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Abstract

A set S is an offensive alliance if for every vertex v in its boundary
N(S)−S it holds that the majority of vertices in v’s closed neighbour-
hood are in S. The offensive alliance number is the minimum cardi-
nality of an offensive alliance. In this paper we explore the bounds on
the offensive alliance and the strong offensive alliance numbers (where
a strict majority is required). In particular, we show that the offen-
sive alliance number is at most 2/3 the order and the strong offensive
alliance number is at most 5/6 the order.
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1. Introduction

In real life, an alliance is a collection of entities such that the union is stronger
than the individual. The alliance can be either to protect against attack,
or to assert collective will against others. This motivated the definition of
defensive and offensive alliances in graphs, given in [5].

In this paper we study the offensive alliances. Informally, given a graph
G = (V, E), we say a set S is an offensive alliance if every other vertex that
is adjacent to S is outgunned by S: more of its neighbours are in S than are
not. Formally, we denote by N(v) the (open) neighbourhood of a vertex v
and N [v] = {v} ∪N(v). Similarly, for S ⊆ V we denote N(S) =

⋃
v∈S N(v)
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and N [S] = S ∪ N(S). We define the boundary ∂S as the set N(S) − S.
Then S is an offensive alliance if:

for all v ∈ ∂S : |N [v] ∩ S| ≥ |N [v]− S|.

It is a strong offensive alliance if the inequality is strict for all vertices in
the boundary. Equivalently, we define the excess of a vertex relative to S by

ex (v; S) = |N [v] ∩ S| − |N [v]− S|.

So for an offensive alliance the excess of each vertex in the boundary is at
least 0, and for a strong offensive alliance the excess is at least 1.

Then in [5] the offensive alliance and strong offensive alliance numbers
of a graph G were defined as follows:

ao(G) is the minimum cardinality of a nonempty offensive al-
liance, and âo(G) is the minimum cardinality of a nonempty
strong offensive alliance.

This definition specifically allows for S to be only local. Consider, for ex-
ample the graph obtained from the disjoint union of K4 ∪ K1,3 with one
end-vertex of the star and one vertex of the clique identified (shown in Fig-
ure 1). The two end-vertices form an offensive alliance, so that ao(G) ≤ 2.
In fact, ao(G) = 2 and âo(G) = 3. (The unique minimum strong offensive
alliance is the vertices of degree 3 in the clique.) We say that an offensive
alliance is global if every vertex is affected. That is, S ∪ ∂S = V (S is a
dominating set).

Figure 1. A graph G with ao(G) = 2 and âo(G) = 3
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The property of being an offensive alliance is not hereditary and hence the
parameter ao(G) is not monotonic. That is, removal of edges or vertices can
both increase or decrease the parameter.

Linial et al. [6] considered a more general setting where associated with
every vertex is a set Dom(v). They defined a monopoly M as a set of vertices
such that for every vertex v, the majority of the vertices in Dom(v) are in M .
They defined a self-ignoring monopoly as a set M such that for every vertex
not in M , the majority of the vertices in Dom(v) are in M . They proved
several asymptotics on the minimum size of monopolies and self-ignoring
monopolies where Dom(v) is the set of neighbours, or more generally, the
vertices at a particular distance, or within a particular distance. When the
domain of a vertex is its closed neighbourhood, a self-ignoring monopoly is
precisely a global offensive alliance.

They pointed out applications in fault-tolerant computing where the
processors adopt majority voting when there is a conflict on distributed data.
Other applications include distributed networks, distributed databases, re-
source allocation, and system-level diagnosis; see [8].

This problem is also related to the “unfriendly graph partition problem”
introduced by Aharoni et al. [1] and (under a different name) by Luby [7].
The goal there is to partition the vertex set into two sets such that for each
vertex the majority of its neighbors are in the opposite set. If one requires
strict majority, then this would be a partition into two offensive alliances,
which does not always exist. However, an unfriendly partition is achieved by
simply maximising the number of edges between the two sets. (Life is more
interesting for infinite graphs, see [10].) The “friendly” version (equivalent
to a partition into what [5] calls defensive alliances) is studied in [4, 9].

The offensive alliance number is also related to the parameter signed
domination introduced by Dunbar et al. [2]. Signed domination entails a
partition of the vertex set into positive and negative vertices. The require-
ment for the positive set P is that for every vertex, |N [v]∩P | > |N [v]−P |.
The signed domination number γS(G) of a graph G of order n is the mini-
mum of 2|P | − n taken over all valid partitions. It follows that

âo(G) ≤ (n + γS(G))/2.(1)

In this paper we explore the elementary properties of the offensive alliance
numbers, including their values for several families of graphs. We then
establish upper bounds on the offensive alliance and strong offensive alliance
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numbers. Thereafter we consider graphical operations and how the alliance
numbers for these relate to those of the constituents.

2. Bounds and Calculations

We start with a primitive lower bound in terms of the minimum degree δ(G).
This bound follows from considering any vertex in the boundary.

Observation 1. For all graphs G, ao(G) ≥ (δ(G) + 1)/2 and âo(G) >
(δ(G) + 1)/2.

Examples of equality in the above bounds are the complete and complete
bipartite graphs (though for the strong offensive alliance number the star is
an exception):

Corollary 2. For n ≥ 1, ao(Kn) = dn/2e and âo(Kn) = d(n + 1)/2e.
For 1 ≤ r ≤ s, ao(Kr,s) = d(r + 1)/2e.
For 2 ≤ r ≤ s, âo(Kr,s) = dr/2 + 1e but âo(K1,s) = ds/2 + 1e.

At the other extreme, there is the following upper bound since every vertex
cover is an offensive alliance. We use α(G) to denote the vertex cover number
of G.

Observation 3. For all graphs G, ao(G) ≤ α(G).
If δ(G) ≥ 2, then âo(G) ≤ α(G).

In general, âo(G) is at most the minimum cardinality of a vertex cover
that contains all end-vertices. More generally, one can define αk(G) as the
minimum cardinality of a set whose removal brings the maximum degree to
at most k. Then:

Observation 4. For all graphs G, ao(G) ≤ αdδ/2e−1(G) and ao(G) ≤
αbδ/2c−1(G).

If the graph has small maximum degree ∆(G), there are lower bounds that
echo Observation 3.

Observation 5. Let G be a connected graph. If ∆(G) ≤ 2 then ao(G) =
α(G), and if ∆(G) ≤ 3 then âo(G) ≥ α(G).
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Proof. Let S be an offensive alliance and let v ∈ ∂S. Then by the restric-
tion on the degree of v, N(v) ⊆ S. It follows that ∂S is independent, and
that there is no vertex at distance 2 from S. That is, S is a vertex cover.

Examples of equality in the above bounds are the paths and cycles:

Observation 6. For n ≥ 1, ao(Pn) = bn/2c and âo(Pn) = bn/2c+ 1.
For n ≥ 3, ao(Cn) = âo(Cn) = dn/2e.

The two alliance parameters are equal for the cycle and indeed equal for any
Eulerian graph, as then every offensive alliance is automatically strong:

Observation 7. If every vertex of graph G has even degree, then ao(G) =
âo(G).

Equality in Observation 5 also holds for cubic graphs:

Observation 8. For any connected cubic graph G, âo(G) = α(G).

Hence the strong offensive alliance number is NP-hard. Another consequence
of Observation 5 is:

Corollary 9. Let G be a connected graph. Then ao(G) = 1 iff G is a star,
and âo(G) = 1 iff G = K1.

Proof. For the first part, note that ao(G) = 1 implies that every vertex in
∂S is an end-vertex.

In particular, this confirms that there is no upper bound for the strong
offensive alliance number in terms of the offensive alliance number.

Finally in this section we note a simple sufficient condition for every
offensive alliance to be global.

Observation 10. Let G be connected. If for all vertices v it holds that

δ(〈N(v)〉) ≥ (deg v − 3)/2,

then every strong offensive alliance is global. Moreover, if the inequality is
always strict, then every offensive alliance is global.
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Proof. Suppose alliance S is not global. Then there exists a vertex v ∈ ∂S
with a neighbor w /∈ N [S]. So the two sets N [w] ∩ N [v] and S ∩ N [v] are
disjoint. Hence, if S is a strong offensive alliance,

2 + δ〈N(v)〉 ≤ |N [w] ∩N [v]| < |N [v]|/2 = (deg v + 1)/2.

This inequality is the negative of the inequality stated in the theorem. The
proof for offensive alliances is similar.

In fact, for an alliance S to be nonglobal in a connected graph, the set of
vertices which do not satisfy the above inequality must contain a cut-set
(since ∂S is a cut-set).

3. Maximum Values

In this section we consider the maximum offensive alliance and strong offen-
sive alliance numbers of a graph.

Theorem 1. For all graphs G of order n ≥ 2, ao(G) ≤ 2n/3.

Proof. Let G = (V, E). The result is trivial if G has an isolated vertex. So
assume that δ(G) ≥ 1. Color the vertex set V with three colors such that
the number of monochromatic edges (both ends the same color) is as small
as possible. Then any vertex is incident with at least double the number of
nonmonochromatic edges as monochromatic edges. (If a green vertex has
more green neighbours than red neighbours, then we can recolor it red, a
contradiction.) So any two colour classes form an offensive alliance.

We know of three examples of equality in the above bound: K3, K2,2,2 and
the graph formed as follows: take three disjoint triangles T1, T2, T3 and add
3 edges so that there is a triangle containing one vertex of each of T1, T2

and T3.
The theorem can also be deduced from a general bound:

Observation 11. If G has n vertices and domination number γ, then ao(G) ≤
(n + γ)/2.

Proof. Let S be a minimum dominating set and partition V − S into two
sets maximizing the number of edges joining the two sets. Then the smaller
of these and S is an offensive alliance.
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Asymptotically, the maximum offensive alliance number for connected graphs
that we know is 5/8 of the order. Define a graph Gk on 8k vertices as fol-
lows. Start with a cycle on 3k vertices: v0, . . . , v3k−1, v0. Then for each pair
vi, vi+1 of consecutive vertices on the cycle, introduce a vertex xi adjacent to
both (all arithmetic modulo 3k). Finally, for each x3j add two new vertices
such that they and it induce a triangle Tj . Every vertex of Gk has degree 2
or 4. Graph G4 is depicted in Figure 2.

Tj

Nj

Figure 2. The graph G4

Consider an offensive alliance S of Gk. By Observation 10, S is global.
The vertex set of Gk can be partitioned into the Tj and Nj = N [v3j+2]
(0 ≤ j ≤ k − 1). From each Tj at least two vertices are in S. (If either
degree-2 vertex is not in S, then the other two vertices of the triangle must
be in S.) Further, from each Nj at least 3 vertices are in S. (If v3j+2 not
in S, then at least 3 of its neighbours are. If v3j+2 in S, then S contains at
least one more from each triangle.) Since V (G)−{x0, . . . , x3k−1} is a vertex
cover of size 5k, it follows that:

ao(Gk) = 5k.

By a similar argument to the above theorem, it follows that:

Theorem 2. If every vertex of graph G has odd degree, then ao(G) ≤ n/2.

Proof. Color the vertex set V with two colors such that the number of
monochromatic edges (both ends the same color) is as small as possible.
Then each colour class forms an offensive alliance.
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It is to be noted that Theorem 1 holds even if one requires a global offensive
alliance. On the other hand, a global strong offensive alliance requires all
leaves, and hence may require almost all the vertices. The following theorem
provides an upper bound on the strong offensive alliance number.

Theorem 3. For all graphs G of order n ≥ 3, âo(G) ≤ 5n/6. Moreover, if
G has minimum degree at least 2, then âo(G) ≤ 3n/4.

Proof. For the case where G has minimum degree at least 2, one uses the
same proof technique as in Theorem 1 above, except that one colors with
four colors instead of three.

For the general result, one proceeds in a similar fashion but with con-
siderably more details, which we omit.

We know three graphs where âo(G) is 5/6 the order. Take K2 and add two
feet to each vertex; or take K3 and add one foot to each vertex; or take K3

and adding three feet to each vertex.
The largest we know of is asymptotically 4/5 the order. For integer

n ≥ 3, define a graph Jn as follows. Start with a wheel (the join of a
cycle on n vertices and a central vertex). The for each vertex v on the
cycle, introduce a path on 4 vertices and join v to the two central vertices.
We will denote the subgraph induced by the 4 vertices and v as Hv. Thus
Jn has 5n + 1 vertices. The graph J7 is illustrated in Figure 3.

Figure 3. The graph J7

By the comment after Observation 10, every strong offensive alliance of
Jn is global. (Only the central vertex fails to satisfy the inequality in the
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hypothesis.) Thus one needs four vertices from each Hv. (One must have the
two leaves; if miss either degree-3 vertex then must have all its neighbors.)
Thus âo(Jn) ≥ 4n. This value is achievable by an alliance S with all vertices
except the center of the wheel and one degree-3 vertex from each Hv.

In general, as the minimum degree increases, the upper bound tends to
half the order. This can be proven directly by probabilistic methods, but
it amounts to using the methods of Füredi and Mubayi [3], and so one can
simply read it from their results:

Theorem 4. For graph with order n and minimum degree δ, ao(G) ≤
âo(G) ≤ n(1/2 + cδ) where cδ → 0 as δ →∞.

Proof. In [3] it is proven that γs(G) ≤ O(n
√

log(δ + 1)/(δ + 1)) so that
γs(G) ≤ no(δ). The result then follows from Inequality 1.

3..1 Trees

For a tree T on n vertices, the maximum offensive alliance number is bn/2c,
as this is an upper bound on α(T ). Equality is obtained for the path. It can
be shown that the only other examples of equality are K1,3 with one edge
subdivided once, and K1,4 with two edges each subdivided once.

For the strong offensive alliance number, the bound is higher.

Theorem 5. For a tree T on n vertices, âo(T ) ≤ d3n/4e.

Proof. Suppose the maximum degree of T is at most 3. Let L denote the
number of leaves. Then, since the sum of the degrees is 2(n−1), the number
of vertices of degree 3 is L−2. Hence L ≤ n/2+1. Now, an offensive alliance
is obtained by a vertex cover that includes the leaves, and so

âo(T ) ≤ L + (n− L)/2 ≤ 3n/4 + 1/2,

as required.
Now, suppose T has two vertices v1 and v2 of degree at least 4. Then let

S1 denote the vertices that are separated from v2 by the removal of v1, and
let S2 be the vertices that are separated from v1 by the removal of v2. Then
both sets are strong offensive alliances, and are disjoint, and so âo(T ) < n/2.

Finally, suppose T has exactly one vertex v of degree d ≥ 4. Let its
neighbors be ni and the component of T − v containing ni be Ti. So taking
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all vertices in the dd/2+1e smallest Ti, one obtains a strong offensive alliance.
Hence âo(T ) ≤ (n−1)dd/2+1e/d, which is less than 3n/4 for d = 4 or d ≥ 6.
So we may assume that d = 5.

By a similar argument to that in the first paragraph, there is a strong
offensive alliance Si for Ti that contains ni and has cardinality at most
3|Ti|/4+1/2. (Note that in Ti, vertex ni has degree one or two; if the latter
case use the fact that in any bipartite graph, one can find a vertex cover
containing a specified vertex with order at most dn/2e.)

So taking the Si in the 4 smallest components, one obtains a strong
offensive alliance. The union of all the Si has cardinality at most 3(n− 1)/
4 + 5. So âo(T ) ≤ (4/5)× (3(n− 1)/4 + 1/2), which is less than d3n/4e for
n ≥ 9. The case n ≤ 8 is easily checked.

Equality achieved by any tree with all vertices of degree 3 or 1 such that the
vertices of degree 3 have a perfect matching.

4. Graph Operations

In this section we consider the parameters for the result of various graph
operations.

A trivial observation is that the (strong) offensive alliance number is
the minimum of the two numbers when the graph is the union of two com-
ponents:

ao(G ∪H) = min(ao(G), ao(H)) and âo(G ∪H) = min(âo(G), âo(H)).

We consider next the join. In general there is no upper bound for ao(G+H)
in terms of ao(G) and ao(H) (for example, consider the join of two stars).
Nor in fact is there an upper bound even if one of the pieces is a single vertex.
One can at least show that if δ(G) ≥ 1 and ∆(G) ≤ 2, then ao(G + K1) =
γ(G) + 1. This gives the offensive alliance number of the wheel.

We consider next cartesian products. Again, there is no general upper
bound for the parameter for G × H in terms of the parameters for G and
H. So we consider the special case of the grid. We need the following two
observations.

Observation 12. Let G = Cm × Cn for m,n ≥ 4 and let S be an offensive
alliance. Then each component of G−S is a subgraph of the star on 4 edges.
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Proof. Let v ∈ ∂S. Then at least 3 of v’s neighbours are in S. If exactly 3,
then let w be the neighbour not in S. If w ∈ ∂S then {v, w} induces a
component in G− S. So we may assume that w /∈ ∂S.

Vertex w has two neighbours, say x and y, that are adjacent to vertices
in N(v) and hence are in ∂S. Then w is their only neighbour not in S.
Similarly, the fourth neighbour of w is in ∂S and so the component of V −S
containing v is a subset of K1,4.

The following is an extension of the vertex cover upper bound. The 3-
packing number ρ4(G) is the maximum number of vertices that are pairwise
at least distance 4 apart.

Lemma 13. If G is r-regular for r ≥ 3 and triangle-free, then ao(G) ≤
n− (r + 1)ρ4(G).

Proof. Consider any 3-packing P , and let S = V −N [P ]. It follows that
∂S = N(P ) and thus that S is an offensive alliance.

Theorem 6. If n and m are both a multiple of 4, then ao(Cn×Cm) = 3
8nm.

Proof. A 3-packing of cardinality nm/8 is obtained by taking from the
even-numbered copies of Cm every fourth vertex, staggered by two each
time. (See the doubly ringed vertices in Figure 4.) So the above value is an
upper bound.

On the other hand, let S be an offensive alliance, and let M be the
number of edges between S and ∂S. Trivially, |M | ≤ 4|S|. On the other
hand, by considering each of the five possible components of G− S in turn,
it follows that |M | ≥ 12|V − S|/5. This means that |S| ≥ 3|V |/8.

Figure 4. The grid C4 × C8: The black vertices form a strong offensive alliance.
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Similar asymptotics hold for grids which are the product of two paths.
Finally we consider the corona G ◦K1 of a graph G, which is obtained

by adding an end-vertex adjacent to all vertices. This operation can
dramatically decrease the alliance number. Example: if ∆(G) ≤ 2 then
ao(G ◦K1) ≤ 3.

5. Open Questions

Among the open problems raised by the results in this paper, the following
are of particular interest.

1. What is the real upper bound for the strong offensive alliance number?
What are the extremal graphs? What is the maximum asymptotically
for the two parameters?

2. The relationship between these parameters and between them and other
parameters is important. Under what conditions is every offensive al-
liance global? When is ao(G) = âo(G)? When is ao(G) = α(G)?

3. Can one determine the exact values for any other classes of graphs (e.g.
grids)? Or at least get good bounds (e.g. outerplanar graphs)?
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