}+k_{2}}$ to y and $v_{j_{2}+k_{2}} v_{j_{2}+k_{2}+1} \ldots v_{d-1} y$ is an induced path from $u_{j_{1}}=v_{j_{2}+k_{2}}$ to y. Hence $D_{G}\left(u_{j_{1}}, y\right)-d_{G}\left(u_{j_{1}}, y\right) \geq$ $\left(D-j_{1}\right)-\left(d-j_{2}-k_{2}\right)>k$. Since $d_{G}\left(u_{j_{1}}, y\right)<d$, we obtain a contradiction to the choice of x and y. Hence $j_{1}-j_{2} \geq(D-d-k)+k_{2}$.
$x u_{1} u_{2} \ldots u_{j_{1}+k_{1}}$ is an induced path from x to $u_{j_{1}+k_{1}}=v_{j_{2}}$ and $x v_{1} v_{2} \ldots v_{j_{2}}$ is an induced path from x to $u_{j_{1}+k_{1}}=v_{j_{2}}$. Hence $D_{G}\left(x, v_{j_{2}}\right)-$ $d_{G}\left(x, v_{j_{2}}\right) \geq\left(k_{1}+j_{1}\right)-j_{2} \geq D-d-k+k_{1}+k_{2} \geq D-d>k$. Since $d_{G}\left(x, v_{j_{2}}\right)<d$, we obtain a contradiction to the choice of x and y and the proof is complete.

3. $\left\{G \mid s_{\text {add }}(G) \leq k\right\}$ for $k \in\{1,2\}$

Let $G=(V, E)$ be a graph. If $\tilde{V} \subseteq V$, then $G[\tilde{V}]$ denotes the subgraph of G induced by \tilde{V}. A chord of a cycle C of G is an edge of G that joins two non-consecutive vertices of C. The chord distance $c d(C)$ of a cycle C of G is the minimum number of consecutive vertices of C such that each chord of C is incident with one of these vertices.

In order to facilitate the statement of our main result we introduce some more notation. For some $\nu \geq 2$ let $n_{1}, n_{2}, \ldots, n_{\nu} \geq 5, c_{1}, c_{2}, \ldots, c_{\nu} \geq 1$ and
$m_{1}, m_{2}, \ldots, m_{\nu-1} \geq 1$ be integers. For $1 \leq i \leq \nu$ let $G_{i}: x_{1, i} x_{2, i} \ldots x_{n_{i}, i} x_{1, i}$ be a cycle of order n_{i} such that all chords of G_{i} are incident with a vertex in $\left\{x_{1, i}, x_{2, i}, \ldots, x_{c_{i}, i}\right\}$, i.e., G_{i} has chord distance at most c_{i}. For $1 \leq i \leq \nu-1$ let $H_{i}: y_{1, i} y_{2, i} \ldots y_{m_{i}, i}$ be an induced path of order m_{i}. Let the graph

$$
G\left(\left(n_{1}, c_{1}\right), m_{1},\left(n_{2}, c_{2}\right), m_{2}, \ldots,\left(n_{\nu-1}, c_{\nu-1}\right), m_{\nu-1},\left(n_{\nu}, c_{\nu}\right)\right)
$$

arise by identifying the two vertices $x_{c_{i}+1, i}$ and $y_{1, i}$ and the two vertices $x_{n_{i+1}, i+1}$ and $y_{m_{i}, i}$ for $1 \leq i \leq \nu-1$. (Note that if $m_{i}=1$ for some $1 \leq i \leq \nu-1$, then $y_{1, i}=y_{m_{i}, i}$ and the three vertices $x_{c_{i}+1, i}, y_{1, i}$ and $x_{n_{i+1}, i+1}$ are identified.) See Figure 2 for an illustration of two examples.

Figure 2. $G((8,2), 3,(5,1))$ and $G((6,1), 3,(5,1), 4,(5,1))$
We proceed to our main result of this section.

Theorem 5. Let $k \in\{1,2\}$. A graph $G=(V, E)$ satisfies $s_{\text {add }}(G) \leq k$ if and only if
(a) (cf. [3]) for $k=1$ the graph G does not contain one of the following graphs as an induced subgraph.
(i) A chordless cycle C of length $l \geq 6$.
(ii) A cycle C of length $l \in\{6,7,8\}$ and chord distance $c d(C)=1$.
(iii) A cycle C of length 8 and chord distance $c d(C)=2$.
(iv) The graph $G\left((5,1), m_{1},(5,1)\right)$ for some $m_{1} \geq 1$.
(b) for $k=2$ the graph G does not contain one of the following graphs as an induced subgraph.
(i) A chordless cycle C of length $l \geq 7$.
(ii) A cycle C of length $l \in\{7,8,9,10\}$ and chord distance $\operatorname{cd}(C)=1$.
(iii) A cycle C of length 9 or 10 and chord distance $c d(C)=2$.
(iv) A cycle C of length 11 and chord distance $c d(C)=3$.
(v) The graph that arises from $G((5,1), 1,(6,1))$ by adding the edge $x_{1,1} x_{5,2}$ (cf. Figure 3).

Figure 3
(vi) The graph $G\left((6,1), m_{1},(5,1)\right)$ for some $m_{1} \geq 1$.
(vii) The graph $G\left((8,2), m_{1},(5,1)\right)$ for some $m_{1} \geq 1$.
(viii) The graph $G\left((6,1), m_{1},(6,1)\right)$ for some $m_{1} \geq 1$.
(ix) The graph $G\left((5,1), m_{1},(5,1), m_{2},(5,1)\right)$ for some $m_{1}, m_{2} \geq 1$.

Proof. The 'only if'-part can easily be checked by calculating $s_{\text {add }}$ for the described graphs and we leave this task to the reader. For the ' $i f$-part, we assume that $s_{\text {add }}(G)>k$ and prove that G has an induced subgraph as described in (a) or (b), respectively.

Let $x, y, P_{G}(x, y): x=u_{0} u_{1} \ldots u_{D-1} u_{D}=y, p_{G}(x, y): x=v_{0} v_{1} \ldots$ $v_{d-1} v_{d}=y, r_{j}$ and l_{j} be exactly as in Section 2, i.e., the Conditions (i) to (iii) are satisfied.

If $d=d_{G}(x, y)=2$, then $C: x v_{1} y u_{D-1} \ldots u_{1} x$ is a cycle of length $D+d \geq 2 d+k+1=5+k$ in G. If C has no chords, then C is as in (i) of (a) and (b), respectively. If C has chords, then all chords of C are incident with v_{1} and Corollary 3 implies that C is as in (ii) of (a) and (b), respectively.

We can assume now that $d \geq 3$. Since r_{1} and l_{1} are defined and since $\left\lceil\frac{k}{2}\right\rceil=1$, (iv) of Lemma 1 and Corollary 2 imply that r_{j} and l_{j} are defined for all $1 \leq j \leq d-1$. Furthermore, the estimations given in Lemma 1, Corollary 2 and Corollary 3 hold. (Note that in what follows we often use these estimations without explicit reference.)

If $d=3$, then $C: x v_{1} v_{2} y u_{D-1} \ldots u_{1} x$ is a cycle of G. By the above properties, C is as in (iii) of (a) and (b), respectively.

From now on we assume that $d \geq 4$.

If $k=1$, then $r_{1}=3$ and $l_{d-1}=d-1$ and the graph $G\left[\left\{x, y, v_{1}, v_{d-1}, u_{1}\right.\right.$, $\left.\left.u_{2}, \ldots, u_{d+1}\right\}\right]$ is as in (iv) of (a). (Note that the proof for the case $k=1$ is already complete at this point.)

From now on we assume that $k=2$.

Case 1. $r_{1}=4$ or $l_{d-1}=D-4$.
If $D \geq 8$ or $\left(D, r_{1}\right)=(7,3)$ or $\left(D, l_{d-1}\right)=(7, D-3)$, then the graph $G\left[\left\{x, y, v_{1}, v_{d-1}, u_{1}, u_{2}, \ldots, u_{D-1}\right\}\right]$ is as in (vi) or (viii) of (b). Hence we assume $d=4, D=7, r_{1}=4$ and $l_{3}=3$. Since $v_{1} u_{5}, v_{3} u_{2} \notin E$, we have $v_{2} \notin\left\{u_{1}, u_{2}, u_{5}, u_{6}\right\}$. If $v_{2} \notin\left\{u_{3}, u_{4}\right\}$, then the graph $G\left[\left\{x, y, v_{1}, v_{2}, v_{3}, u_{1}\right.\right.$, $\left.\left.u_{2}, \ldots, u_{6}\right\}\right]$ is as in (iv) of (b). If $v_{2} \in\left\{u_{3}, u_{4}\right\}$, then, by symmetry, we can assume that $v_{2}=u_{3}$ and the graph $G\left[\left\{x, y, v_{1}, v_{3}, u_{1}, u_{2}, \ldots, u_{6}\right\}\right]$ is as in (v) of (b). This completes the case.

From now on we assume that $r_{1}=3$ and $l_{d-1}=D-3$. By (ii) of Lemma 1, we obtain $(D-d-2)+1+1 \leq r_{1}=3$. As $D-d \geq 3$, this implies $D=d+3$ and thus $l_{d-1}=d$.

Case 2. $d=4$.
Since $v_{1} u_{4}, v_{1} u_{5}, v_{3} u_{2}, v_{3} u_{3} \notin E$, we have $v_{2} \notin\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}$. The graph $G\left[\left\{x, y, v_{1}, v_{2}, v_{3}, u_{1}, u_{2}, \ldots, u_{6}\right\}\right]$ is as in (iv) of (b). This completes the case.

From now on we assume that $d \geq 5$.

Case 3. $r_{2}=5$.
Since $v_{1} u_{4} \notin E$, we have $v_{2} \notin\left\{u_{1}, u_{2}, \ldots, u_{d+2}\right\}$. The graph $G[\{x, y\} \cup$ $\left.\left\{v_{1}, v_{2}, v_{d-1}\right\} \cup\left\{u_{1}, u_{2}, \ldots, u_{d+2}\right\}\right]$ is as in (vii) of (b). This completes the case.

From now on we assume that $r_{2}=4$ and, by symmetry, $l_{d-2}=d-1$.

Case 4. $l_{3}=3$.
Note that Lemma 1 implies that $j+2 \leq r_{j} \leq j+3$ for $2 \leq j \leq d-2$. First, we assume that there is an index j with $2 \leq j \leq d-3$ such that $r_{j}=j+2$ and $r_{j+1}=j+4$. Let j be minimal with these properties. Since $v_{j} u_{j+3}, v_{j} u_{j+4} \notin E$, we have $\left|\left\{v_{j}, v_{j+1}, u_{j+2}, u_{j+3}, u_{j+4}\right\}\right|=5$.

If $j=2$ and $d=5$, then the graph $G\left[\{x, y\} \cup\left\{v_{1}, v_{3}, v_{4}\right\} \cup\left\{u_{1}, u_{2}, \ldots, u_{7}\right\}\right]$ is as in (vii) of (b). If $j=2$ and $d \geq 6$, then the graph $G[\{x, y\} \cup$
$\left.\left\{v_{1}, v_{3}, v_{d-1}\right\} \cup\left\{u_{1}, u_{2}, \ldots, u_{d+2}\right\}\right]$ is as in (ix) of (b). If $3 \leq j \leq d-4$, then the graph

$$
\begin{gathered}
G\left[\{x, y\} \cup\left\{v_{1}, v_{3}, v_{d-1}\right\} \cup\left\{u_{1}, u_{2}, u_{3}\right\} \cup\left\{v_{4}, v_{5}, \ldots, v_{j}, v_{j+1}\right\}\right. \\
\left.\cup\left\{u_{j+2}, u_{j+3}, \ldots, u_{d+2}\right\}\right]
\end{gathered}
$$

is as in (ix) of (b). If $3 \leq j=d-3$, then the graph
$G\left[\{x, y\} \cup\left\{v_{1}, v_{3}\right\} \cup\left\{u_{1}, u_{2}, u_{3}\right\} \cup\left\{v_{4}, v_{5}, \ldots, v_{d-1}\right\} \cup\left\{u_{d-1}, u_{d}, \ldots, u_{d+2}\right\}\right]$
is as in (vii) of (b). Hence we can assume that no such index exists. Since $r_{2}=4$, this implies, by an inductive argument, that $r_{j}=j+2$ for $2 \leq j \leq$ $d-2$ and thus $r_{d-2}=d$. Now the graph

$$
G\left[\{x, y\} \cup\left\{v_{1}\right\} \cup\left\{v_{3}, v_{4}, \ldots, v_{d-1}\right\} \cup\left\{u_{1}, u_{2}, u_{3}\right\} \cup\left\{u_{d}, u_{d+1}, u_{d+2}\right\}\right]
$$

is as in (vi) of (b). This completes the case.
From now on we assume that $l_{3}=4$ and, by symmetry, $r_{d-3}=d-1$.
Case 5. $l_{2}=3$.
Since $r_{2}=4$, we have $v_{2} \notin\left\{u_{1}, u_{2}, \ldots, u_{d+2}\right\}$. The graph

$$
G\left[\{x, y\} \cup\left\{v_{1}, v_{2}, v_{3}, v_{d-1}\right\} \cup\left\{u_{1}, u_{2}, u_{3}\right\} \cup\left\{u_{r_{3}}, u_{r_{3}+1}, \ldots, u_{d+2}\right\}\right]
$$

is as in (vi) of (b). This completes the case.
From now on we assume that $l_{2}=2$ and, by symmetry, $r_{d-2}=d+1$.
Case 6. $r_{3}=6$.
Since $v_{2} v_{3} \in E, l_{2}=2$ and $l_{3}=4$, we have $v_{2}, v_{3} \notin\left\{u_{1}, u_{2}, \ldots, u_{d+2}\right\}$. If $d=5$, then the graph $G\left[\left\{x, y, v_{1}, v_{2}, v_{3}, v_{4}, u_{1}, u_{2}, u_{3}, u_{4}, u_{6}, u_{7}\right\}\right]$ is as in (vii) of (b). If $d \geq 6$, then the graph

$$
G\left[\{x, y\} \cup\left\{v_{1}, v_{2}, v_{3}, v_{d-1}\right\} \cup\left\{u_{1}, u_{2}\right\} \cup\left\{u_{4}, u_{5}, \ldots, u_{d+2}\right\}\right]
$$

is as in (ix) of (b). This completes the case.
From now on we assume that $r_{3}=5$ and, by symmetry, $l_{d-3}=d-2$.

Case 7. There is an index j with $3 \leq j \leq d-3$ such that $r_{j}=j+2$ and $r_{j+1}=j+4$.

Let j be minimal with these properties. As in Case 4, we obtain $\left|\left\{v_{j}, v_{j+1}, u_{j+2}, u_{j+3}, u_{j+4}\right\}\right|=5$. The graph $G\left[\{x, y\} \cup\left\{u_{1}, u_{2}\right\} \cup\left\{v_{1}, v_{2}, \ldots\right.\right.$, $\left.\left.v_{j}, v_{j+1}\right\} \cup\left\{v_{d-1}\right\} \cup\left\{u_{j+2}, u_{j+3}, \ldots, u_{d+2}\right\}\right]$ is as in (vii) or (ix) of (b). This completes the case.

From now on we assume that no such index exists. Since $r_{3}=5$, this implies, by an inductive argument, that $r_{j}=j+2$ for $3 \leq j \leq d-2$ and thus $r_{d-2}=d$. Now the graph $G\left[\{x, y\} \cup\left\{u_{1}, u_{2}\right\} \cup\left\{v_{1}, v_{2}, \ldots, v_{d-1}\right\} \cup\left\{u_{d}, u_{d+1}, u_{d+2}\right\}\right]$ is as in (vi) of (b). This completes the proof.

4. Concluding Remarks

Using Theorem 5 it is now a simple but tedious task to determine an explicit list of all minimal forbidden induced subgraphs for the class of graphs G with $s_{\text {add }}(G) \leq 2$.

In [3] it was shown that the recognition of graphs G with $s_{\text {add }}(G) \leq$ k is a co-NP-complete problem, if k is part of the input. At the end of [3] a polynomial time recognition algorithm for the class of graphs G with $s_{\text {add }}(G) \leq 1$ was described. It is obvious how to extend the 'brute force'approach of this algorithm to obtain a polynomial time recognition algorithm for the class of graphs G with $s_{\text {add }}(G) \leq 2$.

It is easy to see that for $k \geq 1$ the graphs $G\left(\left(n_{1}, c_{1}\right), m_{1},\left(n_{2}, c_{2}\right), m_{2}, \ldots\right.$, $\left.m_{\nu-1},\left(n_{\nu}, c_{\nu}\right)\right)$ such that $c_{i} \geq 1$ for $1 \leq i \leq \nu, n_{i} \geq 2 c_{i}+3$ for $1 \leq i \leq \nu$ and $\sum_{i=1}^{\nu}\left(n_{i}-2 c_{i}-2\right)>k$ are forbidden induced subgraphs for the graphs G with $s_{\text {add }}(G) \leq k$. Nevertheless, in view of the graph in (v) of (b) in Theorem 5 , we believe that there is no regular pattern for the minimal forbidden induced subgraphs for $k \geq 2$. The graph in Figure 4 shows that for $k \geq 3$ the two paths $P_{G}(x, y)$ and $p_{G}(x, y)$ may even use edges in reverse order (in such a situation Lemma 4 can be used to bound the number of these edges).

Figure 4

Acknowledgement

I would like to thank the referees for their valuable suggestions.

References

[1] H.J. Bandelt and M. Mulder, Distance-hereditary graphs, J. Combin. Theory (B) 41 (1986) 182-208.
[2] S. Cicerone and G. Di Stefano, Networks with small stretch number, in: 26th International Workshop on Graph-Theoretic Concepts in Computer Science (WG'00), Lecture Notes in Computer Science 1928 (2000) 95-106.
[3] S. Cicerone, G. D'Ermiliis and G. Di Stefano, ($k,+$)-Distance-Hereditary Graphs, in: 27th International Workshop on Graph-Theoretic Concepts in Computer Science (WG’01), Lecture Notes in Computer Science 2204 (2001) 66-77.
[4] S. Cicerone and G. Di Stefano, Graphs with bounded induced distance, Discrete Appl. Math. 108 (2001) 3-21.
[5] E. Howorka, Distance hereditary graphs, Quart. J. Math. Oxford 2 (1977) 417-420.
[6] D. Rautenbach, A proof of a conjecture on graphs with bounded induced distance, manuscript (2002).

Received 1 October 2002
Revised 27 February 2003

