VERTEX-DISJOINT COPIES OF K_4^-

Ken-ichi Kawarabayashi*

Department of Mathematics
Faculty of Science and Technology, Keio University
3–14–1 Hiyoshi, Kohoku-ku, Yokohama 223–8522, Japan
e-mail: k_keniti@comb.math.keio.ac.jp

Abstract

Let G be a graph of order n. Let K_l^- be the graph obtained from K_l by removing one edge.

In this paper, we propose the following conjecture:

Let G be a graph of order $n \ge lk$ with $\delta(G) \ge (n-k+1)\frac{l-3}{l-2}+k-1$. Then G has k vertex-disjoint K_l^- .

This conjecture is motivated by Hajnal and Szemerédi's [6] famous theorem.

In this paper, we verify this conjecture for l=4.

Keywords: extremal graph theory, vertex disjoint copy, minimum degree.

2000 Mathematics Subject Classification: 05C70, 05C38.

1. Introduction

In this paper, all graphs considered are finite, undirected and without loops or multiple edges. For a graph G, V(G), E(G), $\delta(G)$ and $\chi(G)$ denote the set of vertices and the set of edges, the minimum degree of G and the chromatic number of G, respectively. For a given graph G and $v \in V(G)$, we write $N_G(x)$ the neighborhood of V(G) and $d_G(x) = |N_G(x)|$. For a subset S of V(G), the subgraph induced by S is denoted by S. For a subgraph S of S

 $^{^*}$ Research partly supported by the Japan Society for the Promotion of Science for Young Scientists.

 $G-x=\langle V(G)-\{x\}\rangle$ and also for an edge e of E(G), G-e means the graph obtained from G by removing e. For a graph G, n is always the order of G. With a slight abuse of notation, for a subgraph H of G and a vertex $v\in V(G)$, $N_H(v)=N_G(v)\cap V(H)$ and $d_H(v)=|N_H(v)|$. In addition, for a subgraph H of G and a subset S of V(G), $N_G(S)=\bigcup_{v\in S}N_G(v)$ and when $S\cap V(H)=\emptyset$, $N_H(S)=\bigcup_{v\in S}N_H(v)$. Let F be a given connected graph. Suppose that |V(G)| is a multiple of |V(F)|. A spanning subgraph of G is called an F-factor if its components are all isomorphic to F.

There are many results concerning minimum degree conditions for a graph to have an F-factor. Hajnal and Szemerédi [6] proved that for $F=K_l$, $\delta(G)\geq \frac{l-1}{l}n$ suffices. More generally, Alon and Yuster [1] proved an asymptotic result that $\delta(G)\geq (\frac{\chi(F)-1}{\chi(F)}+o(1))n$ assures the existence of an F-factor.

In this paper, we will look at two classes of connected graphs of order 4, namely, K_4^- which is the graph obtained from K_4 by removing one edge (In this paper, we call it D), and the graph obtained from K_4 by removing two edges which have a common vertex (In this paper, we call it S).

For D, the author [7] proved the following.

Theorem 1 [7]. Let G be a graph of order 4k with $\delta(G) \geq \frac{5}{2}k$. Then G has a D-factor.

What happens if we consider the minimum degree condition for a given graph G of order $n \geq 4k$ to have k vertex-disjoint F?

In case that F is $K_{1,3}$, Egawa and Ota [3] proved that, if G is a graph of order $n \geq 4k + 6$ with $\delta(G) \geq k + 2$, then G has k vertex-disjoint $K_{1,3}$.

In this paper, we prove the following theorem.

Theorem 2. Suppose G is a graph of order $n \ge 4k$ with $\delta(G) \ge \frac{n+k}{2}$. Then G has k vertex-disjoint D.

The condition of $\delta(G)$ is best possible. Consider the graph $G = \overline{K_{k-1}} + (\overline{K_{n-k+1}} + \overline{K_{n-k+1}})$. It is obvious that G contains at most k-1 vertex-disjoint triangles. So G does not have k vertex-disjoint D and the minimum degree is $\frac{n+k}{2}-1$.

For the case S, as S is a subgraph of D and S has a triangle, we can get the following, and the condition of $\delta(G)$ is also best possible because of the same example as in Theorem 3.

Note that, in [8], it was proved that even the degree sum condition n + k is good enough to have k vertex-disjoint S.

Let e be an edge in K_l . What happens if we consider k vertex-disjoint (K_l-e) ? Since D is the graph obtained from complete graph K_4 by removing just one edge, for the case l=4, we can get the result that a graph G of order $n \geq 4k$ with $\delta(G) \geq \frac{n+k}{2}$ has k vertex-disjoint $(K_4 - e)$. We propose the following conjecture.

Conjecture 1. Suppose G is a graph with $|V(G)| = n \ge lk$ and $\delta(G) \ge (n-k+1)\frac{l-3}{l-2} + k - 1$, where $l \ge 3$. Then G has k vertex-disjoint $(K_l - e)$.

The condition of $\delta(G)$ is best possible. Consider the graph $G = K_{k-1} + G'$, where G' is K_{l-1} -free graph. It is obvious that G contains at most k-1 vertex-disjoint K_{l-1} . So G does not have k vertex-disjoint $(K_l - e)$ and if G' is K_{l-1} -free, then the minimum degree is

$$\frac{n-k+1}{l-2} \times (l-3) + k - 1$$

$$= (n - k + 1)\frac{l - 3}{l - 2} + k - 1.$$

Conjecture 1 is true for the case that l=3,4. (For l=3, this case may follow from the result in [4] with some exceptional cases.) It seems that this conjecture is much more difficult than the complete graph K_l case. Note that Conjecture 1 is true for almost version, namely, if $\delta(G) \geq (n-k+1)\frac{l-3}{l-2}+k-1$, then G contains (1-o(1))k vertex disjoint copies of K_l^- when l is large. This result was proved by Komlós [9].

2. Preparation for the Proof of Theorem 2

The case of n = 4k was already proved in [7], so we may assume n > 4k.

Let G be an edge-maximal counterexample. Since a complete graph of order n > 4k has k vertex-disjoint D, so G is not a complete graph. Let u and v be nonadjacent vertices of G and define G' = G + uv, the graph obtained from G by adding the edge uv. Then G' is not a counterexample by the maximality of G and so G' has k vertex-disjoint D and that is, G' contains k vertex-disjoint subgraphs D_1, \ldots, D_k , where D_i is isomorphic to D or K_4 . Since G is a counterexample, the edge uv lies in one of D_1, \ldots, D_k .

Without loss of generality, we may assume $uv \in E(D_k)$, that is, G has k-1 vertex-disjoint subgraph, D_1, \ldots, D_{k-1} such that $\sum_{i=1}^{k-1} |D_i| = 4k-4$. Let H be the subgraph of G induced by $\bigcup_{i=1}^{k-1} V(D_i)$. Let M be the subgraph of G induced by $V(D_k)$. And also, let Z be the subgraph of G such that Z := G - H - M. Note that $V(Z) \cup V(M) > 0$ does not contain D.

Since $uv \in E(D_k)$, M is obtained from D by removing just one edge. So there are two possibilities for M, namely S, C_4 .

Now we choose D_1, \ldots, D_{k-1} so that

- (a) M is S or C_4 .
- (b) Subject to the condition (a), $\sum_{i=1}^{k-1} |E(D_i)|$ is as large as possible, that is, take K_4 instead of D as many as possible.
- (c) Subject to the conditions (a) and (b), if there are still two possibilities for M, namely S, C_4 , we choose S.

3. The Case where M is Isomorphic to C_4

We shall settle the case where M is isomorphic to C_4 by reducing the situation to the case where M is isomorphic to S.

With an additional notation, for each i, let a_i, b_i, c_i, d_i be the vertex in D_i such that $d_{D_i}(a_i) = d_{D_i}(c_i) = 3$, $d_{D_i}(b_i) \leq 3$ and $d_{D_i}(d_i) \leq 3$. (If D_i is D, $d_{D_i}(b_i) = d_{D_i}(d_i) = 2$ and b_i , d_i are nonadjacent. If D_i is K_4 , $d_{D_i}(b_i) = d_{D_i}(d_i) = 3$.)

Suppose M is C_4 . Let a, b, c, d be the vertices in C_4 with a and c being nonadjacent.

For a subgraph N of G, let $\mu_N = d_N(a) + d_N(b) + d_N(c) + d_N(d)$.

Claim 1. For any $z \in Z$, $\mu_z \leq 2$.

Proof. Assume the contrary. Since a, b, c, d are symmetric, without loss of generality, we may assume $az, bz, cz \in E(G)$. Then $\langle a, b, c, z \rangle$ contains D, a contradiction. So, the result follows.

For each D_i , (i = 1, ..., k - 1), we consider μ_{D_i} . If $\mu_{D_i} \leq 10$ for any D_i , (i = 1, ..., k - 1), then, since $d_M(a) + d_M(b) + d_M(c) + d_M(d) = 8$, we get the following:

$$\mu_G \le 10(k-1) + 8 + 2(n-4k) = 2n + 2k - 2 < 2n + 2k$$

So, for some i, $\mu_{D_i} \geq 11$.

In the proof of Theorem 1 in [7], we have already proved the following lemma.

Lemma 1 ([7], Lemma 1). If $\mu_{D_i} \geq 11$, then the following hold:

- (1) D_i is isomorphic to K_4 ,
- (2) $\mu_{D_i} = 11 \ and$
- (3) for each vertex $x \in V(M)$, $d_{D_i}(x) = 1, 3$ or 4 and for each edge $xy \in E(M)$, $d_{D_i}(x) + d_{D_i}(y) = 4$ or 7.

So, without loss of generality, we may assume $\mu_{D_{k-1}}=11.$ We need some more definition.

Let e, f, g, h be the vertices in D_{k-1} . By (1), D_{k-1} is isomorphic to K_4 . Hence e, f, g, h are symmetric. Also, by (2) and (3), we may assume $N_{D_{k-1}}(a) \cap N_{D_{k-1}}(c) = \{f, g, h\}, \ d_{D_{k-1}}(b) = 4$ and $de \in E(G)$. See in Figure 1.

Figure 1

First, note that the following fact is easily observed.

Fact 1. < a, d, e, f > is C_4 and < b, c, g, h > is K_4 . Also, < c, d, e, f > is C_4 and < a, b, g, h > is K_4 , < b, d, c, e > is C_4 and < a, f, g, h > is K_4 , and < b, d, a, e > is C_4 and < c, f, g, h > is K_4 .

Proof. Trivial by Figure 1.

For a subgraph N of G, let $\nu_N = d_N(a) + d_N(b) + d_N(c) + d_N(d) + d_N(e) + d_N(f)$. In the proof of Theorem 1 in [7], we proved the following claims.

Claim 2 ([7], Claim 3). For i = 1, ..., k - 2, if $d_{D_i}(d) = 4$, then $\nu_{D_i} \le 12$.

Claim 3 ([7], Claim 4). For i = 1, ..., k - 2, if $d_{D_i}(d) = 3$, then $\nu_{D_i} \le 13$.

Claim 4 ([7], Claim 5). For i = 1, ..., k - 2, if $d_{D_i}(d) = 2$, then $\nu_{D_i} \le 16$.

Claim 5 ([7], Claim 6). For i = 1, ..., k - 2, if $d_{D_i}(d) = 1$, then $\nu_{D_i} \le 18$.

Claim 6 ([7], Claim 7). For i = 1, ..., k - 2, if $d_{D_i}(d) = 0$, then $\nu_{D_i} \le 18$.

For $0 \le j \le 4$, let p_j denote the number of indices i such that $d_{D_i}(d) = j$. By the definition, we get the following:

(1)
$$\sum_{j=0}^{4} p_j = k - 2.$$

We prove the following claim.

Claim 7. For any $z \in Z$, $\nu_z \leq 3$.

Proof. Assume the contrary. By Fact $1, < c, d, e, f > \text{contains } C_4$ and $< a, b, g, h > \text{is } K_4$. So, by Claim $1, d_{< a, b, c, d >}(z) \le 2$ and $d_{< c, d, e, f >}(z) \le 2$. Hence, we may assume $az, bz, ez, fz \in E(G)$. Then < a, e, f, z > is D and $< b, c, g, h > \text{is } K_4$, a contradiction. So, the result follows.

Let $z \in Z$ be the vertex such that $\nu_z = 3$. By Claim 1 and Fact 1, we can get the following fact:

$$|N_{< a,d,e,f>}(z)| \le 2, \ |N_{< c,d,e,f>}(z)| \le 2, \ |N_{< b,d,c,e>}(z)| \le 2$$
 and $|N_{< b,d,a,e>}(z)| \le 2.$

Suppose $dz \in E(G)$. Then, since $\langle a, b, c, d \rangle$ is also C_4 , the only possibility is $bz, dz, fz \in E(G)$. But in this case, $\langle z, b, f, c \rangle$ contains a D, and $\langle a, e, g, h \rangle$ contains a D, a contradiction. So, if $dz \in E(G)$, then

Theorem 3 holds. Therefore, we may assume $dz \notin E(G)$. This means, for any $z' \in Z$, if $dz' \in E(G)$, then $\nu_{z'} \leq 2$.

Let x be the number of the vertices $z \in Z$ such that $dz \in E(G)$ and let y be the number of the vertices $z \in Z$ such that $dz \notin E(G)$. For $0 \le j \le 4$, let p_j denote the number of indices i such that $d_{D_i}(d) = j$. By the definition, we get the following:

(2)
$$d_G(d) = p_1 + 2p_2 + 3p_3 + 4p_4 + 3 + x \ge \frac{n+k}{2}.$$

$$(3) x + y = n - 4k.$$

We can easily get the facts that $d_M(a) = d_M(b) = d_M(c) = d_M(d) = 2$, $d_M(e) = 2$ and $d_M(f) = 3$. And $d_{D_{k-1}}(d) = 1$, $d_{D_{k-1}}(a) = d_{D_{k-1}}(c) = 3$, $d_{D_{k-1}}(b) = 4$, $d_{D_{k-1}}(e) = 3$ and $d_{D_{k-1}}(f) = 3$. So, by Claims 2-6, we get the following:

(4)
$$\frac{n+k}{2} \times 6 = 3n+3k \le \nu_G$$
$$\le 18p_0 + 18p_1 + 16p_2 + 13p_3 + 12p_4 + 30 + 2x + 3y.$$

From $(2) \times 4 + (4) \times 2$, we get the following:

(5)
$$36p_0 + 40p_1 + 40p_2 + 38p_3 + 40p_4 + 8x + 6y + 72 \ge 8n + 8k$$
.

From (1) and (3), we get the following:

(6)
$$36p_0 + 40p_1 + 40p_2 + 38p_3 + 40p_4 + 8x + 6y + 72$$
$$\leq 40(k-2) + 8(n-4k) + 72 = 8n + 8k - 8.$$

But this contradicts (5). This completes the proof of the case that M is isomorphic to C_4 .

4. The Case where M is Isomorphic to S

Finally, we consider the case that M is S.

Let a, b, c, d be the vertices of S such that $d_M(a) = 1$, $d_M(b) = 3$, $d_M(c) = d_M(d) = 2$. (c and d are symmetric.)

K. KAWARABAYASHI

For a subgraph N of G, let $\mu_N = d_N(a) + d_N(b) + d_N(c) + d_N(d)$. Let B be the graph $\langle b, c, d \rangle$.

Claim 8. For any $z \in Z$, $|N_B(z)| \le 1$.

Proof. Assume, to the contrary. Then < b, c, d, z >contains D, a contradiction. So, the result follows.

Note that, by Claim 8, we can get the fact that, for any $z \in \mathbb{Z}$, $\mu_z \leq 2$.

In the proof of Theorem 1 in [7], we have already proved the following claims.

Claim 9 ([7], Claim 8). For i = 1, ..., k - 1, if $d_{D_i}(a) = 0$, then $\mu_{D_i} \le 12$.

Claim 10 ([7], Claim 9). For i = 1, ..., k-1, if $d_{D_i}(a) = 1$, then $\mu_{D_i} \leq 12$.

Claim 11 ([7], Claim 10). For i = 1, ..., k-1, if $d_{D_i}(a) = 2$, then $\mu_{D_i} \le 10$.

Claim 12 ([7], Claim 11). For i = 1, ..., k-1, if $d_{D_i}(a) = 3$, then $\mu_{D_i} \leq 8$.

Claim 13 ([7], Claim 12). For i = 1, ..., k-1, if $d_{D_i}(a) = 4$, then $\mu_{D_i} \leq 8$.

For $0 \le j \le 4$, let q_j denote the number of indices i such that $d_{D_i}(a) = j$.

By the definition, we get the following:

(7)
$$\sum_{j=0}^{4} q_j = k - 1.$$

We prove the following claim.

Claim 14. For some $z \in Z$, $\mu_z = 2$.

Proof. Assume, to the contrary. By Claim 8, we can easily get the fact that $\mu_z \leq 2$. So, we may assume that, for any $z \in Z$, $\mu_z \leq 1$. By the definition, we get the following:

(8)
$$q_1 + 2q_2 + 3q_3 + 4q_4 + 1 + n - 4k \ge d_G(a) \ge \frac{n+k}{2}.$$

And, since $d_M(a) + d_M(b) + d_M(c) + d_M(d) = 8$, by Claims 9-13, we get the following:

(9)
$$\frac{n+k}{2} \times 4 = 2n + 2k \le \mu_G$$
$$\le 12q_0 + 12q_1 + 10q_2 + 8q_3 + 8q_4 + 8 + n - 4k.$$

From $(8) \times 4+ (9) \times 3$, we can get the following:

$$(10) 36q_0 + 40q_1 + 38q_2 + 36q_3 + 40q_4 + 28 \ge n + 36k > 40k.$$

From (7), we get the following:

(11)
$$36q_0 + 40q_1 + 38q_2 + 36q_3 + 40q_4 + 28 \le 40(k-1) + 28 = 40k - 12$$
.

But, this contradicts (10). So, the result follows.

We prove the following claim.

Claim 15. $\langle V(D) \cup V(M) \rangle$ does not contain two vertex-disjoint triangles.

Proof. Assume, not. Note that we can assume $n \geq 4k + 2$. Let T_1 and T_2 be two vertex-disjoint triangle induced by $\{v_1, v_2, v_3\}$ and induced by $\{v_4, v_5, v_6\}$, respectively. Let Z' be the subgraph of G such that $Z' := G - H - T_1 - T_2$.

For a subgraph N of G, let $\nu_N = \sum_{i=1}^6 d_N(v_i)$. We prove the following fact.

Fact 2. For any $z' \in Z'$, $|N_{T_1}(z')| \le 1$ and $|N_{T_2}(z')| \le 1$.

Proof. Assume, to the contrary. Without loss of generality, we may assume $|N_{T_1}(z')| \geq 2$. Then $\langle z', v_1, v_2, v_3 \rangle$ contains D, a contradiction. So, the result follows.

Fact 3. For any $i = 1, ..., k - 1, \nu_{D_i} \le 15$.

Proof. Assume, to the contrary. Since T_1 and T_2 are symmetric, without loss of generality, we may assume $d_{D_i}(v_1) + d_{D_i}(v_2) + d_{D_i}(v_3) \geq 8$. Then, there must exist at least two distinct vertices $v_i, u_i \in V(D_i)$ such that

$$\begin{split} |N_{T_1}(v_i)| &\geq 2 \text{ and } |N_{T_1}(u_i)| \geq 2. \text{ In this case, for any } s_i \in V(D_i), |N_{T_2}(s_i)| \leq \\ 1. \text{ For otherwise, for some } s_i \in V(D_i), \text{ if } |N_{T_2}(s_i)| \geq 2, \text{ then } < v_4, v_5, v_6, s_i > \\ \text{contains } D \text{ and } < V(T_1) \cup (V(D_i) - \{s_i\}) > \text{contains } D, \text{ a contradiction. So, } \\ \text{for any } s_i \in V(D_i), |N_{T_2}(s_i)| \leq 1. \text{ Therefore, } d_{D_i}(v_4) + d_{D_i}(v_5) + d_{D_i}(v_6) \leq 4. \\ \text{So, we may assume } d_{D_i}(v_1) + d_{D_i}(v_2) + d_{D_i}(v_3) = 12 \text{ and } d_{D_i}(v_4) + d_{D_i}(v_5) + d_{D_i}(v_6) = 4. \text{ In this case, for some vertex } u \in V(T_2), \text{ say } v_4, d_{D_i}(v_4) \geq 2. \end{split}$$

Case 1. D_i is isomorphic to K_4 .

We consider two cases for D.

Since a_i, b_i, c_i, d_i are symmetric, without loss of generality, we may assume $v_4a_i, v_4b_i \in E(G)$. Then, $\langle v_4, a_i, b_i, c_i \rangle$ contains D and $\langle v_1, v_2, v_3, d_i \rangle$ is K_4 , a contradiction. So, the result follows.

Case 2. D_i is isomorphic to D.

Since a_i, c_i and b_i, d_i are symmetric, without loss of generality, we may assume $v_4a_i, v_4b_i \in E(G)$ or $v_4a_i, v_4c_i \in E(G)$ or $v_4b_i, v_4d_i \in E(G)$.

Suppose $v_4a_i, v_4b_i \in E(G)$ or $v_4a_i, v_4c_i \in E(G)$. Then $< v_4, a_i, b_i, c_i >$ contains D and $< v_1, v_2, v_3, d_i >$ is K_4 , a contradiction. So, the result follows.

Suppose $v_4b_i, v_4d_i \in E(G)$. Then $\langle v_4, a_i, b_i, d_i \rangle$ contains C_4 and $\langle v_1, v_2, v_3, c_i \rangle$ is K_4 , contrary to (b). So, the result follows.

Since there exist at most three edges connecting T_1 to T_2 , by Facts 2 and 3, we get the following:

(12)
$$\nu_G < 15(k-1) + 12 + 6 + 2(n-4k-2) = 2n + 7k - 1.$$

But, this contradicts the fact that $\nu_G \ge \frac{n+k}{2} \times 6 = 3n + 3k > 2n + 7k$. So, Claim 15 follows.

By Claim 14, there exists a vertex $z \in Z$ such that $\mu_z = 2$. For a subgraph N of G, let $\nu_N' = \mu_N + d_N(z)$. Let Z_1 be the subgraph of G that $Z_1 := G - H - M - \{z\}$. Since $\langle z, b, c, d \rangle$ is S, by using Claims 9-12, the following fact is easily observed.

Fact 4.

- (1) If $d_{D_i}(a) + d_{D_i}(z) = 0$, then $\nu'_{D_i} \le 12$.
- (2) If $d_{D_i}(a) + d_{D_i}(z) = 1$, then $\nu'_{D_i} \le 12$.
- (3) If $d_{D_i}(a) + d_{D_i}(z) = 2$, then $\nu'_{D_i} \le 13$.
- (4) If $d_{D_i}(a) + d_{D_i}(z) = 3$, then $\nu'_{D_i} \le 11$.

- (5) If $d_{D_i}(a) + d_{D_i}(z) = 4$, then $\nu'_{D_i} \le 12$.
- (6) If $d_{D_i}(a) + d_{D_i}(z) = 5$, then $\nu'_{D_i} \le 10$.
- (7) If $d_{D_i}(a) + d_{D_i}(z) = 6$, then $\nu'_{D_i} \le 11$.
- (8) If $d_{D_i}(a) + d_{D_i}(z) = 7$, then $\nu'_{D_i} \le 11$.
- (9) If $d_{D_i}(a) + d_{D_i}(z) = 8$, then $\nu'_{D_i} \le 12$.

By Claim 8, we may assume $az \in E(G)$. Since c, d are symmetric, we only consider two cases that $bz \in E(G)$ or $cz \in E(G)$. We shall settle the case where $cz \in E(G)$ by reducing the situation to the case where $bz \in E(G)$.

Suppose $cz \in E(G)$. We prove the following fact.

Fact 5. For any $z_1 \in Z_1, \nu'_{z_1} \leq 2$.

Proof. Assume, to the contrary. Since $\langle z, a, b, c \rangle$ is C_4 , by Claim 1, $|N_{\langle z,a,b,c \rangle}(z_1)| \leq 2$. So, we may assume $dz_1 \in E(G)$. So, by Claim 8, we may assume $dz_1, az_1, zz_1 \in E(G)$. Then $\langle z, z_1, a \rangle$ is a triangle. As B is a triangle, this contradicts Claim 15. So the result follows.

We prove the following claim.

Claim 16. For any $i = 1, ..., k - 1, \nu'_{D_i} \le 12$.

Proof. Assume, to the contrary. To prove Claim 16, it is sufficient to consider only the case (3) of Fact 4.

Suppose $d_{D_i}(a) + d_{D_i}(z) = 2$ and $\nu'_{D_i} = 13$. First, we prove the following subclaim.

Subclaim 1. If $d_{D_i}(a) = 1$ and $\mu_{D_i} = 12$, then the followings hold:

- (1) D_i is isomorphic to K_4 .
- (2) $d_{D_i}(b) = 3 \text{ and } N_{D_i}(a) \cap N_{D_i}(b) = \emptyset.$

Proof of (1). Assume that D_i is isomorphic to D. Since a_i, c_i and b_i, d_i are symmetric, without loss of generality, we may assume $aa_i \in E(G)$ or $ab_i \in E(G)$.

Suppose $aa_i \in E(G)$. Then $|N_B(b_i)| \leq 2$ and $|N_B(d_i)| \leq 2$. For otherwise, if $|N_B(b_i)| = 3$, then $< a, a_i, c_i, d_i >$ is S and $< b, c, d, b_i >$ is K_4 , contrary to (b). Since b_i, d_i are symmetric, $|N_B(d_i)| \leq 2$. Therefore, $\mu_{D_i} \leq 1 + 10 = 11$, a contradiction.

Suppose $ab_i \in E(G)$. Then $|N_B(d_i)| \leq 2$. For otherwise, $\langle a, a_i, b_i, c_i \rangle$ is S and $\langle b, c, d, d_i \rangle$ is K_4 , contrary to (b). Since $\mu_{D_i} - d_{D_i}(a) = 11$, we may assume that $|N_B(a_i)| = 3$, $|N_B(b_i)| = 3$, $|N_B(c_i)| = 3$ and $|N_B(d_i)| = 2$. Then $\langle a, b, a_i, b_i \rangle$ contains D and $\langle c, d, c_i, d_i \rangle$ contains D, a contradiction. So, the result follows.

Proof of (2). By (1), D_i is isomorphic to K_4 . So, without loss of generality, we may assume $aa_i \in E(G)$. Suppose $d_{D_i}(b) \geq 3$ and $N_{D_i}(a) \cap N_{D_i}(b) = \{a_i\}$. Without loss of generality, we may assume $bb_i, bc_i \in E(G)$. Then $\langle a, b, a_i, b_i \rangle$ is D and, since $|N_B(c_i)| = 3$ and $|N_B(d_i)| \geq 2$ or $|N_B(c_i)| \geq 2$ and $|N_B(d_i)| = 3$, $\langle c, d, c_i, d_i \rangle$ contains D, a contradiction. So, the result follows.

If $d_{D_i}(a)=2$ or $d_{D_i}(z)=2$, then, by Claim 11, $\mu_{D_i}\leq 10$, the result follows. So, we may assume $d_{D_i}(a)=d_{D_i}(z)=1$. By (1), we may assume that D_i is isomorphic to K_4 . By (2), $N_{D_i}(a)\cap N_{D_i}(b)=N_{D_i}(z)\cap N_{D_i}(c)=\emptyset$. Therefore, $d_{D_i}(b)\leq 3$ and $d_{D_i}(c)\leq 3$. Hence, $\nu'_{D_i}\leq 12$. So, Claim 16 follows.

We can easily get the fact that $d_M(a) + d_M(b) + d_M(c) + d_M(d) = 8$ and $\mu_z = 2$, $|N_M(z)| = 2$. So, by Claim 16 and Fact 5, we get the following:

(13)
$$\nu'_G \le 12(k-1) + 2(n-4k-1) + 12 = 2n + 4k - 2.$$

And also, we get the following:

(14)
$$\nu'_G \ge \frac{n+k}{2} \times 5 > 2n + \frac{9}{2}k.$$

But this contradicts (13). This proves the case $cz \in E(G)$.

Finally, suppose $bz \in E(G)$. By the same argument in the proof of Claim 8, we can easily get the following fact.

Fact 6. For any $z_1 \in Z_1, \nu'_{z_1} \leq 2$.

We prove the following claim.

Claim 17. For any $i = 1, ..., k - 1, \nu'_{D_i} \le 12$.

Proof. Assume, to the contrary. To prove Claim 17, it is sufficient to consider the case (3) of Fact 4.

Suppose $d_{D_i}(a)+d_{D_i}(z)=2$ and $\nu_{D_i}=13$. If $d_{D_i}(a)=2$ or $d_{D_i}(z)=2$, then, by Claim 11, $\mu_{D_i}\leq 10$, the result follows. So, we may assume $d_{D_i}(a)=d_{D_i}(z)=1$. Since <z,b,c,d> is S and $zb\in E(G)$, by the same proof of Subclaim 1, we may assume that D_i is isomorphic to K_4 and $N_{D_i}(a)\cap N_{D_i}(b)=N_{D_i}(z)\cap N_{D_i}(b)=\emptyset$. If $N_{D_i}(a)\cap N_{D_i}(z)=\emptyset$, then $d_{D_i}(b)\leq 2$, and hence $\nu'_{D_i}\leq 12$, and the result follows. So, we may assume that $aa_i,za_i\in E(G),\ d_{D_i}(c)=d_{D_i}(d)=4,\ d_{D_i}(b)=3$ and $ba_i\not\in E(G)$. Then $<a,b,z,a_i>$ contains D and $<c,b_i,c_i,d_i>$ is K_4 , a contradiction. So, the result follows.

We can easily get the fact that $d_M(a) + d_M(b) + d_M(c) + d_M(d) = 8$ and $\mu_z = 2$, $|N_M(z)| = 2$. So, by Claim 17 and Fact 6, we get the followings:

(15)
$$\nu'_G \le 12(k-1) + 2(n-4k-1) + 12 = 2n + 4k - 2.$$

And also, we get the following:

(16)
$$\nu'_G \ge \frac{n+k}{2} \times 5 > 2n + \frac{9}{2}k.$$

But this contradicts (15). So, Theorem 3 follows.

References

- [1] N. Alon and R. Yuster, *H-factor in dense graphs*, J. Combin. Theory (B) **66** (1996) 269–282.
- [2] G.A. Dirac, On the maximal number of independent triangles in graphs, Abh. Math. Semin. Univ. Hamb. **26** (1963) 78–82.
- [3] Y. Egawa and K. Ota, Vertex-Disjoint $K_{1,3}$ in graphs, Discrete Math. 197/198 (1999), 225–246.
- [4] Y. Egawa and K. Ota, Vertex-disjoint paths in graphs, Ars Combinatoria 61 (2001) 23–31.
- [5] Y. Egawa and K. Ota, $K_{1,3}$ -factors in graphs, preprint.
- [6] A. Hajnal and E. Szemerédi, Proof of a conjecture of P. Erdős, Colloq. Math. Soc. János Bolyai 4 (1970) 601–623.

262 K. Kawarabayashi

[7] K. Kawarabayashi, $K_4^-\operatorname{-factor}$ in a graph, J. Graph Theory ${\bf 39}$ (2002) 111–128.

- [8] K. Kawarabayashi, F-factor and vertex disjoint F in a graph, Ars Combinatoria ${\bf 62}~(2002)~183-187.$
- [9] J. Komlós, $\it Tiling~\it Túran~theorems,$ Combinatorica $\bf 20~(2000)~203-218.$

Received 31 August 2002 Revised 6 February 2004