CYCLE-PANCYCLISM IN BIPARTITE TOURNAMENTS I

Hortensia Galeana-SÁnchez
Instituto de Matemáticas, UNAM
Universidad Nacional Autónoma de México
Ciudad Universitaria, 04510, México, D.F., MEXICO

e-mail: hgaleana@matem.unam.mx

Abstract

Let T be a hamiltonian bipartite tournament with n vertices, γ a hamiltonian directed cycle of T, and k an even number. In this paper, the following question is studied: What is the maximum intersection with γ of a directed cycle of length k ? It is proved that for an even k in the range $4 \leq k \leq \frac{n+4}{2}$, there exists a directed cycle $\mathcal{C}_{h(k)}$ of length $h(k), h(k) \in\{k, k-2\}$ with $\left|A\left(\mathcal{C}_{h(k)}\right) \cap A(\gamma)\right| \geq h(k)-3$ and the result is best possible.

In a forthcoming paper the case of directed cycles of length k, k even and $k>\frac{n+4}{2}$ will be studied.

Keywords: bipartite tournament, pancyclism.
2000 Mathematics Subject Classification: 05C20.

1. Introduction

The subject of pancyclism has been studied by several authors (e.g. [1, 2, 5, $10,12,14]$). Three types of pancyclism have been considered. A digraph D is pancyclic if it has directed cycles of all the possible lengths; D is vertexpancyclic if given any vertex v there are directed cycles of every length containing v; and D is arc-pancyclic if given any arc e there are directed cycles of every length containing e.

It is well known that a hamiltonian bipartite tournament is pancyclic, and vertex-pancyclic (with only very few exceptions) but not necessarily
arc-pancyclic (see e.g. [3, 11, 13]). Within the concept of cycle-pancyclism the following question is studied: Given a directed cycle γ of a digraph D, find the maximum number of arcs which a directed cycle of length k (if such a directed cycle exists) contained in $D[V(\gamma)]$ (the subdigraph of D induced by $V(\gamma)$) has in common with γ. Cycle-pancyclism in tournaments has been studied in $[6,7,8]$ and [9]. In this paper, the cycle-pancyclism in bipartite tournaments is investigated. In order to do so, it is sufficient to consider a hamiltonian bipartite tournament T where γ is a hamiltonian directed cycle (because we are looking for directed cycles of length k contained in $D[V(\gamma)]$ whose arcs intersect the arcs of γ the most possible). We will assume (without saying it explicitly in Lemmas, Theorems or Corollaries) that we are working in a hamiltonian bipartite tournament with a vertex set $V=\{0,1, \ldots, n-1\}$ and an arc set A. Also we assume without loss of generality that $\gamma=(0,1, \ldots, n-1,0)$ is a hamiltonian directed cycle of $T ; k$ will be an even number; $\mathcal{C}_{h(k)}$ will denote a directed cycle of length $h(k)$ with $h(k) \in\{k, k-2\}$ and $\mathcal{J}\left(\mathcal{C}_{h(k)}\right)=\left|A\left(\mathcal{C}_{h(k)}\right) \cap A(\gamma)\right|$. This paper is the first part of the study of the existence of a directed cycle $\mathcal{C}_{h(k)}$ where $\mathcal{J}\left(\mathcal{C}_{h(k)}\right)$ is the maximum. For general concepts we refer the reader to [4].

2. Preliminaries

A chord of a cycle \mathcal{C} is an arc not in \mathcal{C} but with both terminal vertices in \mathcal{C}. The length of a chord $f=(u, v)$ of \mathcal{C} denoted $\ell(f)$ is equal to the length of $\langle u, \mathcal{C}, v\rangle$, where $\langle u, \mathcal{C}, v\rangle$ denotes the $u v$-directed path contained in \mathcal{C}. We say that f is a c-chord if $\ell(f)=c$ and $f=(u, v)$ is an $a-c$-chord if $\ell(\langle v, \mathcal{C}, u\rangle)=c$. Observe that if f is a c-chord, then it is also an $a-(n-c)$ chord. All the chords considered in this paper are chords of γ. We will denote by \mathcal{C}_{k} a directed cycle of length k. In what follows all notation is taken modulo n.

For any $a, 2 \leq a \leq n-2$, denote by t_{a} the largest integer such that $a+t_{a}(k-2)<n-1$. The important case of t_{k-1} is denoted by t in the rest of the paper. Let r be defined as follows: $r=n-[k-1+t(k-2)]$. Notice that: If $a \leq b$ then $t_{a} \geq t_{b} ; t \geq 0$ and $3 \leq r \leq k-1, r$ is odd.

Lemma 2.1. If the a-chord with an initial vertex 0 (0 being an arbitrary vertex of T) is in A, then at least one of the two following properties holds.
(i) There exists a directed cycle \mathcal{C}_{k} with $\mathcal{J}\left(\mathcal{C}_{k}\right)=k-2$.
(ii) For every $0 \leq i \leq t_{a}$, the $a+i(k-2)$-chord with an initial vertex 0 is in A.

Proof. Suppose that (ii) in the lemma is false, and let

$$
j=\min \left\{i \in\left\{1,2, \ldots, t_{a}\right\} \mid(a+i(k-2), 0) \in A\right\},
$$

then
$\mathfrak{C}_{k}=(0, a+(j-1)(k-2)) \cup\langle a+(j-1)(k-2), \gamma, a+j(k-2)\rangle \cup(a+j(k-2), 0)$
is a directed cycle with $\mathcal{J}\left(\mathfrak{C}_{k}\right)=k-2$.
Corollary 2.2. At least one of the two following properties holds
(i) There exists a directed cycle \mathfrak{C}_{k} with $\mathcal{J}\left(\mathfrak{C}_{k}\right) \geq k-2$.
(ii) For every $0 \leq i \leq t$, every $(k-1+i(k-2))$-chord is in A.

Proof. Clearly, for any vertex $0,(0, k-1) \in A$ since otherwise $(k-1,0) \in A$ and $\mathfrak{C}_{k}=\langle 0, \gamma, k-1\rangle \cup(k-1,0)$ is a directed cycle with $\mathcal{J}\left(\mathfrak{C}_{k}\right)=k-1$ and thus (i) holds. Now applying Lemma 2.1 with $a=k-1$ we have that (i) or (ii) holds.

3. The Cases $k=4,6,8$

Theorem 3.1. There exists a directed cycle \mathfrak{C}_{4} with $\mathcal{J}\left(\mathcal{C}_{4}\right) \geq 2$.
Proof. It follows from Corollary 2.2 for $k=4$ that we may assume that for every $0 \leq i \leq t_{3}$, every $(3+2 i)$-chord is in A; now recall $3 \leq r \leq k-1$, r is odd and $r=n-[k-1+t(k-2)]$. Hence $r=3$ and we conclude that $\mathcal{C}_{4}=\left(0,3+2 t_{3}, 3+2 t_{3}+1,3+2 t_{3}+2,0\right)$ has $\mathcal{J}\left(\mathcal{C}_{4}\right)=3$.

Theorem 3.2. There exists a directed cycle $\mathfrak{C}_{h(6)}$ with $\mathcal{J}\left(\mathfrak{C}_{h(6)}\right) \geq h(6)-2$.
Proof. It follows from Corollary 2.2 for $k=6$ that we can assume that for every $i, 0 \leq i \leq t_{5}$, every $(5+4 i)$-chord is in A; recall $3 \leq r \leq 5$, and r is odd; so $r \in\{3,5\}$. When $r=3, \mathfrak{C}_{4}=\left(0,5+4 t_{5}\right) \cup\left\langle 5+4 t_{5}, \gamma, 0\right\rangle$ satisfies $\mathcal{J}\left(\mathcal{C}_{4}\right)=3$; and when $r=5, \mathcal{C}_{6}=\left(0,5+4 t_{5}\right) \cup\left\langle 5+4 t_{5}, \gamma, 0\right\rangle$ satisfies $\mathcal{J}\left(\mathfrak{C}_{6}\right)=5$.

Theorem 3.3. There exists a directed cycle $\mathcal{C}_{h(8)}$ with $\mathcal{J}\left(\mathcal{C}_{h(8)}\right) \geq h(8)-3$.
Proof. It follows from Corollary 2.2 for $k=8$ that we may assume that for every $i, 0 \leq i \leq t_{7}$ every $(7+6 i)$-chord is in A; recall $3 \leq r \leq k-1=7$ and r is odd, so $r \in\{3,5,7\}$. When $r=7$ we obtain $\mathcal{C}_{8}=\left(0,7+6 t_{7}\right) \cup$ $\left\langle 7+6 t_{7}, \gamma, 0\right\rangle$ a directed cycle with $\mathcal{J}\left(\mathcal{C}_{8}\right)=7$. When $r=5$ we have $\mathcal{C}_{6}=$ $\left(0,7+6 t_{7}\right) \cup\left\langle 7+6 t_{7}, \gamma, 0\right\rangle$ is a directed cycle with $\mathcal{J}\left(\mathfrak{C}_{6}\right)=5$. When $r=3$, since $n \geq 2 k-4=12$ and $r=3$ we have $t_{7} \geq 1$ and every -9 -chord is in A (notice that $(0, n-9) \in A$ because $n-9=7+\left(t_{7}-1\right) 6$ and 0 is an arbitrary vertex) in particular $(n-2, n-11) \in A$; now observe that we can assume $(n-7,0) \in A$ (otherwise $(0, n-7) \in A$ and $\mathcal{C}_{8}=(0, n-7) \cup\langle n-7, \gamma, 0\rangle$ is a directed cycle with $\left.\mathcal{J}\left(\mathcal{C}_{8}\right)=7\right)$; also observe that $r=3$ implies $(0, n-3) \in A$. We conclude that $\mathcal{C}_{8}=(n-2, n-11) \cup\langle n-11, \gamma, n-7\rangle \cup(n-7,0, n-3, n-2)$ is a directed cycle with $\mathcal{J}\left(\mathcal{C}_{8}\right)=5$.

4. The Case $n=2 k-4$

Theorem 4.1. If $n=2 k-4$, then there exists a directed cycle $\mathcal{C}_{h(k)}$ with $\mathcal{J}\left(\mathfrak{C}_{h(k)}\right)=h(k)-1$.

Proof. Consider the arc between 0 and $k-3$; when $(0, k-3) \in A$ we have $\mathcal{C}_{k}=(0, k-3) \cup\langle k-3, \gamma, 0\rangle$ a directed cycle with $\mathcal{J}\left(\mathcal{C}_{k}\right)=k-1$ and when $(k-3,0) \in A$ we obtain $\mathcal{C}_{k-2}=(k-3,0) \cup\langle 0, \gamma, k-3\rangle$ a directed cycle with $\mathcal{J}\left(\mathcal{C}_{k-2}\right)=k-3$.

5. The Cases $r=k-1$ and $r=k-3$

Theorem 5.1. If $r=k-1$ or $r=k-3$, then there exists a directed cycle $\mathcal{C}_{h(k)}$ with $\mathcal{J}\left(\mathcal{C}_{h(k)}\right)=h(k)-1$.

Proof. If $r=k-1$, then $(0, n-(k-1)) \in A$ and $\mathcal{C}_{k}=(0, n-(k-1)) \cup$ $\langle n-(k-1), \gamma, 0\rangle$ is a directed cycle with $\mathcal{J}\left(\mathcal{C}_{k}\right)=k-1$. If $r=k-3$, then $(0, n-(k-3)) \in A$ and $\mathcal{C}_{k-2}=(0, n-(k-3)) \cup\langle n-(k-3), \gamma, 0\rangle$ is a directed cycle with $\mathcal{J}\left(\mathcal{C}_{k-2}\right)=k-3$.

Corollary 5.2. If $t=0$, then there exists a directed cycle $\mathcal{C}_{h(k)}$ with $\mathcal{J}\left(\mathcal{C}_{h(k)}\right)=h(k)-1$.

Proof. If $t=0$, then $n=k-1+r$, where $k-3 \leq r \leq k-1, r$ is odd (because $n \geq 2 k-4$), so $r \in\{k-3, k-1\}$. If $r=k-3$, then the assertion follows by Theorem 4.1. If $r=k-1$ and thus $n=2 k-2$, then we can distinguish the cases $(0, k-1) \in A$ and $(0, k-1) \notin A$. If $(0, k-1) \in A$, then $\mathfrak{C}_{k}=(0, k-1) \cup\langle k-1, \gamma, n\rangle$ is a cycle with $\mathcal{J}\left(\mathcal{C}_{k}\right)=k-1$. The other case follows analogously.

6. The General Case

In this section, we assume $r \leq k-5, t \geq 1$, and $k \geq 10$ (so $n \geq 16$) in view of the results in previous sections.

Lemma 6.1. If the $(k-1+\alpha)$-chord, $\alpha \leq r+1$, with an initial vertex 0 is in A, then at least one of the two following properties holds.
(i) There exists a directed cycle \mathfrak{C}_{k} with $\mathcal{J}\left(\mathcal{C}_{k}\right)=k-2$.
(ii) For every $0 \leq i \leq t-1$, the $k-1+\alpha+i(k-2)$-chord with an initial vertex 0 is in A.

It follows directly from Lemma 2.1; only observe that since $3 \leq r \leq k-5$ we have $k-1+r+1+(t-1)(k-2) \leq k+k-5+(t-1)(k-2)=$ $k-1+t(k-2)-2 \leq k-1+t(k-2)+r-5=n-5$.

Lemma 6.2. At least one of the two following properties holds
(i) There exists a directed cycle $\mathfrak{C}_{h(k)}$ with $\mathcal{J}\left(\mathfrak{C}_{h(k)}\right) \geq h(k)-3$.
(ii) All the following chords are in A: (a) Every $(k-1)$-chord. (b) Every $(-r)$-chord. (c) Every $(k-3)$-chord and (d) Every - $(r+2)$-chord.

Proof. Assume that (i) is false. Let us prove that (ii) holds. The proof of (a) follows directly from Corollary 2.2. The proof of (b) follows from Corollary 2.2 , observing that $n-r=k-1+t(k-2)$. To prove (c) assume that there is a $-(k-3)$-chord, say $f=(y, x)$. It follows from (a) that $(x-2, y) \in A$, and it follows from (b) that $(x-2+r, x-2) \in A$. Hence, there exists a vertex z in $\langle x-2+r, \gamma, y-1\rangle$ such that $(z, x-2) \in A$ and $(x-2, z+2) \in A$. We conclude

$$
\mathfrak{C}_{k-2}=(y, x) \cup\langle x, \gamma, z\rangle \cup(z, x-2) \cup(x-2, z+2) \cup\langle z+2, \gamma, y\rangle
$$

is a directed cycle with $\mathcal{J}\left(\mathrm{C}_{k-2}\right)=k-5=(k-2)-3$.

Finally to prove (d), let (y, x) be a $(r+2)$-chord. If follows from (c) and Lemma 2.1 that every $k-3+i(k-2)$-chord is in A for $0 \leq i \leq t$ in particular $(x+k-2, x+k-2+k-3+(t-1)(k-2)) \in A$, now observe that $x+k-2+k-3+(t-1)(k-2)=y+r+2+k-2+k-3+(t-1)(k-2)=$ $y+r+k-1+t(k-2)=y+n=y$, so $(x+k-2, y) \in A$; we conclude that $\mathcal{C}_{k}=(y, x) \cup\langle x, \gamma, x+k-2\rangle \cup(x+k-2, y)$ is a directed cycle with $\mathcal{J}\left(\mathcal{C}_{k}\right)=k-2$.

Lemma 6.3. Let $0 \leq i \leq r+1$, i being even. If all the $-r$-chords, $-(r+2)$ chords, $(k-3+i)$-chords and $(k-1+i)$-chords are in T, then at least one of the following properties holds.
(i) There exists a directed cycle \mathcal{C}_{k} with $\mathcal{J}\left(\mathcal{C}_{k}\right) \geq k-3$.
(ii) All the $-(2 r-i+1)$-chords, $-(2 r-i+3)$-chords and $-(2 r-i+5)$-chords are in T.

Proof. Assume that the hypothesis of the Lemma holds and (i) is false. Let us prove that (ii) holds.

Since all the $[(k-3)+i]$-chords and all the $[(k-1)+i]$-chords are in T, it follows from Lemma 6.1 (taking $\alpha=i-2)$ that every $[k-3+i+(t-1)(k-2)]$ chord is in T, and that (taking $\alpha=i$) every $[k-1+i+(t-1)(k-2)]$-chord is in T. Thus the following arcs are in $T:(r, 0),(r+2,0),(0, k-1+(t-1)$ $(k-2)+i)$ and $(0, k-1+(t-1)(k-2)+i-2)$.

Let $x_{1}=r-1, x_{2}=r+1, x_{3}=k-1+(t-1)(k-2)+i-2, x_{4}=x_{3}+2$, $x_{5}=x_{4}+k-2, x_{6}=x_{5}+2, x_{7}=x_{5}-2, x_{8}=x_{7}-2$. Therefore $\left(0, x_{3}\right) \in A$ and $\left(0, x_{4}\right) \in A$.

Observe that: $\ell\left\langle x_{5}, \gamma, 0\right\rangle=n-x_{5}=r-i$ (because $n-x_{5}=k-1+t(k-2)$ $+r-(k-1)-i-t(k-2)=r-i), \ell\left\langle x_{6}, \gamma, 0\right\rangle=r-i-2, \ell\left\langle x_{6}, \gamma, x_{1}\right\rangle=2 r-i-3$ (because $\ell\left\langle x_{6}, \gamma, x_{1}\right\rangle=\ell\left\langle x_{6}, \gamma, 0\right\rangle+r-1=r-i-2+r-1$), $\ell\left\langle x_{7}, \gamma, x_{1}\right\rangle=$ $\ell\left\langle x_{6}, \gamma, x_{1}\right\rangle+4=2 r-i+1, \ell\left\langle x_{7}, \gamma, x_{2}\right\rangle=\ell\left\langle x_{7}, \gamma, x_{1}\right\rangle+2=2 r-i+3$, $\ell\left\langle x_{8}, \gamma, x_{2}\right\rangle=\ell\left\langle x_{7}, \gamma, x_{2}\right\rangle+2=2 r-i+5, \ell\left\langle x_{4}, \gamma, x_{7}\right\rangle=\ell\left\langle x_{4}, \gamma, x_{5}\right\rangle-2=k-4$ and $\ell\left\langle x_{3}, \gamma, x_{8}\right\rangle=\ell\left\langle x_{4}, \gamma, x_{7}\right\rangle=k-4$.

First, we prove that every $-(2 r-i+1)$-chord is in A. Suppose that there exists a $(2 r-i+1)$-chord. We can assume without loss of generality that $\left(x_{7}, x_{1}\right)$ is that chord. Hence $\mathcal{C}_{k}=\left(x_{7}, x_{1}, x_{1}+1=r, 0, x_{4}\right) \cup\left\langle x_{4}, \gamma, x_{7}\right\rangle$ is a directed cycle with $\mathcal{J}\left(\mathcal{C}_{k}\right)=k-3$.

Now we prove that every $-(2 r-i+3)$-chord is in A. Assume the contrary; we may assume that $\left(x_{7}, x_{2}\right)$ is a $(2 r-i+3)$-chord. Then $\mathcal{C}_{k}=$ $\left(x_{7}, x_{2}=r+1, r+2,0, x_{4}\right) \cup\left\langle x_{4}, \gamma, x_{7}\right\rangle$ is a directed cycle with $\mathcal{J}\left(\mathcal{C}_{k}\right)=k-3$.

Finally, we prove that every $-(2 r-i+5)$-chord is in T. Assuming the opposite, we may consider that $\left(x_{8}, x_{2}\right)$ is a $(2 r-i+5)$-chord. Then $\mathfrak{C}_{k}=\left(x_{8}, x_{2}=r+1, r+2,0, x_{3}\right) \cup\left\langle x_{3}, \gamma, x_{8}\right\rangle$ is a directed cycle with $\mathcal{J}\left(\mathcal{C}_{k}\right)=k-3$.

Lemma 6.4. At least one of the following properties holds.
(i) There exists a directed cycle \mathfrak{C}_{k} with $\mathcal{J}\left(\mathfrak{C}_{k}\right) \geq k-3$.
(ii) For any even vertex x (resp. odd) there exist at most $\frac{k-4}{2}$ consecutive odd (resp. even) vertices in γ which are in-neighbors of x.

Proof. Assume that (i) does not hold. Assume without loss of generality that $x=0$. It follows from Corollary 2.2 that the vertices $k-1+i(k-2)$, for $0 \leq i \leq t$ are not in-neighbords of 0 .

So, there are at most $\frac{k-4}{2}$ odd vertices consecutive in $\langle k-1, \gamma, 0\rangle$ which are in-neighbors of 0 . Since $(0,1) \in A$, also in $\langle 0, \gamma, k-1\rangle$ there are at most $\frac{k-4}{2}$ odd vertices consecutive in-neighbors of 0 .
The following corollary is a directed consequence of this Lemma (only observe that the hypothesis $n \geq 2 k-4$ is not needed in the Lemma).

Corollary 6.5. Let T be a bipartite tournament with n vertices and γ a hamiltonian cycle of T. For each even (resp. odd) vertex x of T such that the number of consecutive odd (resp. even) in-neighbors of x in γ is at least $\frac{k-2}{2}, 3 \leq k \leq n$, k even, there exists a directed cycle \mathcal{C}_{k} containing x with $\mathcal{J}\left(\mathcal{C}_{k}\right) \geq k-2$.

Lemma 6.6. If every $(k+1)$-chord is in A then at least one of the two following properties holds.
(i) There exists a directed cycle $\mathfrak{C}_{h(k)}$ with $\mathcal{J}\left(\mathfrak{C}_{h(k)}\right) \geq h(k)-3$.
(ii) For every odd $\alpha, 0<\alpha r<k$; every $-[(\alpha+1) r+1]$-chord is in A. And for every even $\alpha, 0 \leq \alpha r<k$; every $-(\alpha+1) r$-chord is in A.

Proof. For $\alpha=0$, we can assume that every $-r$-chord is in A (otherwise it follows from Lemma 6.2 that (i) holds and we are done). For $\alpha=1$, suppose that $\left(x_{1}, x_{0}\right)$ is a $(2 r+1)$-chord, let $\left(x_{0}, x_{2}\right)$ the $-r$-chord with an initial vertex x_{0} and $\left(x_{2}, x_{3}\right)$ the $[(k-1)+(t-1)(k-2)]$-chord with an initial vertex x_{2} (It follows from Corollary 2.2 that we can assume such a chord exists); clearly, $\ell\left\langle x_{1}, \gamma, x_{2}\right\rangle=r+1$ and $\ell\left\langle x_{3}, \gamma, x_{1}\right\rangle=n-(r+1)-$ $[k-1+(t-1)(k-2)]=k-3$. Now notice that $x_{3} \in\left\langle x_{0}, \gamma, x_{1}\right\rangle-\left\{x_{0}, x_{1}\right\}$
(because $r<k-3$ and $k \geq 10$), thus $\mathfrak{C}_{k}=\left\langle x_{3}, \gamma, x_{1}\right\rangle \cup\left(x_{1}, x_{0}, x_{2}, x_{3}\right)$ is a directed cycle with $\mathcal{J}\left(\mathrm{C}_{k}\right) \geq k-3$.

We have proved the assertion of Lemma 6.6 for $\alpha=0$ and $\alpha=1$. To complete the proof, assume (ii) does not hold for some $\alpha^{\prime} \geq 2$ and we show that (i) holds. Let α be the least integer $\alpha \geq 2$ for which (ii) does not hold. We analyze two possible cases.

Case 1. α is odd.
We have $\alpha \geq 3,0<\alpha r<k$ and there exists an $[(\alpha+1) r+1]$-chord in A. Since $\alpha-1$ is even, the choice of α implies that every $-((\alpha-1)+1) r$-chord is in A.

Let $\left(x_{1}, x_{0}\right)$ be an $[(\alpha+1) r+1]$-chord, $\left(x_{0}, x_{2}\right)$ the $-\alpha r$-chord with an initial vertex x_{0} and $\left(x_{2}, x_{3}\right)$ the $(k+1)+(t-1)(k-2)$-chord with an initial vertex x_{2} (it follows from the hypothesis and Lemma 2.1 that these chords are in A). Clearly, $\ell\left\langle x_{1}, \gamma, x_{2}\right\rangle=(\alpha+1) r+1-\alpha r=r+1$ and $\ell\left\langle x_{3}, \gamma, x_{1}\right\rangle=n-(r+1)-[(k+1)+(t-1)(k-2)]=k-5$. Notice $x_{3} \in\left\langle x_{0}, \gamma, x_{1}\right\rangle-\left\{x_{0}, x_{1}\right\}$ because $\alpha r<k$, and $\ell\left\langle x_{2}, \gamma, x_{3}\right\rangle \geq k+1$. We conclude that $\mathcal{C}_{k-2}=\left\langle x_{3}, \gamma, x_{1}\right\rangle \cup\left(x_{1}, x_{0}, x_{2}, x_{3}\right)$ is a directed cycle with $\mathcal{J}\left(\mathrm{C}_{k-2}\right) \geq k-5$.

Case 2. α is even.
We have $\alpha \geq 2,0<\alpha r<k$, and there exists an $(\alpha+1) r$-chord in A. Since $\alpha-1$ is odd, the choice of α implies that every $-[(\alpha-1+1) r+1]$-chord is in A. Let $\left(x_{1}, x_{0}\right)$ be an $(\alpha+1) r$-chord, $\left(x_{0}, x_{2}\right)$ the $-(\alpha r+1)$-chord with an initial vertex x_{0}, and $\left(x_{2}, x_{3}\right)$ the $(k+1)+(t-1)(k-2)$-chord with an initial vertex x_{2}.

Clearly, $\ell\left\langle x_{1}, \gamma, x_{2}\right\rangle=(\alpha+1) r-\alpha r-1=r-1$ and $\ell\left\langle x_{3}, \gamma, x_{1}\right\rangle=$ $n-(r-1)-[k+1+(t-1)(k-2)]=k-3$. Moreover, $x_{3} \in\left\langle x_{0}, \gamma, x_{1}\right\rangle-$ $\left\{x_{0}, x_{1}\right\}$ because $\ell\left\langle x_{2}, \gamma, x_{0}\right\rangle=\alpha r+1,0<\alpha r+1 \leq k$ and $\ell\left\langle x_{2}, \gamma, x_{3}\right\rangle \geq$ $k+1$. We obtain $\mathcal{C}_{k}=\left\langle x_{3}, \gamma, x_{1}\right\rangle \cup\left(x_{1}, x_{0}, x_{2}, x_{3}\right)$ a directed cycle with $\mathcal{J}\left(\mathrm{C}_{k}\right)=k-3$.

Lemma 6.7. At least one of the following properties holds.
(i) There exists a directed cycle $\mathfrak{C}_{h(k)}$ with $\mathcal{J}\left(\mathfrak{C}_{h(k)}\right) \geq h(k)-3$.
(ii) For i even $-2 \leq i \leq r+1$; every $-(2 r+1-i)$-chord and every $(k-1+i)$ chord is in A.

Proof. Suppose (i) does not hold, we shall prove that property (ii) holds by induction on i. We start with $i=-2$ and $i=0$; namely, we prove that the
following chords are in A : (a) every ($k-3$)-chord, (b) every ($k-1$)-chord, (c) every $-(2 r+3)$-chord and (d) every $-(2 r+1)$-chord.

The proof of (a) and (b) follows directly from Lemma 6.2. Let 0 be any vertex of T. It follows from Lemma 6.1 (with $\alpha=0$) and from Lemma 6.2 (part (b) and (d)) that the following chords are in $A:(0, k-1+(t-1)(k-2))$, $(r+2,0)$ and $(r, 0)$. Part (c): every $-(2 r+3)$-chord is in A. If $(n-r-1, r+2)$ $\in A$, then $\mathcal{C}_{k}=(n-r-1, r+2,0, k-1+(t-1)(k-2)) \cup\langle k-1+(t-1)(k-2)$, $\gamma, n-r-1\rangle$ is a directed cycle with $\mathcal{J}\left(\mathrm{C}_{k}\right)=k-3$, a contradiction. (Notice that $k-1+(t-1)(k-2) \in\langle r+2, \gamma, n-r-1\rangle-\{r+2, n-r-1\}$ since $r \leq k-5$; moreover $\ell\langle k-1+(t-1)(k-2), \gamma, n-r-1\rangle=n-r-1-(k-1)-(t-1)(k-2)=$ $k-3)$.

Part (d): every $-(2 r+1)$-chord is in A. If $(n-r-2, r-1) \in A$, then $\mathfrak{C}_{k}=(n-r-2, r-1, r, 0, k-1+(t-1)(k-2)) \cup\langle k-1+(t-1)(k-2), \gamma, n-r-2\rangle$ is a directed cycle with $\mathcal{J}\left(\mathcal{C}_{k}\right)=k-3$, a contradiction. (Notice that since $r \leq k-5<k-1$ and $k \geq 10$ we have $r<k-1+(t-1)(k-2)<n-(r+2)$, and $\ell\langle k-1+(t-1)(k-2), \gamma, n-r-2\rangle=n-(r+2)-[k-1+(t-1)(k-2)]=k-4)$. Assume that (ii) in Lemma 6.7 holds for each i^{\prime} even, $0 \leq i^{\prime} \leq i$ and let us prove it for $i+2$; namely, we prove
(α) Every $(k+1+i)$-chord is in $A, 0 \leq i \leq r-1$.
(β) Every $-(2 r-1-i)$-chord is in $A, 0 \leq i \leq r-1$.
Proof of ($\boldsymbol{\alpha}$). It follows from the inductive hypothesis that for each j even, $0 \leq j \leq i$, every $[(k-1)+j]$-chord and every $[(k-3)+j]$-chord is in A (because for $j=0$ we have proved that every $(k-3)$-chord is in A). It follows from Lemma 6.2 that every $(-r)$-chord and every $-(r+2)$-chord is in A. Therefore it follows from Lemma 6.3 that for even $j, 0 \leq j \leq i$ every $-(2 r-j+1)$-chord, $-(2 r-j+3)$-chord and $-(2 r-j+5)$-chord is in A. That means that for each even $j,-4 \leq j \leq i \leq r-1$ every $-(2 r-j+1)$ chord is in A. These are $\frac{i}{2}+3$ chords with initial odd (resp. even) vertices consecutive in γ.

Assume by contradiction that $\left(x_{3}, 0\right)$ is a $-(k+1+i)$-chord, i being even $0 \leq i \leq r-1$. Let $x_{0}=n-(2 r-i-1)$. Hence letting $x_{2}=2$ we have that $\left(x_{2}, x_{0}\right)$ is a $-(2 r-i+1)$-chord (we have observed that every $-(2 r-i+1)$-chord is in $A)$.

First, we prove that $x_{0} \in\left\langle x_{3}+1, \gamma, n-1\right\rangle: \ell\left\langle x_{0}, \gamma, 0\right\rangle=2 r-i-1 \geq r \geq 3$, $\ell\left\langle x_{3}, \gamma, x_{0}\right\rangle=n-(k+1+i+2 r-i-1)=k-1+t(k-2)+r-k-2 r \geq$ $k-1+k-2-r-k=k-3-r \geq 2$ (remember $3 \leq r \leq k-5$).

Now, there exists an out-neighbor of x_{0}, say x, such that x is in $\left\langle x_{2}, \gamma, x_{3}-1\right\rangle$ this is a direct consequence of Lemma 6.4 and the fact that the number even vertices in $\left\langle x_{2}, \gamma, x_{3}-1\right\rangle$ is at least $\frac{k-2}{2}$ (Notice that x_{0} is odd, $\left.\ell\left\langle x_{2}, \gamma, x_{3}-1\right\rangle=k+1+i-3=k+i-2 \geq k-2\right)$. Let x_{4} be the smallest (the nearest to 0 in γ) such vertex.

Let $x_{1}=0$, we will prove that $x_{4}-i-4 \in\left\langle x_{1}, \gamma, x_{4}-3\right\rangle$. Since for each j, j even $-4 \leq j \leq i \leq r-1$, every $-(2 r-j+1)$-chord is in A, it follows that

$$
\left\{\left(2, x_{0}\right),\left(4, x_{0}\right),\left(6, x_{0}\right), \ldots,\left(i+4, x_{0}\right),\left(i+6, x_{0}\right)\right\} \subseteq A
$$

Hence the selection of x_{4} implies $x_{4} \geq i+8$, so $x_{4}-i-4>3$.
Finally, since $\ell\left\langle x_{4}, \gamma, x_{3}\right\rangle+\ell\left\langle x_{1}, \gamma, x_{4}-i-4\right\rangle=k+1+i-(i+4)=k-3$ it follows that $\mathcal{C}_{k}=\left(x_{4}-i-4, x_{0}, x_{4}\right) \cup\left\langle x_{4}, \gamma, x_{3}\right\rangle \cup\left(x_{3}, x_{1}\right) \cup\left\langle x_{1}, \gamma, x_{4}-i-4\right\rangle$ is a directed cycle with $\mathcal{J}\left(\mathfrak{C}_{k}\right)=k-3$ (Notice $\left(x_{4}-i-4, x_{0}\right) \in A$ by the choice of x_{4} and the fact $\left.x_{4}-i-4 \in\left\langle x_{1}, \gamma, x_{4}-3\right\rangle\right)$.

Proof of $(\boldsymbol{\beta})$. Part (β) follows from Lemma 6.3 (taking $i+2$ instead of i) and the following facts:

Every $(k-1+i)$-chord is in A for even $i,-2 \leq i \leq r+1$ (it follows from part (α)).

Every $(k-3+i)$-chord is in A for even $i, 0 \leq i \leq r+1$ (it follows from the assertion of above).

Every $(-r)$-chord and every $-(r+2)$-chord is in A (it follows from Lemma 6.2).

Theorem 6.8. If $n \geq 2 k-4$, then there exists a directed cycle $\mathcal{C}_{h(k)}$ with $\mathcal{J}\left(\mathcal{C}_{h(k)}\right) \geq h(k)-3$.

Proof. The case $n=2 k-4$ is considered in Section 4. Assume $n>$ $2 k-4$ and suppose by contradiction that there is no directed cycle $\mathcal{C}_{h(k)}$ with $\mathcal{J}\left(\mathrm{C}_{h(k)}\right) \geq h(k)-3$.

It follows from Lemma 6.7 that for each even $i,-2 \leq i \leq r+1$ every ($k-1+i$)-chord is in A, in particular

$$
\begin{equation*}
\{(0, k-3),(0, k-1),(0, k+1),(0, k+3), \ldots,(0, k+r-2),(0, k+r)\} \subset A \tag{1}
\end{equation*}
$$

(Notice that $k+r<n-1$ because $t \geq 1$ and $k \geq 10$).

It follows from Lemma 6.2 that every $(-r)$-chord is in A, and by Lemma 6.7 that every $(k+1)$-chord is in A. Therefore, by Lemma 6.6 we have: For every odd $\alpha, 0<\alpha r<k$, every $-[(\alpha+1) r+1]$-chord is in A. And for every even α, $0 \leq \alpha r<k$, every $-(\alpha+1) r$-chord is in A. Let $\alpha_{0}=\max \{\alpha \in \mathbb{N} \mid \alpha r<k\}$. Clearly, $\alpha_{0} r<k$. We will analize the two possible cases:

Case 1. α_{0} is even.
It follows from Lemma 6.6 that every $-\left(\alpha_{0}+1\right) r$-chord is in A, in particular $\left(\left(\alpha_{0}+1\right) r, 0\right) \in A$. On the other hand, $\alpha_{0} r<k$ implies $\left(\alpha_{0}+1\right) r<k+r$ and the selection of α_{0} implies $k<\left(\alpha_{0}+1\right) r<k+r$. Thus $y=\left(\alpha_{0}+1\right) r \in$ $\{k+1, k+3, k+5, \ldots, k+r\}$; thus we have $(y, 0) \in A$ and (1) implies $(0, y) \in A$. A contradiction.

Case 2. α_{0} id odd.

It follows from Lemma 6.6 that every $-\left[\left(\alpha_{0}+1\right) r+1\right]$-chord is in A, in particular $\left(\left(\alpha_{0}+1\right) r+1,0\right) \in A$. On the other hand, $\alpha_{0} r<k$ and the choice of α_{0} implies $k+1 \leq\left(\alpha_{0}+1\right) r+1 \leq k+r, y=\left(\alpha_{0}+1\right) r+1$ is odd and $y \in\{k+1, k+3, k+5, \ldots, k+r\}$. So it follows from (1) that $(0, y) \in A$ and we have proved $(y, 0) \in A$. A contradiction.

7. Remarks

In this section, it is proved that the hypothesis of Theorem 6.8 is tight.
Definition 7.1. A digraph D with vertex set V is called cyclically p-partite complete ($p \geq 3$) provided one can partition $V=V_{0}+V_{1}+\cdots+V_{p-1}$ so that (u, v) is an arc of D if and only if $u \in V_{i}, v \in V_{i+1}$ (notation modulo p).

Remark 7.2. The cyclically 4 -partite complete digraph T_{4} is a bipartite tournament and clearly every directed cycle of T_{4} has length $\equiv 0(\bmod 4)$. So for $k=4 m+2, T_{4}$ has no directed cycles of length k and for $k=4 m, T_{4}$ has no directed cycles of length $k-2$.

Now we consider the following simple lemma.
Lemma 7.3. Let $\mathcal{C}_{h(k)}$ be a directed cycle with $\mathcal{J}\left(\mathcal{C}_{h(k)}\right)=h(k)-2$. If $f_{1}=\left(0, x_{1}\right), f_{2}=\left(y_{1}, y_{2}\right)$ are the arcs of $\mathfrak{C}_{h(k)}$ not in γ, then $y_{2}=y_{1}+n-$ $\left(h(k)-2+x_{1}\right)$. Namely, f_{2} is $a-\left(x_{1}+(h(k)-2)\right)$-chord of γ.

Remark 7.4. For $n \geq 5, k \geq 5$, such that $n \neq k+s(k-2)+m(k-4)$ and $n \neq s(k-2)+m(k-4)$ with $s, m \in \mathbb{N}$, there exists a bipartite hamiltonian tournament T_{n} with no directed cycles $\mathcal{C}_{h(k)}$ with $\mathcal{J}\left(\mathcal{C}_{h(k)}\right)=h(k)-2$.

Proof. Define T_{n} as follows:
Let
$C=\{(i, i+k-1+s(k-2)+m(k-4)) \mid i \in\{0,1, \ldots, n-1\}, s, m \in \mathbb{N}$ with

$$
(k-1)+s(k-2)+m(k-4)<n-1\}
$$

and
$F=\{(i, i+k-3+s(k-2)+m(k-4)) \mid i \in\{0,1, \ldots, n-1\}, s, m \in \mathbb{N}$ with

$$
\begin{gathered}
(k-3)+s(k-2)+m(k-4)<n-1\}, \\
A\left(T_{n}\right)=C \cup F \cup\left(\left\{(i+j, i) \left\lvert\, j \in\left\{2,3, \ldots,\left|\frac{n-1}{2}\right|\right\}\right.\right\}-(C \cup F)\right) \\
\cup\{(i, i+1) \mid i \in\{0,1, \ldots, n-1\}\} \cup\left\{\left(i+\frac{n}{2}, i\right) \left\lvert\, i \in\left\{0,1, \ldots, \frac{n}{2}-1\right\}\right.\right\} .
\end{gathered}
$$

Clearly, there is no directed cycle $\mathfrak{C}_{h(k)}$ with $\mathcal{J}\left(\mathfrak{C}_{h(k)}\right)=h(k)-1$ (Notice that T_{n} has every $(k-1)$-chord and every $(k-3)$-chord). Now assume for contradiction that $\mathcal{C}_{h(k)}$ is a directed cycle of T_{n} with $\mathcal{J}\left(\mathcal{C}_{h(k)}\right)=k-2$, and let $f_{1}=\left(0, x_{1}\right), f_{2}=\left(y_{1}, y_{2}\right)$ the only arcs of \mathcal{C}_{k} not in γ. Without loss of generality we can assume $\ell\left(f_{1}\right)<\frac{n}{2}$. The definition of T_{n} implies that $x_{1}=k-1+s(k-2)+m(k-4)$ or $x_{1}=k-3+s(k-2)+m(k-4)$. It follows from Lemma 7.3 that y_{2} has one of the following forms:
(a) $y_{2}=y_{1}+n-[k-1+(s+1)(k-2)+m(k-4)]$.

When $k-1+(s+1)(k-2)+m(k-4)<n-1$ we obtain that f_{2} is a $-(k-1+(s+1)(k-2)+m(k-4))$-chord, contradicting the definition of T_{n}.

When $k-1+(s+1)(k-2)+m(k-4) \geq n-1$ we have that $\ell\left\langle x_{1}, \gamma, 0\right\rangle \leq$ $k-1$ and the fact $\mathcal{C}_{k}-\left\{\left(0, x_{1}\right),\left(y_{1}, y_{2}\right)\right\} \subseteq\left\langle x_{1}, \gamma, 0\right\rangle$ implies $\ell\left\langle x_{1}, \gamma, 0\right\rangle \geq k-3$; and since $\ell\left\langle x_{1}, \gamma, 0\right\rangle$ is odd we have $\ell\left\langle x_{1}, \gamma, 0\right\rangle \in\{k-1, k-3\}$. Now if $\ell\left\langle x_{1}, \gamma, 0\right\rangle=k-1$, then $n=x_{1}+k-1=k-1+s(k-2)+m(k-4)+k-1=$
$k+(s+1)(k-2)+m(k-4)$, a contradiction. If $\ell\left\langle x_{1}, \gamma, 0\right\rangle=k-3$, then $n=x_{1}+k-3=k-1+s(k-2)+m(k-1)+k-3=k+s(k-2)+(m+1)(k-4)$, a contradiction.
(b) $y_{2}=y_{1}+n-[(k-1)+s(k-2)+(m+1)(k-4)]$.
(c) $y_{2}=y_{1}+n-[(k-3)+(s+1)(k-2)+m(k-4)]$.
(d) $y_{2}=y_{1}+n-[(k-3)+s(k-2)+(m+1)(k-4)]$.

Cases (b), (c) and (d) can be analized in a completly analogous form as the case (a) to get a contradiction.

It is easy to verify that if $n=k+s(k-2)+m(k-4)$ or $n=s(k-$ $2)+m(k-4)$ with $s, m \in \mathbb{N}$, then T_{n} (any bipartite hamiltonian tournament with n vertices) has a directed cycle $\mathcal{C}_{h(k)}$ with $\mathcal{J}\left(\mathcal{C}_{h(k)}\right) \geq h(k)-2$.

Acknowledgements

I thank the anonymous referees for a through review and useful suggestions which contributed to the improvement of the final version of this paper.

References

[1] B. Alpach, Cycles of each length in regular tournaments, Canad. Math. Bull. 10 (1967) 283-286.
[2] L.W. Beineke, A tour through tournaments or bipartite and ordinary tournaments: A comparative survey, J. London Math. Soc., Lect. Notes Ser. 52 (1981) 41-55.
[3] L.W. Beineke and V. Little, Cycles in bipartite tournaments, J. Combin. Theory (B) 32 (1982) 140-145.
[4] C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1976).
[5] J.C. Bermond and C. Thomasen, Cycles in digraphs - A survey, J. Graph Theory 5 (43) (1981) 145-147.
[6] H. Galeana-Sánchez and S. Rajsbaum, Cycle-Pancyclism in Tournaments I, Graphs and Combin. 11 (1995) 233-243.
[7] H. Galeana-Sánchez and S. Rajsbaum, Cycle-Pancyclism in Tournaments II, Graphs and Combin. 12 (1996) 9-16.
[8] H. Galeana-Sánchez and S. Rajsbaum, Cycle-Pancyclism in Tournaments III, Graphs and Combin. 13 (1997) 57-63.
[9] H. Galeana-Sánchez and S. Rajsbaum, A Conjecture on Cycle-Pancyclism in Tournaments, Discuss. Math. Graph Theory 18 (1998) 243-251.
[10] G. Gutin, Cycles and paths in semicomplete multipartite digraphs, theorems and algorithms: A survey, J. Graph Theory 19 (1995) 481-505.
[11] R. Häggkvist and Y. Manoussakis, Cycles and paths in bipartite tournaments with spanning configurations, Combinatorica 9 (1989) 33-38.
[12] L. Volkmann, Cycles in multipartite tournaments, results and problems, Discrete Math. 245 (2002) 19-53.
[13] C.Q. Zhang, Vertex even-pancyclicity in bipartite tournaments, J. Nanjing Univ. Math., Biquart 1 (1981) 85-88.
[14] K.M. Zhang and Z.M. Song, Cycles in digraphs, a survey, J. Nanjing Univ., Nat. Sci. Ed. 27 (1991) 188-215.

Received 27 September 2002
Revised 25 September 2003

