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Abstract

The additive stretch number sadd(G) of a graph G is the maximum
difference of the lengths of a longest induced path and a shortest in-
duced path between two vertices of G that lie in the same component
of G.

We prove some properties of minimal forbidden configurations for
the induced-hereditary classes of graphs G with sadd(G) ≤ k for some
k ∈ N0 = {0, 1, 2, . . .}. Furthermore, we derive characterizations of
these classes for k = 1 and k = 2.
Keywords: stretch number, distance hereditary graph, forbidden
induced subgraph.
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1. Introduction

Let G = (V, E) be a finite and simple graph. A path P : x0x1x2 . . . xl in
G is called induced, if for 0 ≤ i < j ≤ l we have xixj ∈ E if and only if
j − i = 1. For vertices x and y in G that lie in the same component of G
let PG(x, y) and pG(x, y) denote a longest and a shortest induced path in G
from x to y, respectively. Let DG(x, y) and dG(x, y) denote the lengths of
PG(x, y) and pG(x, y), respectively.

In [3] Cicerone, D’Ermiliis and Di Stefano define the additive stretch
number sadd(G) of G as the maximum of DG(x, y)− dG(x, y) over all pairs
of vertices x and y of G that lie in the same component of G. A multiplicative
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version of this parameter was introduced and studied in [2], [4] (cf. also [6]).
Note that sadd(G) = 0 holds for a graph G, if and only if G is distance
hereditary [1, 5].

It is obvious from the definitions that the class of graphs G with
sadd(G) ≤ k for some k ∈ N0 = {0, 1, 2, . . .} is induced-hereditary, i.e.,
it is closed under forming induced subgraphs and can therefore be charac-
terized in terms of minimal forbidden induced subgraphs. The final result
of [3] is such a characterization of the class of graphs G with sadd(G) ≤ 1.
Since Cicerone et al. derive this result from the main result of [4], their
proof is long and indirect.

The purpose of the present paper is to provide a direct approach, a simpler
proof of their result and an extension of it. In the next section we collect
some properties of ‘forbidden configurations’. In Section 3, we derive char-
acterizations of the induced-hereditary classes of graphs G with sadd(G) ≤ k
for k ∈ {1, 2}.

For plenty of references to related work and motivating comments on
this concept we refer the reader to [2], [3] and [4].

2. Forbidden Configurations

Throughout this section let G = (V,E) be a graph such that sadd(G) > k
for some k ∈ N0. Let x, y ∈ V be such that
(i) DG(x, y)− dG(x, y) > k,
(ii) dG(x, y) is minimum subject to (i) and
(iii) DG(x, y) is minimum subject to (i) and (ii).

Clearly, dG(x, y) ≥ 2 and thus DG(x, y) + dG(x, y) > 2dG(x, y) + k ≥ 4 + k.

Let PG(x, y) : x = u0u1u2 . . . uD−1uD = y be a longest induced path from x
to y and let pG(x, y) : x = v0v1v2 . . . vd−1vd = y be a shortest induced path
from x to y.

Since the paths are induced, uiuj 6∈ E for 0 ≤ i, j ≤ D with j − i ≥ 2
and vivj 6∈ E for 0 ≤ i, j ≤ d with j − i ≥ 2. By Condition (ii) of the
choice of x and y, we have v1, vd−1 6∈ {u1, u2, . . . , uD−1} and u1, uD−1 6∈
{v1, v2, . . . , vd−1}.

If for some 1 ≤ j ≤ d − 1 the vertex vj has a neighbour in {u1, u2, . . . ,
uD−1}, then we define

lj = min{j′ | 1 ≤ j′ ≤ D − 1 and vjuj′ ∈ E}
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and
rj = max{j′ | 1 ≤ j′ ≤ D − 1 and vjuj′ ∈ E}

and say that rj and lj are defined. Note that if vj ∈ {u1, u2, . . . , uD−1}
for some 1 ≤ j ≤ d − 1, then 2 ≤ j ≤ d − 2, vj has a neighbour in
{u1, u2, . . . , uD−1} and rj and lj are defined. Furthermore, by Condition (ii),
if dG(x, y) ≥ 3, then the indices r1, l1, rd−1 and ld−1 are defined. We collect
some properties of PG(x, y) and pG(x, y).

Lemma 1.

(i) If rj is defined for some 1 ≤ j ≤ d− 1, then rj ≤ k + j + 1.
(ii) If rj is defined for some 1 ≤ j ≤ d− 2, then rj ≥ (D − d− k) + j + 1.
(iii) rd−1 ≥ D − k − 2.
(iv) If rj is defined for some 1 ≤ j ≤ d − 2 − dk

2e, then at least one of
rj+1, rj+2, . . . , rj+d k

2
e is defined.

Proof. (i) For contradiction we assume that rj > j+k+1 for some 1 ≤ j ≤
d − 1. xu1u2 . . . urj is an induced path from x to urj and xv1v2 . . . vjurj is
a path from x to urj . Note that the existence of a path of length l between
two vertices always implies the existence of an induced path of length at
most l between these vertices.

Hence DG(x, urj )−dG(x, urj ) ≥ rj− (j +1) > k. Since either dG(x, urj )
< d or dG(x, urj ) = d and DG(x, urj ) < D, we obtain a contradiction to the
choice of x and y. This implies (i).

(ii) For contradiction we assume that rj ≤ (D − d − k) + j for some
1 ≤ j ≤ d− 2.

vjurjurj+1 . . . uD−1y is an induced path from vj to y and vjvj+1 . . . vd−1y
is an induced path from vj to y. Hence DG(vj , y)− dG(vj , y) ≥ (D− rj + 1)
−(d − j) > k. Since dG(vj , y) < d, we obtain a contradiction to the choice
of x and y. This implies (ii).

(iii) For contradiction we assume that rd−1 ≤ D − k − 3.
urd−1

urd−1+1 . . . uD−1y is an induced path from urd−1
to y and urd−1

vd−1y
is an induced path from urd−1

to y. Hence DG(urd−1
, y) − dG(urd−1

, y) ≥
(D − rd−1) − 2 > k. Since either dG(urd−1

, y) < d or dG(urd−1
, y) = d and

DG(urd−1
, y) < D, we obtain a contradiction to the choice of x and y. This

implies (iii).
(iv) For contradiction we assume that rj is defined and that rj+1,

rj+2, . . . , rj+d k
2
e are not defined for some 1 ≤ j ≤ d− 2− dk

2e.
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vj+d k
2
evj+d k

2
e−1 . . . vjurjurj+1 . . . uD−1y is an induced path from vj+d k

2
e

to y and vj+d k
2
evj+d k

2
e+1 . . . vd−1y is an induced path from vj+d k

2
e to y.

Hence, by (i),

DG(vj+d k
2
e, y)− dG(vj+d k

2
e, y) ≥

(
D − rj +

⌈
k

2

⌉
+ 1

)
−

(
d− j −

⌈
k

2

⌉)

≥ D − d− rj + k + j + 1

≥ D − d > k.

Since dG(vj+d k
2
e, y) < d, we obtain a contradiction to the choice of x and y.

This implies (iv) and the proof is complete.

By symmetry, we obtain.

Corollary 2.

(i) If lj is defined for some 1 ≤ j ≤ d− 1, then lj ≥ (D − d− k) + j − 1.
(ii) If lj is defined for some 2 ≤ j ≤ d− 1, then lj ≤ k + j − 1.
(iii) l1 ≤ k + 2.
(iv) If lj is defined for some 2 + dk

2e ≤ j ≤ d − 1, then at least one of
lj−1, lj−2, . . . , lj−d k

2
e is defined.

Using Lemma 1, we can bound DG(x, y)− dG(x, y).

Corollary 3. If dG(x, y) = 2 and r1 is defined, then k + 1 ≤ DG(x, y) −
dG(x, y) ≤ 2k+2 and if dG(x, y) ≥ 3, then k+1 ≤ DG(x, y)−dG(x, y) ≤ 2k.

Proof. If dG(x, y) = 2 and r1 is defined, then (i) and (iii) of Lemma 1 imply
D− k− 2 ≤ rd−1 = r1 ≤ k + 1 + 1 and hence k + 1 ≤ DG(x, y)− dG(x, y) =
D − 2 ≤ 2k + 2.

If dG(x, y) ≥ 3, then r1 is defined and 1 < d − 1. Now (i) and (ii) of
Lemma 1 imply (D − d − k) + 1 + 1 ≤ r1 ≤ k + 1 + 1 and hence k + 1 ≤
D − d ≤ 2k.

The next lemma analyses the situation when the two paths PG(x, y) and
pG(x, y) ‘meet in reverse order’.
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Lemma 4. There are no k1, k2 ∈ N = {1, 2, . . .} with k1 + k2 ≥ k and
uj1 = vj2+k2 and uj1+k1 = vj2 for some 1 ≤ j1 ≤ D − 1 − k1 and some
1 ≤ j2 ≤ d− 1− k2 (cf. Figure 1 for an illustration).
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r rr r r¡
¡

x v1 vd−1

u1 uD−1

yvj2
uj1+k1

vj2+k2
uj1

-
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¡
¡
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@
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Figure 1. Parts of PG(x, y) and pG(x, y)

Proof. For contradiction, we assume that k1, k2, j1 and j2 exist as in the
statement.

If j1 = 1, then xvj2+k2 ∈ E with j2 + k2 ≥ 2 which is a contradiction.
This implies j1 ≥ 2. By symmetry, we obtain 2 ≤ j1 ≤ (D− 1− k1)− 1 and
2 ≤ j2 ≤ (d− 1− k2)− 1.

We assume that j1 − j2 < (D − d − k) + k2. uj1uj1+1 . . . uD−1y is
an induced path from uj1 = vj2+k2 to y and vj2+k2vj2+k2+1 . . . vd−1y is an
induced path from uj1 = vj2+k2 to y. Hence DG(uj1 , y) − dG(uj1 , y) ≥
(D− j1)− (d− j2− k2) > k. Since dG(uj1 , y) < d, we obtain a contradiction
to the choice of x and y. Hence j1 − j2 ≥ (D − d− k) + k2.

xu1u2 . . . uj1+k1 is an induced path from x to uj1+k1 = vj2 and
xv1v2 . . . vj2 is an induced path from x to uj1+k1 = vj2 . Hence DG(x, vj2)−
dG(x, vj2) ≥ (k1 + j1) − j2 ≥ D − d − k + k1 + k2 ≥ D − d > k. Since
dG(x, vj2) < d, we obtain a contradiction to the choice of x and y and the
proof is complete.

3. {G | sadd(G) ≤ k} for k ∈ {1, 2}
Let G = (V, E) be a graph. If Ṽ ⊆ V , then G[Ṽ ] denotes the subgraph of
G induced by Ṽ . A chord of a cycle C of G is an edge of G that joins two
non-consecutive vertices of C. The chord distance cd(C) of a cycle C of G
is the minimum number of consecutive vertices of C such that each chord
of C is incident with one of these vertices.

In order to facilitate the statement of our main result we introduce some
more notation. For some ν ≥ 2 let n1, n2, . . . , nν ≥ 5, c1, c2, . . . , cν ≥ 1 and
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m1, m2, . . . , mν−1 ≥ 1 be integers. For 1 ≤ i ≤ ν let Gi : x1,ix2,i . . . xni,ix1,i

be a cycle of order ni such that all chords of Gi are incident with a vertex in
{x1,i, x2,i, . . . , xci,i}, i.e., Gi has chord distance at most ci. For 1 ≤ i ≤ ν−1
let Hi : y1,iy2,i . . . ymi,i be an induced path of order mi. Let the graph

G((n1, c1),m1, (n2, c2),m2, . . . , (nν−1, cν−1),mν−1, (nν , cν))

arise by identifying the two vertices xci+1,i and y1,i and the two vertices
xni+1,i+1 and ymi,i for 1 ≤ i ≤ ν − 1. (Note that if mi = 1 for some
1 ≤ i ≤ ν − 1, then y1,i = ymi,i and the three vertices xci+1,i, y1,i and
xni+1,i+1 are identified.) See Figure 2 for an illustration of two examples.

G((8, 2), 3, (5, 1))

x1,1x2,1

x7,1 x4,1

s s s s
x3,1
y1,1

x5,2
y3,1

x1,2

s s s
s s s

s
s s s

G((6, 1), 3, (5, 1), 4, (5, 1))

s s
s

s
x2,1
y1,1

s s
x5,2
y3,1

s s
x2,2
y1,2

s s s
x5,3
y4,2

s s
s ss s s s

Figure 2. G((8, 2), 3, (5, 1)) and G((6, 1), 3, (5, 1), 4, (5, 1))

We proceed to our main result of this section.

Theorem 5. Let k ∈ {1, 2}. A graph G = (V, E) satisfies sadd(G) ≤ k if
and only if

(a) (cf. [3]) for k = 1 the graph G does not contain one of the following
graphs as an induced subgraph.

(i) A chordless cycle C of length l ≥ 6.
(ii) A cycle C of length l ∈ {6, 7, 8} and chord distance cd(C) = 1.
(iii) A cycle C of length 8 and chord distance cd(C) = 2.
(iv) The graph G((5, 1), m1, (5, 1)) for some m1 ≥ 1.

(b) for k = 2 the graph G does not contain one of the following graphs
as an induced subgraph.

(i) A chordless cycle C of length l ≥ 7.
(ii) A cycle C of length l ∈ {7, 8, 9, 10} and chord distance cd(C) = 1.
(iii) A cycle C of length 9 or 10 and chord distance cd(C) = 2.
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(iv) A cycle C of length 11 and chord distance cd(C) = 3.
(v) The graph that arises from G((5, 1), 1, (6, 1)) by adding the edge x1,1x5,2

(cf. Figure 3).

t t
x1,1

t
x1,2

t

t t t t
x6,2

x2,1
y1,1

x5,2
t t

¡
¡¡

©©©©©

HHHHH

Figure 3

(vi) The graph G((6, 1),m1, (5, 1)) for some m1 ≥ 1.
(vii) The graph G((8, 2),m1, (5, 1)) for some m1 ≥ 1.
(viii) The graph G((6, 1),m1, (6, 1)) for some m1 ≥ 1.
(ix) The graph G((5, 1),m1, (5, 1),m2, (5, 1)) for some m1, m2 ≥ 1.

Proof. The ‘only if ’-part can easily be checked by calculating sadd for the
described graphs and we leave this task to the reader. For the ‘if’-part, we
assume that sadd(G) > k and prove that G has an induced subgraph as
described in (a) or (b), respectively.

Let x, y, PG(x, y) : x = u0u1 . . . uD−1uD = y, pG(x, y) : x = v0v1 . . .
vd−1vd = y, rj and lj be exactly as in Section 2, i.e., the Conditions (i) to
(iii) are satisfied.

If d = dG(x, y) = 2, then C : xv1yuD−1 . . . u1x is a cycle of length
D+d ≥ 2d+k+1 = 5+k in G. If C has no chords, then C is as in (i) of (a)
and (b), respectively. If C has chords, then all chords of C are incident with
v1 and Corollary 3 implies that C is as in (ii) of (a) and (b), respectively.

We can assume now that d ≥ 3. Since r1 and l1 are defined and since
dk

2e = 1, (iv) of Lemma 1 and Corollary 2 imply that rj and lj are defined
for all 1 ≤ j ≤ d − 1. Furthermore, the estimations given in Lemma 1,
Corollary 2 and Corollary 3 hold. (Note that in what follows we often use
these estimations without explicit reference.)

If d = 3, then C : xv1v2yuD−1 . . . u1x is a cycle of G. By the above
properties, C is as in (iii) of (a) and (b), respectively.

From now on we assume that d ≥ 4.
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If k = 1, then r1 = 3 and ld−1 = d − 1 and the graph G[{x, y, v1, vd−1, u1,
u2, . . . , ud+1}] is as in (iv) of (a). (Note that the proof for the case k = 1 is
already complete at this point.)

From now on we assume that k = 2.

Case 1. r1 = 4 or ld−1 = D − 4.
If D ≥ 8 or (D, r1) = (7, 3) or (D, ld−1) = (7, D − 3), then the graph
G[{x, y, v1, vd−1, u1, u2, . . . , uD−1}] is as in (vi) or (viii) of (b). Hence we
assume d = 4, D = 7, r1 = 4 and l3 = 3. Since v1u5, v3u2 6∈ E, we have
v2 6∈ {u1, u2, u5, u6}. If v2 6∈ {u3, u4}, then the graph G[{x, y, v1, v2, v3, u1,
u2, . . . , u6}] is as in (iv) of (b). If v2 ∈ {u3, u4}, then, by symmetry, we can
assume that v2 = u3 and the graph G[{x, y, v1, v3, u1, u2, . . . , u6}] is as in
(v) of (b). This completes the case.

From now on we assume that r1 = 3 and ld−1 = D− 3. By (ii) of Lemma 1,
we obtain (D−d−2)+1+1 ≤ r1 = 3. As D−d ≥ 3, this implies D = d+3
and thus ld−1 = d.

Case 2. d = 4.
Since v1u4, v1u5, v3u2, v3u3 6∈ E, we have v2 6∈ {u1, u2, u3, u4, u5, u6}. The
graph G[{x, y, v1, v2, v3, u1, u2, . . . , u6}] is as in (iv) of (b). This completes
the case.

From now on we assume that d ≥ 5.

Case 3. r2 = 5.
Since v1u4 6∈ E, we have v2 6∈ {u1, u2, . . . , ud+2}. The graph G[{x, y} ∪
{v1, v2, vd−1} ∪ {u1, u2, . . . , ud+2}] is as in (vii) of (b). This completes the
case.

From now on we assume that r2 = 4 and, by symmetry, ld−2 = d− 1.

Case 4. l3 = 3.
Note that Lemma 1 implies that j + 2 ≤ rj ≤ j + 3 for 2 ≤ j ≤ d − 2.
First, we assume that there is an index j with 2 ≤ j ≤ d − 3 such that
rj = j + 2 and rj+1 = j + 4. Let j be minimal with these properties. Since
vjuj+3, vjuj+4 6∈ E, we have |{vj , vj+1, uj+2, uj+3, uj+4}| = 5.

If j = 2 and d = 5, then the graph G[{x, y}∪{v1, v3, v4}∪{u1, u2, . . . , u7}]
is as in (vii) of (b). If j = 2 and d ≥ 6, then the graph G[{x, y} ∪
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{v1, v3, vd−1} ∪ {u1, u2, . . . , ud+2}] is as in (ix) of (b). If 3 ≤ j ≤ d − 4,
then the graph

G[{x, y} ∪ {v1, v3, vd−1} ∪ {u1, u2, u3} ∪ {v4, v5, . . . , vj , vj+1}
∪{uj+2, uj+3, . . . , ud+2}]

is as in (ix) of (b). If 3 ≤ j = d− 3, then the graph

G[{x, y} ∪ {v1, v3} ∪ {u1, u2, u3} ∪ {v4, v5, . . . , vd−1} ∪ {ud−1, ud, . . . , ud+2}]

is as in (vii) of (b). Hence we can assume that no such index exists. Since
r2 = 4, this implies, by an inductive argument, that rj = j + 2 for 2 ≤ j ≤
d− 2 and thus rd−2 = d. Now the graph

G[{x, y} ∪ {v1} ∪ {v3, v4, . . . , vd−1} ∪ {u1, u2, u3} ∪ {ud, ud+1, ud+2}]

is as in (vi) of (b). This completes the case.

From now on we assume that l3 = 4 and, by symmetry, rd−3 = d− 1.

Case 5. l2 = 3.
Since r2 = 4, we have v2 6∈ {u1, u2, . . . , ud+2}. The graph

G[{x, y} ∪ {v1, v2, v3, vd−1} ∪ {u1, u2, u3} ∪ {ur3 , ur3+1, . . . , ud+2}]

is as in (vi) of (b). This completes the case.

From now on we assume that l2 = 2 and, by symmetry, rd−2 = d + 1.

Case 6. r3 = 6.
Since v2v3 ∈ E, l2 = 2 and l3 = 4, we have v2, v3 6∈ {u1, u2, . . . , ud+2}. If
d = 5, then the graph G[{x, y, v1, v2, v3, v4, u1, u2, u3, u4, u6, u7}] is as in (vii)
of (b). If d ≥ 6, then the graph

G[{x, y} ∪ {v1, v2, v3, vd−1} ∪ {u1, u2} ∪ {u4, u5, . . . , ud+2}]

is as in (ix) of (b). This completes the case.

From now on we assume that r3 = 5 and, by symmetry, ld−3 = d− 2.
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Case 7. There is an index j with 3 ≤ j ≤ d− 3 such that rj = j +2 and
rj+1 = j + 4.

Let j be minimal with these properties. As in Case 4, we obtain
|{vj , vj+1, uj+2, uj+3, uj+4}| = 5. The graph G[{x, y}∪{u1, u2}∪{v1, v2, . . . ,
vj , vj+1} ∪ {vd−1} ∪ {uj+2, uj+3, . . . , ud+2}] is as in (vii) or (ix) of (b). This
completes the case.

From now on we assume that no such index exists. Since r3 = 5, this implies,
by an inductive argument, that rj = j+2 for 3 ≤ j ≤ d−2 and thus rd−2 = d.
Now the graph G[{x, y} ∪ {u1, u2} ∪ {v1, v2, . . . , vd−1} ∪ {ud, ud+1, ud+2}] is
as in (vi) of (b). This completes the proof.

4. Concluding Remarks

Using Theorem 5 it is now a simple but tedious task to determine an explicit
list of all minimal forbidden induced subgraphs for the class of graphs G with
sadd(G) ≤ 2.

In [3] it was shown that the recognition of graphs G with sadd(G) ≤
k is a co-NP-complete problem, if k is part of the input. At the end of
[3] a polynomial time recognition algorithm for the class of graphs G with
sadd(G) ≤ 1 was described. It is obvious how to extend the ‘brute force’-
approach of this algorithm to obtain a polynomial time recognition algorithm
for the class of graphs G with sadd(G) ≤ 2.

It is easy to see that for k ≥ 1 the graphs G((n1, c1),m1, (n2, c2),m2, . . . ,
mν−1, (nν , cν)) such that ci ≥ 1 for 1 ≤ i ≤ ν, ni ≥ 2ci +3 for 1 ≤ i ≤ ν and∑ν

i=1(ni−2ci−2) > k are forbidden induced subgraphs for the graphs G with
sadd(G) ≤ k. Nevertheless, in view of the graph in (v) of (b) in Theorem 5,
we believe that there is no regular pattern for the minimal forbidden induced
subgraphs for k ≥ 2. The graph in Figure 4 shows that for k ≥ 3 the two
paths PG(x, y) and pG(x, y) may even use edges in reverse order (in such a
situation Lemma 4 can be used to bound the number of these edges).

r
x

r r
r r r

r r ry

r r r

Figure 4
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