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Abstract

Let T be a hamiltonian bipartite tournament with n vertices, γ a
hamiltonian directed cycle of T , and k an even number. In this paper,
the following question is studied: What is the maximum intersection
with γ of a directed cycle of length k? It is proved that for an even k
in the range 4 ≤ k ≤ n+4

2 , there exists a directed cycle Ch(k) of length
h(k), h(k) ∈ {k, k−2} with |A(Ch(k))∩A(γ)| ≥ h(k)−3 and the result
is best possible.

In a forthcoming paper the case of directed cycles of length k, k
even and k > n+4

2 will be studied.
Keywords: bipartite tournament, pancyclism.
2000 Mathematics Subject Classification: 05C20.

1. Introduction

The subject of pancyclism has been studied by several authors (e.g. [1, 2, 5,
10, 12, 14]). Three types of pancyclism have been considered. A digraph D
is pancyclic if it has directed cycles of all the possible lengths; D is vertex-
pancyclic if given any vertex v there are directed cycles of every length
containing v; and D is arc-pancyclic if given any arc e there are directed
cycles of every length containing e.

It is well known that a hamiltonian bipartite tournament is pancyclic,
and vertex-pancyclic (with only very few exceptions) but not necessarily
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arc-pancyclic (see e.g. [3, 11, 13]). Within the concept of cycle-pancyclism
the following question is studied: Given a directed cycle γ of a digraph D,
find the maximum number of arcs which a directed cycle of length k (if such
a directed cycle exists) contained in D[V (γ)] (the subdigraph of D induced
by V (γ)) has in common with γ. Cycle-pancyclism in tournaments has been
studied in [6, 7, 8] and [9]. In this paper, the cycle-pancyclism in bipartite
tournaments is investigated. In order to do so, it is sufficient to consider
a hamiltonian bipartite tournament T where γ is a hamiltonian directed
cycle (because we are looking for directed cycles of length k contained in
D[V (γ)] whose arcs intersect the arcs of γ the most possible). We will
assume (without saying it explicitly in Lemmas, Theorems or Corollaries)
that we are working in a hamiltonian bipartite tournament with a vertex
set V = {0, 1, . . . , n − 1} and an arc set A. Also we assume without loss
of generality that γ = (0, 1, . . . , n − 1, 0) is a hamiltonian directed cycle of
T ; k will be an even number; Ch(k) will denote a directed cycle of length
h(k) with h(k) ∈ {k, k − 2} and I

(
Ch(k)

)
= |A(Ch(k)) ∩ A(γ)|. This paper

is the first part of the study of the existence of a directed cycle Ch(k) where
I(Ch(k)) is the maximum. For general concepts we refer the reader to [4].

2. Preliminaries

A chord of a cycle C is an arc not in C but with both terminal vertices
in C. The length of a chord f = (u, v) of C denoted `(f) is equal to the
length of 〈u,C, v〉, where 〈u,C, v〉 denotes the uv-directed path contained in
C. We say that f is a c-chord if `(f) = c and f = (u, v) is an a −c-chord if
` (〈v, C, u〉) = c. Observe that if f is a c-chord, then it is also an a −(n− c)-
chord. All the chords considered in this paper are chords of γ. We will
denote by Ck a directed cycle of length k. In what follows all notation is
taken modulo n.

For any a, 2 ≤ a ≤ n − 2, denote by ta the largest integer such that
a+ ta(k− 2) < n− 1. The important case of tk−1 is denoted by t in the rest
of the paper. Let r be defined as follows: r = n− [k − 1 + t(k − 2)]. Notice
that: If a ≤ b then ta ≥ tb; t ≥ 0 and 3 ≤ r ≤ k − 1, r is odd.

Lemma 2.1. If the a-chord with an initial vertex 0 (0 being an arbitrary
vertex of T ) is in A, then at least one of the two following properties holds.

(i) There exists a directed cycle Ck with I(Ck) = k − 2.



Cycle-Pancyclism in Bipartite Tournaments I 279

(ii) For every 0 ≤ i ≤ ta, the a + i(k − 2)-chord with an initial vertex 0 is
in A.

Proof. Suppose that (ii) in the lemma is false, and let

j = min{i ∈ {1, 2, . . . , ta} | (a + i(k − 2), 0) ∈ A} ,

then

Ck = (0, a+(j−1)(k−2))∪〈a+(j−1)(k−2), γ, a+j(k−2)〉∪(a+j(k−2), 0)

is a directed cycle with I(Ck) = k − 2.

Corollary 2.2. At least one of the two following properties holds

(i) There exists a directed cycle Ck with I(Ck) ≥ k − 2.
(ii) For every 0 ≤ i ≤ t, every (k − 1 + i(k − 2))-chord is in A.

Proof. Clearly, for any vertex 0, (0, k−1) ∈ A since otherwise (k−1, 0) ∈ A
and Ck = 〈0, γ, k − 1〉 ∪ (k − 1, 0) is a directed cycle with I(Ck) = k − 1 and
thus (i) holds. Now applying Lemma 2.1 with a = k− 1 we have that (i) or
(ii) holds.

3. The Cases k = 4, 6, 8

Theorem 3.1. There exists a directed cycle C4 with I(C4) ≥ 2.

Proof. It follows from Corollary 2.2 for k = 4 that we may assume that
for every 0 ≤ i ≤ t3, every (3 + 2i)-chord is in A; now recall 3 ≤ r ≤ k − 1,
r is odd and r = n− [k − 1 + t(k − 2)]. Hence r = 3 and we conclude that
C4 = (0, 3 + 2t3, 3 + 2t3 + 1, 3 + 2t3 + 2, 0) has I(C4) = 3.

Theorem 3.2. There exists a directed cycle Ch(6) with I(Ch(6)) ≥ h(6)− 2.

Proof. It follows from Corollary 2.2 for k = 6 that we can assume that
for every i, 0 ≤ i ≤ t5, every (5 + 4i)-chord is in A; recall 3 ≤ r ≤ 5,
and r is odd; so r ∈ {3, 5}. When r = 3, C4 = (0, 5 + 4t5) ∪ 〈5 + 4t5, γ, 0〉
satisfies I(C4) = 3; and when r = 5, C6 = (0, 5+4t5)∪〈5+4t5, γ, 0〉 satisfies
I(C6) = 5.
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Theorem 3.3. There exists a directed cycle Ch(8) with I(Ch(8)) ≥ h(8)− 3.

Proof. It follows from Corollary 2.2 for k = 8 that we may assume that
for every i, 0 ≤ i ≤ t7 every (7 + 6i)-chord is in A; recall 3 ≤ r ≤ k − 1 = 7
and r is odd, so r ∈ {3, 5, 7}. When r = 7 we obtain C8 = (0, 7 + 6t7) ∪
〈7 + 6t7, γ, 0〉 a directed cycle with I(C8) = 7. When r = 5 we have C6 =
(0, 7 + 6t7) ∪ 〈7 + 6t7, γ, 0〉 is a directed cycle with I(C6) = 5. When r = 3,
since n ≥ 2k − 4 = 12 and r = 3 we have t7 ≥ 1 and every -9-chord is in A
(notice that (0, n−9) ∈ A because n−9 = 7+(t7−1)6 and 0 is an arbitrary
vertex) in particular (n − 2, n − 11) ∈ A; now observe that we can assume
(n−7, 0) ∈ A (otherwise (0, n−7) ∈ A and C8 = (0, n−7)∪〈n−7, γ, 0〉 is a
directed cycle with I(C8) = 7); also observe that r = 3 implies (0, n−3) ∈ A.
We conclude that C8 = (n−2, n−11)∪〈n−11, γ, n−7〉∪(n−7, 0, n−3, n−2)
is a directed cycle with I(C8) = 5.

4. The Case n = 2k − 4

Theorem 4.1. If n = 2k − 4, then there exists a directed cycle Ch(k) with
I(Ch(k)) = h(k)− 1.

Proof. Consider the arc between 0 and k− 3; when (0, k− 3) ∈ A we have
Ck = (0, k − 3) ∪ 〈k − 3, γ, 0〉 a directed cycle with I(Ck) = k − 1 and when
(k−3, 0) ∈ A we obtain Ck−2 = (k−3, 0)∪〈0, γ, k−3〉 a directed cycle with
I(Ck−2) = k − 3.

5. The Cases r = k − 1 and r = k − 3

Theorem 5.1. If r = k − 1 or r = k − 3, then there exists a directed cycle
Ch(k) with I(Ch(k)) = h(k)− 1.

Proof. If r = k − 1, then (0, n− (k − 1)) ∈ A and Ck = (0, n− (k − 1)) ∪
〈n− (k − 1), γ, 0〉 is a directed cycle with I(Ck) = k − 1. If r = k − 3, then
(0, n − (k − 3)) ∈ A and Ck−2 = (0, n − (k − 3)) ∪ 〈n − (k − 3), γ, 0〉 is a
directed cycle with I(Ck−2) = k − 3.

Corollary 5.2. If t = 0, then there exists a directed cycle Ch(k) with
I(Ch(k)) = h(k)− 1.
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Proof. If t = 0, then n = k − 1 + r, where k − 3 ≤ r ≤ k − 1, r is odd
(because n ≥ 2k − 4), so r ∈ {k − 3, k − 1}. If r = k − 3, then the assertion
follows by Theorem 4.1. If r = k − 1 and thus n = 2k − 2, then we can
distinguish the cases (0, k − 1) ∈ A and (0, k − 1) /∈ A. If (0, k − 1) ∈ A,
then Ck = (0, k − 1) ∪ 〈k − 1, γ, n〉 is a cycle with I(Ck) = k − 1. The other
case follows analogously.

6. The General Case

In this section, we assume r ≤ k − 5, t ≥ 1, and k ≥ 10 (so n ≥ 16) in view
of the results in previous sections.

Lemma 6.1. If the (k− 1 + α)-chord, α ≤ r + 1, with an initial vertex 0 is
in A, then at least one of the two following properties holds.

(i) There exists a directed cycle Ck with I(Ck) = k − 2.
(ii) For every 0 ≤ i ≤ t − 1, the k − 1 + α + i(k − 2)-chord with an initial

vertex 0 is in A.

It follows directly from Lemma 2.1; only observe that since 3 ≤ r ≤ k − 5
we have k − 1 + r + 1 + (t − 1)(k − 2) ≤ k + k − 5 + (t − 1)(k − 2) =
k − 1 + t(k − 2)− 2 ≤ k − 1 + t(k − 2) + r − 5 = n− 5.

Lemma 6.2. At least one of the two following properties holds

(i) There exists a directed cycle Ch(k) with I(Ch(k)) ≥ h(k)− 3.
(ii) All the following chords are in A: (a) Every (k − 1)-chord. (b) Every

(−r)-chord. (c) Every (k − 3)-chord and (d) Every −(r + 2)-chord.

Proof. Assume that (i) is false. Let us prove that (ii) holds. The proof
of (a) follows directly from Corollary 2.2. The proof of (b) follows from
Corollary 2.2, observing that n− r = k − 1 + t(k − 2). To prove (c) assume
that there is a −(k − 3)-chord, say f = (y, x). It follows from (a) that
(x − 2, y) ∈ A, and it follows from (b) that (x − 2 + r, x − 2) ∈ A. Hence,
there exists a vertex z in 〈x − 2 + r, γ, y − 1〉 such that (z, x − 2) ∈ A and
(x− 2, z + 2) ∈ A. We conclude

Ck−2 = (y, x) ∪ 〈x, γ, z〉 ∪ (z, x− 2) ∪ (x− 2, z + 2) ∪ 〈z + 2, γ, y〉

is a directed cycle with I(Ck−2) = k − 5 = (k − 2)− 3.
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Finally to prove (d), let (y, x) be a (r + 2)-chord. If follows from (c) and
Lemma 2.1 that every k − 3 + i(k − 2)-chord is in A for 0 ≤ i ≤ t in
particular (x+k−2, x+k−2+k−3+(t−1)(k−2)) ∈ A, now observe that
x+k−2+k−3+(t−1)(k−2) = y + r +2+k−2+k−3+(t−1)(k−2) =
y + r + k − 1 + t(k − 2) = y + n = y, so (x + k − 2, y) ∈ A; we conclude
that Ck = (y, x) ∪ 〈x, γ, x + k − 2〉 ∪ (x + k − 2, y) is a directed cycle with
I(Ck) = k − 2.

Lemma 6.3. Let 0 ≤ i ≤ r+1, i being even. If all the −r-chords, −(r+2)-
chords, (k− 3 + i)-chords and (k− 1 + i)-chords are in T , then at least one
of the following properties holds.

(i) There exists a directed cycle Ck with I(Ck) ≥ k − 3.
(ii) All the −(2r−i+1)-chords, −(2r−i+3)-chords and −(2r−i+5)-chords

are in T .

Proof. Assume that the hypothesis of the Lemma holds and (i) is false.
Let us prove that (ii) holds.

Since all the [(k−3)+i]-chords and all the [(k−1)+i]-chords are in T , it
follows from Lemma 6.1 (taking α = i−2) that every [k−3+i+(t−1)(k−2)]-
chord is in T , and that (taking α = i) every [k− 1+ i+(t− 1)(k− 2)]-chord
is in T . Thus the following arcs are in T : (r, 0), (r + 2, 0), (0, k− 1 + (t− 1)
(k − 2) + i) and (0, k − 1 + (t− 1)(k − 2) + i− 2).

Let x1 = r−1, x2 = r+1, x3 = k−1+(t−1)(k−2)+ i−2, x4 = x3 +2,
x5 = x4 +k−2, x6 = x5 +2, x7 = x5−2, x8 = x7−2. Therefore (0, x3) ∈ A
and (0, x4) ∈ A.

Observe that: `〈x5, γ, 0〉 = n−x5 = r−i (because n−x5 = k−1+t(k−2)
+r−(k−1)−i−t(k−2) = r−i), `〈x6, γ, 0〉 = r−i−2, `〈x6, γ, x1〉 = 2r−i−3
(because `〈x6, γ, x1〉 = `〈x6, γ, 0〉+ r − 1 = r − i− 2 + r − 1), `〈x7, γ, x1〉 =
`〈x6, γ, x1〉 + 4 = 2r − i + 1, `〈x7, γ, x2〉 = `〈x7, γ, x1〉 + 2 = 2r − i + 3,
`〈x8, γ, x2〉 = `〈x7, γ, x2〉+2 = 2r−i+5, `〈x4, γ, x7〉 = `〈x4, γ, x5〉−2 = k−4
and `〈x3, γ, x8〉 = `〈x4, γ, x7〉 = k − 4.

First, we prove that every −(2r − i + 1)-chord is in A. Suppose that
there exists a (2r − i + 1)-chord. We can assume without loss of generality
that (x7, x1) is that chord. Hence Ck = (x7, x1, x1 +1 = r, 0, x4)∪〈x4, γ, x7〉
is a directed cycle with I(Ck) = k − 3.

Now we prove that every −(2r − i + 3)-chord is in A. Assume the
contrary; we may assume that (x7, x2) is a (2r − i + 3)-chord. Then Ck =
(x7, x2 = r+1, r+2, 0, x4)∪〈x4, γ, x7〉 is a directed cycle with I(Ck) = k−3.
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Finally, we prove that every −(2r − i + 5)-chord is in T . Assuming the
opposite, we may consider that (x8, x2) is a (2r − i + 5)-chord. Then
Ck = (x8, x2 = r + 1, r + 2, 0, x3) ∪ 〈x3, γ, x8〉 is a directed cycle with
I(Ck) = k − 3.

Lemma 6.4. At least one of the following properties holds.

(i) There exists a directed cycle Ck with I(Ck) ≥ k − 3.
(ii) For any even vertex x (resp. odd) there exist at most k−4

2 consecutive
odd (resp. even) vertices in γ which are in-neighbors of x.

Proof. Assume that (i) does not hold. Assume without loss of generality
that x = 0. It follows from Corollary 2.2 that the vertices k − 1 + i(k − 2),
for 0 ≤ i ≤ t are not in-neighbords of 0.

So, there are at most k−4
2 odd vertices consecutive in 〈k− 1, γ, 0〉 which

are in-neighbors of 0. Since (0, 1) ∈ A, also in 〈0, γ, k− 1〉 there are at most
k−4
2 odd vertices consecutive in-neighbors of 0.

The following corollary is a directed consequence of this Lemma (only ob-
serve that the hypothesis n ≥ 2k − 4 is not needed in the Lemma).

Corollary 6.5. Let T be a bipartite tournament with n vertices and γ a
hamiltonian cycle of T . For each even (resp. odd) vertex x of T such that
the number of consecutive odd (resp. even) in-neighbors of x in γ is at least
k−2
2 , 3 ≤ k ≤ n, k even, there exists a directed cycle Ck containing x with

I(Ck) ≥ k − 2.

Lemma 6.6. If every (k + 1)-chord is in A then at least one of the two
following properties holds.

(i) There exists a directed cycle Ch(k) with I(Ch(k)) ≥ h(k)− 3.
(ii) For every odd α, 0 < αr < k; every −[(α + 1)r + 1]-chord is in A. And

for every even α, 0 ≤ αr < k; every −(α + 1)r-chord is in A.

Proof. For α = 0, we can assume that every −r-chord is in A (otherwise
it follows from Lemma 6.2 that (i) holds and we are done). For α = 1,
suppose that (x1, x0) is a (2r + 1)-chord, let (x0, x2) the −r-chord with an
initial vertex x0 and (x2, x3) the [(k − 1) + (t − 1)(k − 2)]-chord with an
initial vertex x2 (It follows from Corollary 2.2 that we can assume such a
chord exists); clearly, `〈x1, γ, x2〉 = r + 1 and `〈x3, γ, x1〉 = n − (r + 1) −
[k − 1 + (t− 1)(k − 2)] = k − 3. Now notice that x3 ∈ 〈x0, γ, x1〉 − {x0, x1}
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(because r < k − 3 and k ≥ 10), thus Ck = 〈x3, γ, x1〉 ∪ (x1, x0, x2, x3) is a
directed cycle with I(Ck) ≥ k − 3.

We have proved the assertion of Lemma 6.6 for α = 0 and α = 1. To
complete the proof, assume (ii) does not hold for some α′ ≥ 2 and we show
that (i) holds. Let α be the least integer α ≥ 2 for which (ii) does not hold.
We analyze two possible cases.

Case 1. α is odd.
We have α ≥ 3, 0 < αr < k and there exists an [(α + 1)r + 1]-chord in A.
Since α− 1 is even, the choice of α implies that every −((α− 1)+1)r-chord
is in A.

Let (x1, x0) be an [(α + 1)r + 1]-chord, (x0, x2) the −αr-chord with
an initial vertex x0 and (x2, x3) the (k + 1) + (t − 1)(k − 2)-chord with an
initial vertex x2 (it follows from the hypothesis and Lemma 2.1 that these
chords are in A). Clearly, `〈x1, γ, x2〉 = (α + 1)r + 1 − αr = r + 1 and
`〈x3, γ, x1〉 = n − (r + 1) − [(k + 1) + (t − 1)(k − 2)] = k − 5. Notice
x3 ∈ 〈x0, γ, x1〉 − {x0, x1} because αr < k, and `〈x2, γ, x3〉 ≥ k + 1. We
conclude that Ck−2 = 〈x3, γ, x1〉 ∪ (x1, x0, x2, x3) is a directed cycle with
I(Ck−2) ≥ k − 5.

Case 2. α is even.
We have α ≥ 2, 0 < αr < k, and there exists an (α + 1)r-chord in A. Since
α−1 is odd, the choice of α implies that every −[(α−1+1)r+1]-chord is in
A. Let (x1, x0) be an (α + 1)r-chord, (x0, x2) the −(αr + 1)-chord with an
initial vertex x0, and (x2, x3) the (k+1)+(t−1)(k−2)-chord with an initial
vertex x2.

Clearly, `〈x1, γ, x2〉 = (α + 1)r − αr − 1 = r − 1 and `〈x3, γ, x1〉 =
n − (r − 1) − [k + 1 + (t − 1)(k − 2)] = k − 3. Moreover, x3 ∈ 〈x0, γ, x1〉 −
{x0, x1} because `〈x2, γ, x0〉 = αr + 1, 0 < αr + 1 ≤ k and `〈x2, γ, x3〉 ≥
k + 1. We obtain Ck = 〈x3, γ, x1〉 ∪ (x1, x0, x2, x3) a directed cycle with
I(Ck) = k − 3.

Lemma 6.7. At least one of the following properties holds.
(i) There exists a directed cycle Ch(k) with I(Ch(k)) ≥ h(k)− 3.
(ii) For i even −2 ≤ i ≤ r+1; every −(2r+1−i)-chord and every (k−1+i)-

chord is in A.

Proof. Suppose (i) does not hold, we shall prove that property (ii) holds by
induction on i. We start with i = −2 and i = 0; namely, we prove that the
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following chords are in A: (a) every (k − 3)-chord, (b) every (k − 1)-chord,
(c) every −(2r + 3)-chord and (d) every −(2r + 1)-chord.

The proof of (a) and (b) follows directly from Lemma 6.2. Let 0 be any
vertex of T . It follows from Lemma 6.1 (with α = 0) and from Lemma 6.2
(part (b) and (d)) that the following chords are in A: (0, k−1+(t−1)(k−2)),
(r+2, 0) and (r, 0). Part (c): every −(2r+3)-chord is in A. If (n−r−1, r+2)
∈ A, then Ck = (n−r−1, r+2, 0, k−1+(t−1)(k−2))∪〈k−1+(t−1)(k−2),
γ, n− r− 1〉 is a directed cycle with I(Ck) = k− 3, a contradiction. (Notice
that k−1+(t−1)(k−2) ∈ 〈r+2, γ, n−r−1〉−{r+2, n−r−1} since r ≤ k−5;
moreover `〈k−1+(t−1)(k−2), γ, n−r−1〉 = n−r−1−(k−1)−(t−1)(k−2) =
k − 3).

Part (d): every −(2r + 1)-chord is in A. If (n− r − 2, r − 1) ∈ A, then
Ck = (n−r−2, r−1, r, 0, k−1+(t−1)(k−2))∪〈k−1+(t−1)(k−2), γ, n−r−2〉
is a directed cycle with I(Ck) = k − 3, a contradiction. (Notice that since
r ≤ k−5 < k−1 and k ≥ 10 we have r < k−1+(t−1)(k−2) < n−(r+2), and
`〈k−1+(t−1)(k−2), γ, n−r−2〉 = n−(r+2)−[k−1+(t−1)(k−2)] = k−4).
Assume that (ii) in Lemma 6.7 holds for each i′ even, 0 ≤ i′ ≤ i and let us
prove it for i + 2; namely, we prove

(α) Every (k + 1 + i)-chord is in A, 0 ≤ i ≤ r − 1.
(β) Every −(2r − 1− i)-chord is in A, 0 ≤ i ≤ r − 1.

Proof of (α). It follows from the inductive hypothesis that for each j
even, 0 ≤ j ≤ i, every [(k − 1) + j]-chord and every [(k − 3) + j]-chord is in
A (because for j = 0 we have proved that every (k − 3)-chord is in A). It
follows from Lemma 6.2 that every (−r)-chord and every −(r + 2)-chord is
in A. Therefore it follows from Lemma 6.3 that for even j, 0 ≤ j ≤ i every
−(2r − j + 1)-chord, −(2r − j + 3)-chord and −(2r − j + 5)-chord is in A.
That means that for each even j, −4 ≤ j ≤ i ≤ r − 1 every −(2r − j + 1)-
chord is in A. These are i

2 + 3 chords with initial odd (resp. even) vertices
consecutive in γ.

Assume by contradiction that (x3, 0) is a −(k + 1 + i)-chord, i being
even 0 ≤ i ≤ r − 1. Let x0 = n − (2r − i − 1). Hence letting x2 = 2 we
have that (x2, x0) is a −(2r − i + 1)-chord (we have observed that every
−(2r − i + 1)-chord is in A).

First, we prove that x0 ∈ 〈x3+1, γ, n−1〉: `〈x0, γ, 0〉 = 2r−i−1 ≥ r ≥ 3,
`〈x3, γ, x0〉 = n− (k + 1 + i + 2r − i− 1) = k − 1 + t(k − 2) + r − k − 2r ≥
k − 1 + k − 2− r − k = k − 3− r ≥ 2 (remember 3 ≤ r ≤ k − 5).
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Now, there exists an out-neighbor of x0, say x, such that x is in 〈x2, γ, x3−1〉
this is a direct consequence of Lemma 6.4 and the fact that the num-
ber even vertices in 〈x2, γ, x3 − 1〉 is at least k−2

2 (Notice that x0 is odd,
`〈x2, γ, x3 − 1〉 = k + 1 + i− 3 = k + i− 2 ≥ k − 2). Let x4 be the smallest
(the nearest to 0 in γ) such vertex.

Let x1 = 0, we will prove that x4− i− 4 ∈ 〈x1, γ, x4− 3〉. Since for each
j, j even −4 ≤ j ≤ i ≤ r − 1, every −(2r − j + 1)-chord is in A, it follows
that

{(2, x0), (4, x0), (6, x0), . . . , (i + 4, x0), (i + 6, x0)} ⊆ A .

Hence the selection of x4 implies x4 ≥ i + 8, so x4 − i− 4 > 3.
Finally, since `〈x4, γ, x3〉+`〈x1, γ, x4− i−4〉 = k+1+ i− (i+4) = k−3

it follows that Ck = (x4−i−4, x0, x4)∪〈x4, γ, x3〉∪(x3, x1)∪〈x1, γ, x4−i−4〉
is a directed cycle with I(Ck) = k − 3 (Notice (x4 − i − 4, x0) ∈ A by the
choice of x4 and the fact x4 − i− 4 ∈ 〈x1, γ, x4 − 3〉).

Proof of (β). Part (β) follows from Lemma 6.3 (taking i+2 instead of i)
and the following facts:

Every (k − 1 + i)-chord is in A for even i, −2 ≤ i ≤ r + 1 (it follows
from part (α)).

Every (k− 3 + i)-chord is in A for even i, 0 ≤ i ≤ r + 1 (it follows from
the assertion of above).

Every (−r)-chord and every −(r + 2)-chord is in A (it follows from
Lemma 6.2).

Theorem 6.8. If n ≥ 2k − 4, then there exists a directed cycle Ch(k) with
I(Ch(k)) ≥ h(k)− 3.

Proof. The case n = 2k − 4 is considered in Section 4. Assume n >
2k − 4 and suppose by contradiction that there is no directed cycle Ch(k)

with I(Ch(k)) ≥ h(k)− 3.
It follows from Lemma 6.7 that for each even i, −2 ≤ i ≤ r + 1 every

(k − 1 + i)-chord is in A, in particular

(1) {(0, k−3), (0, k−1), (0, k+1), (0, k+3), . . . , (0, k+r−2), (0, k+r)} ⊂ A .

(Notice that k + r < n− 1 because t ≥ 1 and k ≥ 10).
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It follows from Lemma 6.2 that every (−r)-chord is in A, and by Lemma 6.7
that every (k+1)-chord is in A. Therefore, by Lemma 6.6 we have: For every
odd α, 0 < αr < k, every −[(α+1)r+1]-chord is in A. And for every even α,
0 ≤ αr < k, every −(α + 1)r-chord is in A. Let α0 = max{α ∈ N |αr < k}.
Clearly, α0r < k. We will analize the two possible cases:

Case 1. α0 is even.
It follows from Lemma 6.6 that every −(α0 +1)r-chord is in A, in particular
((α0 + 1)r, 0) ∈ A. On the other hand, α0r < k implies (α0 + 1)r < k + r
and the selection of α0 implies k < (α0 + 1)r < k + r. Thus y = (α0 + 1)r ∈
{k + 1, k + 3, k + 5, . . . , k + r}; thus we have (y, 0) ∈ A and (1) implies
(0, y) ∈ A. A contradiction.

Case 2. α0 id odd.
It follows from Lemma 6.6 that every −[(α0 + 1)r + 1]-chord is in A, in
particular ((α0 +1)r+1, 0) ∈ A. On the other hand, α0r < k and the choice
of α0 implies k + 1 ≤ (α0 + 1)r + 1 ≤ k + r, y = (α0 + 1)r + 1 is odd and
y ∈ {k +1, k +3, k +5, . . . , k + r}. So it follows from (1) that (0, y) ∈ A and
we have proved (y, 0) ∈ A. A contradiction.

7. Remarks

In this section, it is proved that the hypothesis of Theorem 6.8 is tight.

Definition 7.1. A digraph D with vertex set V is called cyclically p-partite
complete (p ≥ 3) provided one can partition V = V0 +V1 + · · ·+Vp−1 so that
(u, v) is an arc of D if and only if u ∈ Vi, v ∈ Vi+1 (notation modulo p).

Remark 7.2. The cyclically 4-partite complete digraph T4 is a bipartite
tournament and clearly every directed cycle of T4 has length ≡ 0 (mod 4).
So for k = 4m + 2, T4 has no directed cycles of length k and for k = 4m, T4

has no directed cycles of length k − 2.

Now we consider the following simple lemma.

Lemma 7.3. Let Ch(k) be a directed cycle with I(Ch(k)) = h(k) − 2. If
f1 = (0, x1), f2 = (y1, y2) are the arcs of Ch(k) not in γ, then y2 = y1 + n−
(h(k)− 2 + x1). Namely, f2 is a −(x1 + (h(k)− 2))-chord of γ.
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Remark 7.4. For n ≥ 5, k ≥ 5, such that n 6= k + s(k− 2) + m(k− 4) and
n 6= s(k − 2) + m(k − 4) with s,m ∈ N, there exists a bipartite hamiltonian
tournament Tn with no directed cycles Ch(k) with I(Ch(k)) = h(k)− 2.

Proof. Define Tn as follows:
Let

C = {(i, i+k−1+s(k−2)+m(k−4)) | i ∈ {0, 1, . . . , n−1}, s, m ∈ N with

(k − 1) + s(k − 2) + m(k − 4) < n− 1}
and

F = {(i, i+k−3+s(k−2)+m(k−4)) | i ∈ {0, 1, . . . , n−1}, s, m ∈ N with

(k − 3) + s(k − 2) + m(k − 4) < n− 1},

A(Tn) = C ∪ F ∪
({

(i + j, i) | j ∈
{

2, 3, . . . ,

⌊
n− 1

2

⌋}}
− (C ∪ F )

)

∪{(i, i + 1) | i ∈ {0, 1, . . . , n− 1}} ∪
{(

i +
n

2
, i

)
| i ∈

{
0, 1, . . . ,

n

2
− 1

}}
.

Clearly, there is no directed cycle Ch(k) with I(Ch(k)) = h(k) − 1 (Notice
that Tn has every (k − 1)-chord and every (k − 3)-chord). Now assume for
contradiction that Ch(k) is a directed cycle of Tn with I(Ch(k)) = k − 2, and
let f1 = (0, x1), f2 = (y1, y2) the only arcs of Ck not in γ. Without loss
of generality we can assume `(f1) < n

2 . The definition of Tn implies that
x1 = k − 1 + s(k − 2) + m(k − 4) or x1 = k − 3 + s(k − 2) + m(k − 4). It
follows from Lemma 7.3 that y2 has one of the following forms:

(a) y2 = y1 + n− [k − 1 + (s + 1)(k − 2) + m(k − 4)].

When k − 1 + (s + 1)(k − 2) + m(k − 4) < n − 1 we obtain that f2 is a
−(k−1+(s+1)(k−2)+m(k−4))-chord, contradicting the definition of Tn.

When k−1+(s+1)(k−2)+m(k−4) ≥ n−1 we have that `〈x1, γ, 0〉 ≤
k−1 and the fact Ck−{(0, x1), (y1, y2)} ⊆ 〈x1, γ, 0〉 implies `〈x1, γ, 0〉 ≥ k−3;
and since `〈x1, γ, 0〉 is odd we have `〈x1, γ, 0〉 ∈ {k − 1, k − 3}. Now if
`〈x1, γ, 0〉 = k−1, then n = x1 +k−1 = k−1+s(k−2)+m(k−4)+k−1 =



Cycle-Pancyclism in Bipartite Tournaments I 289

k + (s + 1)(k − 2) + m(k − 4), a contradiction. If `〈x1, γ, 0〉 = k − 3, then
n = x1+k−3 = k−1+s(k−2)+m(k−1)+k−3 = k+s(k−2)+(m+1)(k−4),
a contradiction.

(b) y2 = y1 + n− [(k − 1) + s(k − 2) + (m + 1)(k − 4)].

(c) y2 = y1 + n− [(k − 3) + (s + 1)(k − 2) + m(k − 4)].

(d) y2 = y1 + n− [(k − 3) + s(k − 2) + (m + 1)(k − 4)].

Cases (b), (c) and (d) can be analized in a completly analogous form as the
case (a) to get a contradiction.

It is easy to verify that if n = k + s(k − 2) + m(k − 4) or n = s(k −
2)+m(k−4) with s,m ∈ N, then Tn (any bipartite hamiltonian tournament
with n vertices) has a directed cycle Ch(k) with I(Ch(k)) ≥ h(k)− 2.
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