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Abstract

Let T be a hamiltonian bipartite tournament with n vertices, v a
hamiltonian directed cycle of T, and k an even number. In this paper,
the following question is studied: What is the maximum intersection
with ~ of a directed cycle of length k7 It is proved that for an even k
in the range 4 < k < "7“, there exists a directed cycle €y, of length
h(k), h(k) € {k, k—2} with |A(Cp)) NA(7)| > h(k) —3 and the result
is best possible.

In a forthcoming paper the case of directed cycles of length k, k
even and k > ”TH will be studied.
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1. Introduction

The subject of pancyclism has been studied by several authors (e.g. [1, 2, 5,
10, 12, 14]). Three types of pancyclism have been considered. A digraph D
is pancyclic if it has directed cycles of all the possible lengths; D is vertex-
pancyclic if given any vertex v there are directed cycles of every length
containing v; and D is arc-pancyclic if given any arc e there are directed
cycles of every length containing e.

It is well known that a hamiltonian bipartite tournament is pancyclic,
and vertex-pancyclic (with only very few exceptions) but not necessarily
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arc-pancyclic (see e.g. [3, 11, 13]). Within the concept of cycle-pancyclism
the following question is studied: Given a directed cycle v of a digraph D,
find the maximum number of arcs which a directed cycle of length & (if such
a directed cycle exists) contained in D[V ()] (the subdigraph of D induced
by V(7)) has in common with . Cycle-pancyclism in tournaments has been
studied in [6, 7, 8] and [9]. In this paper, the cycle-pancyclism in bipartite
tournaments is investigated. In order to do so, it is sufficient to consider
a hamiltonian bipartite tournament 1" where + is a hamiltonian directed
cycle (because we are looking for directed cycles of length k contained in
D[V (v)] whose arcs intersect the arcs of v the most possible). We will
assume (without saying it explicitly in Lemmas, Theorems or Corollaries)
that we are working in a hamiltonian bipartite tournament with a vertex
set V.=14{0,1,...,n — 1} and an arc set A. Also we assume without loss
of generality that v = (0,1,...,n — 1,0) is a hamiltonian directed cycle of
T; k will be an even number; €y will denote a directed cycle of length
h(k) with h(k) € {k,k — 2} and J (Chq)) = [A(Chky) N A(7)|. This paper
is the first part of the study of the existence of a directed cycle Cp, 1) where
J(Cpx)) is the maximum. For general concepts we refer the reader to [4].

2. Preliminaries

A chord of a cycle € is an arc not in € but with both terminal vertices
in €. The length of a chord f = (u,v) of € denoted £(f) is equal to the
length of (u, C,v), where (u, C,v) denotes the uv-directed path contained in
C. We say that f is a c-chord if (f) = ¢ and f = (u,v) is an a —c-chord if
¢({v,C,u)) = c. Observe that if f is a c-chord, then it is also an a —(n — ¢)-
chord. All the chords considered in this paper are chords of v. We will
denote by Cp a directed cycle of length k. In what follows all notation is
taken modulo n.

For any a, 2 < a < n — 2, denote by t, the largest integer such that
a+tq(k—2) <n—1. The important case of t;_; is denoted by ¢ in the rest
of the paper. Let r be defined as follows: r =n — [k — 1 + t(k — 2)]. Notice
that: If a <bthent, >t);t>0and 3 <r <k—1, risodd.

Lemma 2.1. If the a-chord with an initial vertez 0 (0 being an arbitrary
vertex of T') is in A, then at least one of the two following properties holds.

(i) There exists a directed cycle C with J(Cx) = k — 2.
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(ii) For every 0 < i < t,, the a + i(k — 2)-chord with an initial vertez 0 is
in A.
Proof. Suppose that (ii) in the lemma is false, and let
j=min{i € {1,2,... t,}|(a+i(k —2),0) € A},

then

Cr = (0,a+ (i —1)(k=2))Ula+ (i —1)(k—=2),7, a+j(k—2))U(a+j(k—2),0)
is a directed cycle with J(Cx) = k — 2. |

Corollary 2.2. At least one of the two following properties holds

(i) There exists a directed cycle Cy, with I(Cr) > k — 2.
(ii) For every 0 <i <t, every (k —1+i(k — 2))-chord is in A.

Proof. Clearly, for any vertex 0, (0, k—1) € A since otherwise (k—1,0) € A
and C, = (0,7v,k — 1) U (k —1,0) is a directed cycle with J(C;) = k — 1 and
thus (i) holds. Now applying Lemma 2.1 with a = k — 1 we have that (i) or
(ii) holds. |

3. The Cases k£ =4,6,8
Theorem 3.1. There exists a directed cycle Cq with I(Cyq) > 2.

Proof. It follows from Corollary 2.2 for £ = 4 that we may assume that
for every 0 < ¢ < t3, every (3 4 2i)-chord is in A; now recall 3 <r <k —1,
ris odd and r =n — [k — 1 + t(k — 2)]. Hence r = 3 and we conclude that
84:(0,3+2t3,3+2t3+1,3+2t3—|—2,0) has 3(64):3. [ ]

Theorem 3.2. There erists a directed cycle Cp ) with I(Cy(g)) > h(6) — 2.

Proof. It follows from Corollary 2.2 for k = 6 that we can assume that
for every i, 0 < i < t5, every (5 + 4i)-chord is in A; recall 3 < r < 5,
and 7 is odd; so r € {3,5}. When r = 3, C4 = (0,5 + 4t5) U (5 + 4t5,7,0)
satisfies J(C4) = 3; and when r = 5, Cg = (0,54 4t5) U (5 +4t5, v, 0) satisfies
J(GG) = 5. |
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Theorem 3.3. There erists a directed cycle Cpgy with J(Cp(s)) > h(8) — 3.

Proof. It follows from Corollary 2.2 for £ = 8 that we may assume that
for every i, 0 <i < t7 every (7 + 6i)-chord is in A;recall 3<r <k—-1=7
and r is odd, so r € {3,5,7}. When r = 7 we obtain Cg = (0,7 + 6t7) U
(7 + 6t7,7,0) a directed cycle with J(Cg) = 7. When r = 5 we have G5 =
(0,7 + 6t7) U (7 + 6t7,7,0) is a directed cycle with J(Cs) = 5. When r = 3,
since n > 2k —4 = 12 and r = 3 we have t7 > 1 and every -9-chord is in A
(notice that (0,7 —9) € A because n—9 = 7+ (t7 —1)6 and 0 is an arbitrary
vertex) in particular (n —2,n — 11) € A; now observe that we can assume
(n—17,0) € A (otherwise (0,n—7) € Aand Cs = (0,n—T7)U(n—"7,7,0) is a
directed cycle with J(Cg) = 7); also observe that » = 3 implies (0,n—3) € A.
We conclude that Cg = (n—2,n—11)U(n—11,v,n—=7T)U(n—7,0,n—3,n—2)
is a directed cycle with J(Cg) = 5. |

4. The Case n =2k —4

Theorem 4.1. If n = 2k — 4, then there exists a directed cycle Cpy) with
I(Chiy) = h(k) — 1.

Proof. Consider the arc between 0 and k — 3; when (0, %k —3) € A we have
Cr = (0,k—3)U (k—3,7,0) a directed cycle with J(C;) = k — 1 and when
(k—3,0) € A we obtain C,_o = (k—3,0)U (0,7, k—3) a directed cycle with
I(Ck—2) =k —3. n

5. The Casesr=k—landr=%k—3

Theorem 5.1. Ifr =k —1 orr =k — 3, then there exists a directed cycle
Gh(k) with J(Gh(k)) = h(k) —1.

Proof. If r =k — 1, then (0,n — (k—1)) € Aand C, = (0,n — (k—1))U
(n— (k—1),7,0) is a directed cycle with J(C;) = k — 1. If r = k — 3, then
(0,n —(k—3)) € Aand C,_o = (0,n — (k—3)) U (n — (k —3),7,0) is a
directed cycle with J(Cx_2) = k — 3. |

Corollary 5.2. If t = 0, then there exists a directed cycle Cpp) with
I(Chry) = h(k) — 1.
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Proof.If t =0, thenn =k —1+4+7r, where k —3 <r < k—1, ris odd
(because n > 2k —4),sor € {k— 3,k —1}. If r = k — 3, then the assertion
follows by Theorem 4.1. If r = k — 1 and thus n = 2k — 2, then we can
distinguish the cases (0,k —1) € A and (0,k —1) ¢ A. If (0,k —1) € A,
then €, = (0,k — 1) U (k — 1,7, n) is a cycle with J(C;) = k — 1. The other
case follows analogously. [

6. The General Case

In this section, we assume r < k — 5, ¢t > 1, and k > 10 (so n > 16) in view
of the results in previous sections.

Lemma 6.1. If the (k — 1+ «)-chord, o < r+ 1, with an initial vertex 0 is
in A, then at least one of the two following properties holds.
(i) There exists a directed cycle Cy, with J(Cr) =k — 2.
(ii) For every 0 <i<t—1, thek — 1+ a+ i(k — 2)-chord with an initial
vertex 0 is in A.

It follows directly from Lemma 2.1; only observe that since 3 < r < k —5
we have k =14+ r+1+(t—-1)(k—2) <k+k-5+@t—-1)(k—-2) =
k—1+tk—2)—2<k—-1+t(k—2)+r—5=n-—5.

Lemma 6.2. At least one of the two following properties holds
(i) There exists a directed cycle Cpy with J(Cpry) > h(k) — 3.

(i1) All the following chords are in A: (a) Every (k — 1)-chord. (b) Every
(—r)-chord. (c) Every (k — 3)-chord and (d) Every —(r + 2)-chord.

Proof. Assume that (i) is false. Let us prove that (ii) holds. The proof
of (a) follows directly from Corollary 2.2. The proof of (b) follows from
Corollary 2.2, observing that n —r = k — 1+ t(k — 2). To prove (c) assume
that there is a —(k — 3)-chord, say f = (y,z). It follows from (a) that
(x —2,y) € A, and it follows from (b) that (z — 2+ r,z — 2) € A. Hence,
there exists a vertex z in (x — 2 + r,7y,y — 1) such that (z,2z —2) € A and
(x —2,2+2) € A. We conclude

ek—Q = (y,l’)U<IL‘,’7,Z>U(Z,{L‘—2)U($—2,Z+2)U<Z+2,’7,y>

is a directed cycle with J(Cx_o) =k —5 = (k — 2) — 3.
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Finally to prove (d), let (y,x) be a (r + 2)-chord. If follows from (c) and
Lemma 2.1 that every k¥ — 3 + i(k — 2)-chord is in A for 0 < ¢ < ¢ in
particular (x+k—2,24+k—2+k—3+(t—1)(k—2)) € A, now observe that
ek —24k-3+t-1)(k=2)=y+r+2+k—2+k-3+(t—1)(k-2) =
y+r+k—14+tk—2)=y+n=y,s0 (r+k—2,y9) € A; we conclude
that Cp = (y,z) U (z,v, 2+ k —2) U (x + k — 2,y) is a directed cycle with
I(Cr) =k —2. ]

Lemma 6.3. Let 0 < i < r+1, i being even. If all the —r-chords, —(r+2)-
chords, (k — 3+ 1)-chords and (k — 1+ 1i)-chords are in T, then at least one
of the following properties holds.

(i) There exists a directed cycle Cr, with I(Cy) > k — 3.

(ii) All the —(2r—i+1)-chords, —(2r—i+3)-chords and —(2r —i+5)-chords
are in T.

Proof. Assume that the hypothesis of the Lemma holds and (i) is false.
Let us prove that (ii) holds.

Since all the [(k—3)+1]-chords and all the [(k—1)+1]-chords are in T', it
follows from Lemma 6.1 (taking o = i—2) that every [k—3+i+(t—1)(k—2)]-
chord is in 7', and that (taking oo = i) every [k —1+1i+ (t — 1)(k — 2)]-chord
is in 7. Thus the following arcs are in T": (r,0), (r+2,0), (0,k—1+(t—1)
(k—2)+i) and (0, — 1+ (t — 1)(k—2) +i —2).

Letxy =r—1l,zgo=r+1,23=k—14+(t—-1)(k—2)+i—2, 24 = 23+2,
x5 =x4+k—2, 06 =2x5+2, v7 = x5 — 2, x8 = x7 — 2. Therefore (0,23) € A
and (0,z4) € A.

Observe that: ¢(xs,v,0) = n—x5 = r—i (because n—x5 = k—1+t(k—2)
+r—(k—1)—i—t(k—2) = r—i), {{xe,7,0) = r—i—2, l{xg,v,21) = 2r—i—3
(because (xg, 7y, x1) = €(26,7,0) +1r—1=1r—0i =247 —1), {{z7,v,21) =
Uz, v,x1) +4 = 2r —i+ 1, l{zy,v,x2) = Lx7,v,21) +2 = 2r — i + 3,
Uxg,y,x2) = l{x7,v,2)+2 = 2r —i+5, l(x4,7,x7) = x4, 7, 25)—2 = k—4
and ((x3,7,xs) = l{xg,7y,x7) = k — 4.

First, we prove that every —(2r — i + 1)-chord is in A. Suppose that
there exists a (2r — i + 1)-chord. We can assume without loss of generality
that (x7,x1) is that chord. Hence C, = (z7, 21,21+ 1 =17,0,24) U (x4,7, x7)
is a directed cycle with J(Cx) = k — 3.

Now we prove that every —(2r — i + 3)-chord is in A. Assume the
contrary; we may assume that (z7,z2) is a (2r — i + 3)-chord. Then C; =
(x7,29 =7r+1,7r+2,0,24) U (24,7, 27) is a directed cycle with J(Cx) = k—3.
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Finally, we prove that every —(2r — i + 5)-chord is in 7. Assuming the
opposite, we may consider that (zg,x2) is a (2r — i + 5)-chord. Then
Cr = (zg,me = r+ 1,7 4+ 2,0,23) U (r3,7,28) is a directed cycle with
I(Cy) = k — 3. n

Lemma 6.4. At least one of the following properties holds.
(i) There exists a directed cycle C with I(Cy) > k — 3.

(ii) For any even vertex x (resp. odd) there exist at most % consecutive
odd (resp. even) vertices in v which are in-neighbors of x.

Proof. Assume that (i) does not hold. Assume without loss of generality
that x = 0. It follows from Corollary 2.2 that the vertices k — 1 + i(k — 2),
for 0 <4 <t are not in-neighbords of 0.

So, there are at most % odd vertices consecutive in (k —1,~,0) which
are in-neighbors of 0. Since (0,1) € A, also in (0,7, k — 1) there are at most
% odd vertices consecutive in-neighbors of 0. [
The following corollary is a directed consequence of this Lemma (only ob-
serve that the hypothesis n > 2k — 4 is not needed in the Lemma).

Corollary 6.5. Let T be a bipartite tournament with n vertices and v a
hamiltonian cycle of T'. For each even (resp. odd) vertex x of T such that
the number of consecutive odd (resp. even) in-neighbors of x in vy is at least
%, 3 <k <n, k even, there exists a directed cycle C, containing x with
I(Cr) > k—2.

Lemma 6.6. If every (k + 1)-chord is in A then at least one of the two
following properties holds.

(i) There exists a directed cycle Cpy with J(Cpry) > h(k) — 3.

(ii) For every odd o, 0 < ar < k; every —[(a+ 1)r+ 1]-chord is in A. And
for every even o, 0 < ar < k; every —(« + 1)r-chord is in A.

Proof. For « = 0, we can assume that every —r-chord is in A (otherwise
it follows from Lemma 6.2 that (i) holds and we are done). For @ = 1,
suppose that (x1,xz¢) is a (2r + 1)-chord, let (x,z2) the —r-chord with an
initial vertex zo and (w2, x3) the [(k — 1) + (¢ — 1)(k — 2)]-chord with an
initial vertex xo (It follows from Corollary 2.2 that we can assume such a
chord exists); clearly, ¢(x1,v,22) = v+ 1 and {(x3,v,21) =n—(r+1) —
[k —1+4+ (t—1)(k—2)] =k — 3. Now notice that z3 € (zg,v,x1) — {x0, 21}
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(because r < k — 3 and k > 10), thus C; = (3,7, z1) U (21,20, T2, x3) is a
directed cycle with J(Cx) > k — 3.

We have proved the assertion of Lemma 6.6 for « = 0 and o = 1. To
complete the proof, assume (ii) does not hold for some o/ > 2 and we show
that (i) holds. Let a be the least integer av > 2 for which (ii) does not hold.
We analyze two possible cases.

Case 1. o is odd.

We have a > 3, 0 < ar < k and there exists an [(« + 1)r 4+ 1]-chord in A.
Since o — 1 is even, the choice of a implies that every —((aw—1) 4 1)r-chord
is in A.

Let (z1,z9) be an [(a + 1)r + 1]-chord, (zg,z2) the —ar-chord with
an initial vertex zo and (x2,x3) the (k+ 1) + (t — 1)(k — 2)-chord with an
initial vertex zo (it follows from the hypothesis and Lemma 2.1 that these
chords are in A). Clearly, ¢(x1,7,22) = (¢ +1)r+1—ar = r+ 1 and
lxs,v,xz1) = n—(r+1)—[(k+1)+ (—1)(k—2)] = k—5. Notice
x3 € (xo,7,x1) — {®o,z1} because ar < k, and €(xa,7v,z3) > k+ 1. We
conclude that Cx_o = (z3,7,21) U (21,20, x2,x3) is a directed cycle with
J(Ck—2) >k —5.

Case 2. « is even.

We have ae > 2, 0 < ar < k, and there exists an (a + 1)r-chord in A. Since
a—1 is odd, the choice of o implies that every —[(a—1+1)r+ 1]-chord is in
A. Let (z1,x0) be an (a + 1)r-chord, (zg,x2) the —(ar + 1)-chord with an
initial vertex xg, and (z2,x3) the (k+1)+ (¢t —1)(k —2)-chord with an initial
vertex To.

Clearly, ¢(z1,7v,22) = (o + 1)r —ar —1 = r — 1 and {(z3,7,21) =
n—(r—1)—[k+1+(t—1)(k—2)] =k — 3. Moreover, x3 € (xq,v, 1) —
{zo,z1} because l(x2,v,20) = ar +1, 0 < ar+ 1 < k and (za,7,x3) >
k + 1. We obtain C, = (z3,7,21) U (21,20, x2,x3) a directed cycle with
I(Ck) = k — 3. -

Lemma 6.7. At least one of the following properties holds.
(i) There exists a directed cycle Cpy with I(Cpry) > h(k) — 3.
(ii) Fori even —2 < i < r+1; every —(2r+1—1i)-chord and every (k—1+1)-

chord is in A.

Proof. Suppose (i) does not hold, we shall prove that property (ii) holds by
induction on 7. We start with ¢ = —2 and ¢ = 0; namely, we prove that the
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following chords are in A: (a) every (k — 3)-chord, (b) every (k — 1)-chord,
(c) every —(2r + 3)-chord and (d) every —(2r + 1)-chord.

The proof of (a) and (b) follows directly from Lemma 6.2. Let 0 be any
vertex of T. It follows from Lemma 6.1 (with v = 0) and from Lemma 6.2
(part (b) and (d)) that the following chords are in A: (0,k—1+(t—1)(k—2)),
(r+2,0) and (r,0). Part (c): every —(2r+3)-chord isin A. If (n—r—1,7+2)
€ A, thenC, = (n—r—1,7+2,0,k—14+(t—-1)(k—2))U(k—1+4+(t—1)(k—2),
v,n—r —1) is a directed cycle with J(C) = k — 3, a contradiction. (Notice
that k—1+(t—1)(k—2) € (r+2,y,n—r—1)—{r+2,n—r—1} sincer < k—5;
moreover {(k—1+(t—1)(k—2),y,n—r—1) =n—r—1—(k—1)—(t—1)(k—2) =
k—3).

Part (d): every —(2r + 1)-chord is in A. If (n —r — 2,7 — 1) € A, then
Cr = (n—r—2,r—1,7,0,k—14+(t—1)(k—2))U(k—14+(t—1)(k—2),v,n—r—2)
is a directed cycle with J(C;) = k — 3, a contradiction. (Notice that since
r<k—5<k—1landk > 10 we have r < k—1+(t—1)(k—2) < n—(r+2), and
U k—1+(t—-1)(k=2),v,n—1—2) =n—(r+2)—[k—1+(t—1)(k—2)] = k—4).
Assume that (ii) in Lemma 6.7 holds for each i’ even, 0 <4’ <4 and let us
prove it for ¢ + 2; namely, we prove

(o) Every (k+1+14)-chordisin A, 0 <i<r—1.
(8) Every —(2r —1 —1i)-chordisin A, 0 <i <r—1.

Proof of (a). It follows from the inductive hypothesis that for each j
even, 0 < j <1, every [(k — 1) + j]-chord and every [(k — 3) + j]-chord is in
A (because for j = 0 we have proved that every (k — 3)-chord is in A). It
follows from Lemma 6.2 that every (—r)-chord and every —(r + 2)-chord is
in A. Therefore it follows from Lemma 6.3 that for even j, 0 < j < i every
—(2r — j + 1)-chord, —(2r — j + 3)-chord and —(2r — j + 5)-chord is in A.
That means that for each even j, —4 < j <i<r —1every —(2r —j+ 1)-
chord is in A. These are % + 3 chords with initial odd (resp. even) vertices
consecutive in 7.

Assume by contradiction that (z3,0) is a —(k 4+ 1 + i)-chord, ¢ being
even 0 < i <r—1. Let xp = n — (2r —i — 1). Hence letting x9 = 2 we
have that (x2,z0) is a —(2r — i + 1)-chord (we have observed that every
—(2r — i+ 1)-chord is in A).

First, we prove that xg € (x3+1,v,n—1): {(xg,7,0) =2r—i—1>1r >3,
lxs,v,xz0) =n—(k+14+i+2r—i—1)=k—-1+t(k—2)+r—k—2r>
k—1+k—2—r—k=k—3—r>2 (remember 3 <r <k —25).
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Now, there exists an out-neighbor of ¢, say x, such that x is in (z2, v, z3—1)
this is a direct consequence of Lemma 6.4 and the fact that the num-
ber even vertices in (ra,7,x3 — 1) is at least k—f (Notice that z¢ is odd,
U xo,v,23—1)=k+14+i—-3=k+i—2>Fk—2). Let x4 be the smallest
(the nearest to 0 in ) such vertex.

Let x1 = 0, we will prove that 4 —i —4 € (1,7, x4 — 3). Since for each
J, jeven —4 < j <i<r—1, every —(2r — j + 1)-chord is in A, it follows
that

{(2,1‘0), (4,1‘0), (6,%‘0), e (’L + 4,$0), (Z + 6,1‘0)} CA.

Hence the selection of x4 implies x4 > 7+ 8,s0 x4 — 7 — 4 > 3.

Finally, since ¢(x4,7y,x3) +€{x1,v,24—1—4) = k+1+i—(i+4) = k-3
it follows that Cx = (x4 —i—4, xo, x4)U{x4, 7y, x3)U(23, 21)U{T1, Y, 24— 0 —4)
is a directed cycle with J(Cx) = k — 3 (Notice (x4 —i —4,z9) € A by the
choice of x4 and the fact x4 —i —4 € (z1,7v,24 — 3)).

Proof of (B). Part (3) follows from Lemma 6.3 (taking i + 2 instead of 7)
and the following facts:

Every (k — 1 + ¢)-chord is in A for even i, —2 < i < r + 1 (it follows
from part («)).

Every (k—3+1i)-chord is in A for even ¢, 0 < i < r+1 (it follows from
the assertion of above).

Every (—r)-chord and every —(r + 2)-chord is in A (it follows from
Lemma 6.2). |

Theorem 6.8. If n > 2k — 4, then there exists a directed cycle Cpy) with
I(Chxy) = h(k) — 3.

Proof. The case n = 2k — 4 is considered in Section 4. Assume n >
2k — 4 and suppose by contradiction that there is no directed cycle Cp )
with J(Gh(k)) > h(k) - 3.

It follows from Lemma 6.7 that for each even i, —2 < i < r + 1 every
(k — 14 i)-chord is in A, in particular

(1) {(0,k-3),(0,k—1),(0,k+1),(0,k+3),...,(0,k+r—2),(0,k+r)} C A.

(Notice that k +r < n — 1 because t > 1 and k > 10).
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It follows from Lemma 6.2 that every (—r)-chord is in A, and by Lemma 6.7
that every (k+1)-chord is in A. Therefore, by Lemma 6.6 we have: For every
odd «, 0 < ar < k, every —[(a+1)r+1]-chord is in A. And for every even a,
0 < ar <k, every —(a + 1)r-chord is in A. Let ap = max{a € N|ar < k}.
Clearly, agr < k. We will analize the two possible cases:

Case 1. ag is even.
It follows from Lemma 6.6 that every —(ag+ 1)r-chord is in A, in particular
((ag + 1)r,0) € A. On the other hand, agr < k implies (ag + 1)r < k +r
and the selection of ag implies k < (ag+1)r < k+r. Thus y = (g + 1)1 €
{k+1,k+3,k+5,....,k +r}; thus we have (y,0) € A and (1) implies
(0,y) € A. A contradiction.

Case 2. ag id odd.
It follows from Lemma 6.6 that every —[(ag + 1)r + 1]-chord is in A, in
particular ((ap+1)r+1,0) € A. On the other hand, apr < k and the choice
of ap implies k+1 < (ap+)r+1<k+7r,y = (ap+ 1)r+1is odd and
ye{k+1,k+3,k+5,...,k+r}. So it follows from (1) that (0,y) € A and
we have proved (y,0) € A. A contradiction. |

7. Remarks

In this section, it is proved that the hypothesis of Theorem 6.8 is tight.

Definition 7.1. A digraph D with vertex set V' is called cyclically p-partite
complete (p > 3) provided one can partition V = Vy+ Vi +---+V,_1 so that
(u,v) is an arc of D if and only if v € V;, v € V;41 (notation modulo p).

Remark 7.2. The cyclically 4-partite complete digraph T} is a bipartite
tournament and clearly every directed cycle of Ty has length = 0 (mod 4).
So for k = 4m + 2, T4 has no directed cycles of length k and for k = 4m, Ty
has no directed cycles of length k& — 2.

Now we consider the following simple lemma.

Lemma 7.3. Let Cyy be a directed cycle with I(Cpy) = h(k) — 2. If
f1=1(0,21), fa = (y1,y2) are the arcs of Cpxy not in v, then yo =y1 +n —
(h(k) — 2+ x1). Namely, fa is a —(x1 + (h(k) — 2))-chord of 7.
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Remark 7.4. For n > 5, k > 5, such that n # k + s(k — 2) + m(k — 4) and
n # s(k —2) +m(k —4) with s,m € N, there exists a bipartite hamiltonian
tournament 7}, with no directed cycles €y with J(Cpiy) = h(k) — 2.

Proof. Define T,, as follows:
Let

C={(iyi+k—14+s(k—2)+m(k—4))|i€{0,1,...,n—1}, s,m € N with

(k—1)+s(k—2)+m(k—4) <n—1}

and
F={(,i+k—3+s(k—2)+m(k—4))]ie€{0,1,...,n—1}, s,m € N with

(k—=3)+s(k—2)+m(k—4) <n-—1},

A(T,) =CUFU <{(i—|—j,z‘)|je {2,3,..., V‘;J}}—(Cum)

u{(z‘,z‘+1)yie{0,1,...,n—1}}u{(HZ,z‘)|z‘e{0,1,...,2—1}}.

Clearly, there is no directed cycle Cp) with J(Cp)) = h(k) — 1 (Notice
that T,, has every (k — 1)-chord and every (k — 3)-chord). Now assume for
contradiction that Cp ) is a directed cycle of T;, with J(Cp 1)) = k — 2, and
let fi = (0,21), fo = (y1,y2) the only arcs of € not in 7. Without loss
of generality we can assume £(f1) < 5. The definition of T}, implies that
r1=k—1+sk—2)+m(k—4)orxzy =k—3+s(k—2)+m(k—4). It
follows from Lemma 7.3 that yo has one of the following forms:

(@) yo=vy1+n—[k—1+(s+1)(k—2)+m(k—4).

When £ — 1+ (s + 1)(k —2) + m(k —4) < n — 1 we obtain that fa is a
—(k—14(s+1)(k—2)+m(k—4))-chord, contradicting the definition of T,,.

When k—14(s+1)(k—2)+m(k—4) > n—1 we have that ¢(x1,v,0) <
k—1 and the fact C,—{(0,z1), (y1,y2)} C (z1,7,0) implies ¢(z1,7,0) > k—3;
and since ¢(x1,7,0) is odd we have ¢(z1,7v,0) € {k — 1,k — 3}. Now if
l(x1,7,0) =k—1,thenn=x1+k—1=k—14+s(k—2)+m(k—4)+k—1=
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kE+ (s+ 1)(k —2) +m(k — 4), a contradiction. If ¢(x1,7,0) = k — 3, then
n=x1+k—3=k—1+s(k—2)+m(k—1)+k—3 = k+s(k—2)+(m+1)(k—4),
a contradiction.

(b) o=y +n—[k—-1)+s(k=2)+ (m+1)(k-4)].

(€ va=yi+n—[k=3)+(s+1)(k—-2)+m(k-4)]

(d) yo=y1+n—[(k—3)+s(k—2)+ (m+1)(k—4)].
Cases (b), (c) and (d) can be analized in a completly analogous form as the
case (a) to get a contradiction.

It is easy to verify that if n = k + s(k —2) + m(k —4) or n = s(k —
2)+m(k—4) with s,m € N, then 7}, (any bipartite hamiltonian tournament
with n vertices) has a directed cycle €y with I(Cppy) > h(k) — 2. |
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