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Abstract

The additive stretch number s,q44(G) of a graph G is the maximum
difference of the lengths of a longest induced path and a shortest in-
duced path between two vertices of G that lie in the same component
of G.

We prove some properties of minimal forbidden configurations for
the induced-hereditary classes of graphs G with s,44(G) < k for some
k € No = {0,1,2,...}. Furthermore, we derive characterizations of
these classes for k =1 and k = 2.
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1. Introduction

Let G = (V, E) be a finite and simple graph. A path P : zgrixs...2; in
G is called induced, if for 0 < ¢ < j < [ we have z;x; € F if and only if
j —1i = 1. For vertices x and y in G that lie in the same component of G
let Pg(x,y) and pg(z,y) denote a longest and a shortest induced path in G
from = to y, respectively. Let Dg(z,y) and dg(z,y) denote the lengths of
Pg(z,y) and pg(z,y), respectively.

In [3] Cicerone, D’Ermiliis and Di Stefano define the additive stretch
number S,qd(G) of G as the maximum of Dg(z,y) — dg(x,y) over all pairs
of vertices x and y of G that lie in the same component of G. A multiplicative
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version of this parameter was introduced and studied in [2], [4] (cf. also [6]).
Note that s,q4(G) = 0 holds for a graph G, if and only if G is distance
hereditary [1, 5].

It is obvious from the definitions that the class of graphs G with
Sadd(G) < k for some k € No = {0,1,2,...} is induced-hereditary, i.e.,
it is closed under forming induced subgraphs and can therefore be charac-
terized in terms of minimal forbidden induced subgraphs. The final result
of [3] is such a characterization of the class of graphs G with s,qq(G) < 1.
Since Cicerone et al. derive this result from the main result of [4], their
proof is long and indirect.

The purpose of the present paper is to provide a direct approach, a simpler
proof of their result and an extension of it. In the next section we collect
some properties of ‘forbidden configurations’. In Section 3, we derive char-
acterizations of the induced-hereditary classes of graphs G with s,q4(G) < k
for k € {1,2}.

For plenty of references to related work and motivating comments on
this concept we refer the reader to [2], [3] and [4].

2. Forbidden Configurations

Throughout this section let G = (V, E) be a graph such that s,qq4(G) > k
for some k € Ng. Let 2,y € V be such that

(1) DG(x7y) - dG(l’,y) >k,
(ii) dg(x,y) is minimum subject to (i) and
(ii) Dg(z,y) is minimum subject to (i) and (ii).
Clearly, dg(z,y) > 2 and thus Dg(z,y) + da(z,y) > 2dg(z,y) + k> 4+ k.

Let Pg(z,y) : * = uguiusg ... up_1up = y be a longest induced path from z
to y and let pg(z,y) : © = voviva ... v4_1v4 = y be a shortest induced path
from z to y.

Since the paths are induced, u;u; € E for 0 <4,5 < D with j —7 > 2
and viv; € E for 0 < 4,5 < d with j —4 > 2. By Condition (ii) of the
choice of z and y, we have vi,v4_1 & {uy,uz2,...,up_1} and uj,up_1 &
{’Ul, Vo, ... ,Ud—l}-

If for some 1 < j < d — 1 the vertex v; has a neighbour in {u1,us, ...,
up—1}, then we define

l; =min{j' |1 <j' <D -1 and vjuy € E}
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and
rj =max{j’ |1 <j <D -1 and vjuy € E}

and say that r; and l; are defined. Note that if v; € {ui,u2,...,up_1}
for some 1 < j < d~—1, then 2 < 5 < d — 2, v; has a neighbour in
{ui,us,...,up_1} and r; and [; are defined. Furthermore, by Condition (ii),
if dg(x,y) > 3, then the indices 71, Iy, 74—1 and [4_1 are defined. We collect
some properties of Pg(z,y) and pg(z,y).

Lemma 1.
(i) If rj is defined for some 1 < j<d—1, thenr; <k+j+1.
(ii) If rj is defined for some 1 < j <d—2, thenr; > (D —-d—k)+j+1.
(i) rg_1 > D —k — 2.
) If v is defined for some 1 < j < d—2 — (%1, then at least one of
T Tj2y - Ty k] 1s defined.

(iv

Proof. (i) For contradiction we assume that r; > j+k+1 for some 1 < j <
d—1. zuius.. Uy, is an induced path from z to Uy, and zvivsy .. L VjUnp; is
a path from z to u,;. Note that the existence of a path of length [ between
two vertices always implies the existence of an induced path of length at
most [ between these vertices.

Hence Dg(, ur;) —da(x, ur;) > 75— (j+1) > k. Since either dg(z,u;,)
<dor dg(z,u,,) = d and Dg(z,u,;) < D, we obtain a contradiction to the
choice of x and y. This implies (i).

(ii) For contradiction we assume that r; < (D —d — k) + j for some
1<j<d-2.

VjUyp;Up;+1 - - - Up-1Y 18 an induced path from v; to y and vjvji1 ... v4-1Y
is an induced path from v; to y. Hence Dg(vj,y) —dg(vj,y) > (D —r;+1)
—(d —j) > k. Since dg(vj,y) < d, we obtain a contradiction to the choice
of z and y. This implies (ii).

(iii) For contradiction we assume that r4—; < D —k — 3.
Ury Ury ,+1---Up—1Y is an induced path from u,, , to y and u,, ,v4—1y
is an induced path from w,, , to y. Hence Dg(ur, ,,y) — da(ur, ,,y) >
(D —rgq—1) —2 > k. Since either dg(u,, ,,y) < d or dg(ur, ,,y) = d and
D¢(ur, ,,y) < D, we obtain a contradiction to the choice of z and y. This
implies (iii).

(iv) For contradiction we assume that 7; is defined and that 71,

Tj+2, -+, Ty k] AT Nt defined for some 1 < j <d—2—[£].
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vj+[§]vj+[§]—1 e UjUp U1 - UD—1Y 1S an induced path from Uj+[§}
to y and vy pigv g
Hence, by (i),

..v4—1Yy is an induced path from Uk to y.
2

Palty o) = dapyyw) = (Prt 5] +1) = (a=i-[5])

D—d—rj+k+j+1

v

> D—d>k.

Since dG(ijEW ,y) < d, we obtain a contradiction to the choice of x and y.
2

This implies (iv) and the proof is complete. |

By symmetry, we obtain.

Corollary 2.

(i) Ifl; is defined for some 1< j<d—1, thenl; >(D—d—Fk)+j—1.
(i) Ifl; is defined for some 2 < j<d—1, thenl; <k+j—1.
(iii) I < k+2.

)
(iv) If l; is defined for some 2 + [%] < j < d-1, then at least one of
Li—1,lj—2, ..., lj{%} is defined.

Using Lemma 1, we can bound Dg(x,y) — da(z,y).

Corollary 3. If dg(z,y) = 2 and r1 is defined, then k + 1 < Dg(z,y)
dg(z,y) <2k+2 and if dg(z,y) > 3, then k+1 < Dg(z,y) —dg(z,y) < 2k.

Proof.If dg(z,y) = 2 and r; is defined, then (i) and (iii) of Lemma 1 imply
D—k—-2<rg1=r1<k+1+1andhence k+1< Dg(x,y) —dg(z,y) =
D —-2<2k+2.

If dg(z,y) > 3, then r; is defined and 1 < d — 1. Now (i) and (ii) of
Lemma 1 imply (D —d—k)+1+1<r; <k+1+41 and hence k+1 <
D —d < 2k. [

The next lemma analyses the situation when the two paths Pg(z,y) and
pc(z,y) ‘meet in reverse order’.
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Lemma 4. There are no ki,ke € N = {1,2,...} with k1 + ke > k and
Uj, = Vjotky and Uj 4, = vj, for some 1 < j; < D — 1 — ki and some
1<jo<d—1—ks (c¢f Figurel for an illustration).

up o up_
r U1 Vja — Ujotko Va—-1 Y

Uji+ky Ujy

Figure 1. Parts of Pg(z,y) and pe(z,y)

Proof. For contradiction, we assume that ki, ko, 71 and jo exist as in the
statement.

If j1 = 1, then 2vj, 4, € E with j + ko > 2 which is a contradiction.
This implies j; > 2. By symmetry, we obtain 2 < j; < (D —1—k;) —1 and
2<ja<(d—1—ky)—1

We assume that j1 — jo < (D —d — k) + ka. ujuj41...up—1y is
an induced path from wuj, = vj,4r, to y and vj, g, Vjs4kot1 .- Va—1Y is an
induced path from wj = vj, 4, to y. Hence Dg(uj,y) — da(uj,,y) >
(D —j1) — (d— jo2 — k2) > k. Since dg(uj,,y) < d, we obtain a contradiction
to the choice of x and y. Hence j; — jo > (D — d — k) + ks.

TULUL . .. Uj 1k, 1S an induced path from x to wuj4r, = wv;, and
xv1v3 ... vj, is an induced path from x to uj, 4, = vj,. Hence Dg(z,vj,) —
dg(z,vj,) > (k1 +j1) —jo > D —d—k+ ki + ks > D —d > k. Since
dg(z,vj,) < d, we obtain a contradiction to the choice of x and y and the
proof is complete. [

3. {G ‘ 5add<G) < k} for k € {1,2}

Let G = (V, E) be a graph. If V C V, then G[V] denotes the subgraph of
G induced by V. A chord of a cycle C of G is an edge of G that joins two
non-consecutive vertices of C. The chord distance cd(C) of a cycle C of G
is the minimum number of consecutive vertices of C such that each chord
of C is incident with one of these vertices.

In order to facilitate the statement of our main result we introduce some
more notation. For some v > 2 let ny,no,...,ny, > 5, ¢1,¢2,...,¢, > 1 and
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mi, Mg, ...,my—1 > 1 be integers. For 1 <i <wvlet G;:x122;...%n, %1,
be a cycle of order n; such that all chords of GG; are incident with a vertex in
{14, 224,...,%c, i}, l.e., G; has chord distance at most ¢;. For1 <i<wv—1

let H; : y1,iY2, - - - Ym,;,; be an induced path of order m;. Let the graph
G((n1,c1),mi, (n2, c2),ma, ..., (Ny—1, v—1), My—1, (M, &)

arise by identifying the two vertices x.,+1,; and yi; and the two vertices
Tpipyirr and ym,; for 1 < i < v —1. (Note that if m; = 1 for some
1 <i<wv-—1, then y1;, = Ym,;; and the three vertices x., 14, y1,; and
Tn;,q,i+1 are identified.) See Figure 2 for an illustration of two examples.

G((8,2),3,(5,1)) G((6,1),3,(5,1),4,(5,1))
7.1 T41
T11T21231  T52T12 T ma1 52 Tao  Tn3
Yina Y31 Y11 Ys,1 Y1,2 Ya,2

Figure 2. G((8,2),3,(5,1)) and G((6,1),3,(5,1),4,(5,1))
We proceed to our main result of this section.

Theorem 5. Let k € {1,2}. A graph G = (V, E) satisfies s,qd(G) < k if
and only if

(a) (cf. [3]) for k =1 the graph G does not contain one of the following
graphs as an induced subgraph.

(i) A chordless cycle C' of length | > 6.
(ii)) A cycle C of length 1 € {6,7,8} and chord distance cd(C) = 1.
(iii) A cycle C of length 8 and chord distance cd(C) = 2.
) The graph G((5,1),m1,(5,1)) for some my > 1.

(b) for k = 2 the graph G does not contain one of the following graphs
as an induced subgraph.

(i) A chordless cycle C' of length 1 > 7.

(ii) A cycle C of length 1 € {7,8,9,10} and chord distance cd(C) = 1.
(iii) A cycle C of length 9 or 10 and chord distance cd(C) = 2.

(iv
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(iv) A cycle C of length 11 and chord distance cd(C) = 3.

(v) The graph that arises from G((5,1),1,(6,1)) by adding the edge x1 1252
(¢f. Figure 3).

T2,1
Yia
T6,2 T5,2
Breag
T1,1 T1,2
Figure 3
(vi) The graph G((6,1),mq,(5,1)) for some my > 1.
(vii) The graph G((8,2),m1,(5,1)) for some my > 1.
(viii) The graph G((6,1),m1,(6,1)) for some m; > 1.
(ix) The graph G((5,1),m1,(5,1),ma,(5,1)) for some my, mg > 1.

Proof. The ‘only if -part can easily be checked by calculating s,qq for the
described graphs and we leave this task to the reader. For the ‘if-part, we
assume that s,qq(G) > k and prove that G has an induced subgraph as
described in (a) or (b), respectively.

Let z, y, Pg(z,y) : © = wouy ... up—1up = y, pa(z,y) : £ = vovy ...
v4—1vq4 = Yy, rj and l; be exactly as in Section 2, i.e., the Conditions (i) to
(iii) are satisfied.

If d = dg(z,y) = 2, then C : zviyup—_1...uix is a cycle of length
D+d>2d+k+1=>5+kin G. If C has no chords, then C is as in (i) of (a)
and (b), respectively. If C' has chords, then all chords of C' are incident with
v; and Corollary 3 implies that C' is as in (ii) of (a) and (b), respectively.

We can assume now that d > 3. Since r; and {; are defined and since
[%] =1, (iv) of Lemma 1 and Corollary 2 imply that r; and [; are defined
for all 1 < j < d — 1. Furthermore, the estimations given in Lemma 1,
Corollary 2 and Corollary 3 hold. (Note that in what follows we often use
these estimations without explicit reference.)

If d = 3, then C : xviveyup_1...urx is a cycle of G. By the above
properties, C' is as in (iii) of (a) and (b), respectively.

From now on we assume that d > 4.
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If k=1, then r1 = 3 and l4_1 = d — 1 and the graph G[{z,y,v1,v4-1, u1,
u2,...,Uq+1}] is as in (iv) of (a). (Note that the proof for the case k =1 is
already complete at this point.)

From now on we assume that k = 2.

Casel. i =4 orly_1=D — 4.
If D>8or (D,r1) =(7,3) or (D,lg_1) = (7, D — 3), then the graph
G[{z,y,v1,v4-1,u1,u2,...,up_1}] is as in (vi) or (viii) of (b). Hence we
assume d = 4, D =7, ry = 4 and I3 = 3. Since vius, v3us € E, we have
v & {ui,ug,us,ug}. If va & {us,us}, then the graph G[{z,y,v1,v2,v3, u1,
ug,...,us}] is as in (iv) of (b). If vy € {ug, usa}, then, by symmetry, we can
assume that vy = wug and the graph G[{z,y,vi,v3,u1,u2,...,us}| is as in
(v) of (b). This completes the case.

From now on we assume that 7y = 3 and l4_; = D — 3. By (ii) of Lemma 1,
we obtain (D—d—2)+1+1<r; =3. As D—d > 3, this implies D = d+3
and thus l;_1 = d.

Case 2. d = 4.
Since viug, vius, v3uz, v3us € E, we have vy & {u1,ug,us, uq, us, ug}. The
graph G[{z,y,v1,v2,v3,u1,us,...,us}| is as in (iv) of (b). This completes
the case.

From now on we assume that d > 5.

Case 3. r9 = 5.
Since viuq ¢ E, we have vy & {ui,ug,...,uqs2}. The graph G[{z,y} U
{v1,v2,v4-1} U{u1,ug, ..., uqr2}] is as in (vii) of (b). This completes the
case.

From now on we assume that ro = 4 and, by symmetry, lj_o =d — 1.

Case 4. I3 = 3.
Note that Lemma 1 implies that j +2 < r; < j+3for 2 < j < d— 2.
First, we assume that there is an index j with 2 < j < d — 3 such that
rj =7+ 2and rjy1 = j+4. Let j be minimal with these properties. Since
Vi3, Vjujia & E, we have [{vj,vj41, uj42, uj43, U4} = 5.

If j = 2 and d = 5, then the graph G[{z, y}U{v1,v3, v4 }U{u1, ug, ..., ur}]
is as in (vii) of (b). If 7 = 2 and d > 6, then the graph G[{z,y} U
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{v1,v3,v9-1} U {u1,ug,...,uss2}] is as in (ix) of (b). If 3 < j < d — 4,
then the graph

Gl{z,y} U{v1,v3,0a-1} U {ur, ug, us} U {vg,vs, ..., 05,041}

U{ujt2, ujgs, ..., Udr2}]
is as in (ix) of (b). If 3 < j = d — 3, then the graph
Gz, y} U{vr,v3} U{u1,ua,us} U{vs,vs,...,v9-1} U{ug—1,ud,...,udt2}]
is as in (vii) of (b). Hence we can assume that no such index exists. Since

ro = 4, this implies, by an inductive argument, that r; = j +2 for 2 < j <
d — 2 and thus r4_o = d. Now the graph

Gz, y} U{vi} U{vs,va,. .. va-1} U{ua, ug, ug} U {ua, ugr1, udr2}]

is as in (vi) of (b). This completes the case.

From now on we assume that I3 = 4 and, by symmetry, r4_3 =d — 1.

Case 5. Iy = 3.
Since ro = 4, we have vo & {u1,ug,...,ug2}. The graph
G[{xa y} U {'Ul, V2, V3, ,Udfl} U {ula ug, U3} U {u’r‘37 uT3+17 CIaS 7ud+2}]

is as in (vi) of (b). This completes the case.
From now on we assume that lo = 2 and, by symmetry, r4_o = d + 1.
Case 6. r3 = 6.
Since vous € E, log = 2 and I3 = 4, we have vo,v3 & {ui,ug,...,ugio}. If

d = 5, then the graph G[{x,y, v1, v, v3, V4, u1, U2, us, U4, ug, U7 }] is as in (vii)
of (b). If d > 6, then the graph

G[{IIZ, y} U {1}1, V2, V3, Ud—l} U {u17 UQ} U {u47 U5y« ,Ud+2}]

is as in (ix) of (b). This completes the case.

From now on we assume that r3 = 5 and, by symmetry, lj_3 =d — 2.
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Case 7. There is an index j with 3 < j < d —3 such that r; = j +2 and
Tj+1 == ] + 4

Let j be minimal with these properties. As in Case 4, we obtain
{vj, vj41, Uj42, Wiy, uj+a}| = 5. The graph Gl{z, y} U{ur, ua}U{vi, va,...,
05, Vj41} U{vg—1} U{ujt2, ujt3,...,u4+2}] is as in (vii) or (ix) of (b). This
completes the case.

From now on we assume that no such index exists. Since r3 = 5, this implies,
by an inductive argument, that r; = j+2for 3 < j < d—2and thusrqg_o = d.
Now the graph G[{z,y} U {u1,u2} U {v1,v2,...,04-1} U{ug, ugr1,uqr2}] is
as in (vi) of (b). This completes the proof. |

4. Concluding Remarks

Using Theorem 5 it is now a simple but tedious task to determine an explicit
list of all minimal forbidden induced subgraphs for the class of graphs G with
5add(G) < 2.

In [3] it was shown that the recognition of graphs G with s,q4(G) <
k is a co-NP-complete problem, if k is part of the input. At the end of
[3] a polynomial time recognition algorithm for the class of graphs G with
Sadd(G) < 1 was described. It is obvious how to extend the ‘brute force’-
approach of this algorithm to obtain a polynomial time recognition algorithm
for the class of graphs G with s,q4(G) < 2.

It is easy to see that for & > 1 the graphs G((n1, ¢1), m1, (ng, c2), ma, ...,
my—1,(ny,c,)) such that ¢; > 1 for 1 <i<wv,n; >2¢;+3for 1 <i<wvand

i—1(ni—2¢;—2) > k are forbidden induced subgraphs for the graphs G with

Sadd(G) < k. Nevertheless, in view of the graph in (v) of (b) in Theorem 5,
we believe that there is no regular pattern for the minimal forbidden induced
subgraphs for k¥ > 2. The graph in Figure 4 shows that for £ > 3 the two
paths Pg(z,y) and pg(x,y) may even use edges in reverse order (in such a
situation Lemma 4 can be used to bound the number of these edges).

Figure 4
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