VERTEX-DISJOINT COPIES OF K_{4}^{-}

Ken-ichi Kawarabayashi*
Department of Mathematics
Faculty of Science and Technology, Keio University
3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
e-mail: k_keniti@comb.math.keio.ac.jp

Abstract

Let G be a graph of order n. Let K_{l}^{-}be the graph obtained from K_{l} by removing one edge.

In this paper, we propose the following conjecture: Let G be a graph of order $n \geq l k$ with $\delta(G) \geq(n-k+1) \frac{l-3}{l-2}+k-1$. Then G has k vertex-disjoint K_{l}^{-}.

This conjecture is motivated by Hajnal and Szemerédi's [6] famous theorem.

In this paper, we verify this conjecture for $l=4$. Keywords: extremal graph theory, vertex disjoint copy, minimum degree. 2000 Mathematics Subject Classification: 05C70, 05C38.

1. Introduction

In this paper, all graphs considered are finite, undirected and without loops or multiple edges. For a graph $G, V(G), E(G), \delta(G)$ and $\chi(G)$ denote the set of vertices and the set of edges, the minimum degree of G and the chromatic number of G, respectively. For a given graph G and $v \in V(G)$, we write $N_{G}(x)$ the neighborhood of $V(G)$ and $d_{G}(x)=\left|N_{G}(x)\right|$. For a subset S of $V(G)$, the subgraph induced by S is denoted by $<S>$. For a subgraph H of $G, G-H=<V(G)-V(H)>$ and for a vertex x of G,

[^0]$G-x=<V(G)-\{x\}>$ and also for an edge e of $E(G), G-e$ means the graph obtained from G by removing e. For a graph G, n is always the order of G. With a slight abuse of notation, for a subgraph H of G and a vertex $v \in V(G), N_{H}(v)=N_{G}(v) \cap V(H)$ and $d_{H}(v)=\left|N_{H}(v)\right|$. In addition, for a subgraph H of G and a subset S of $V(G), N_{G}(S)=\bigcup_{v \in S} N_{G}(v)$ and when $S \cap V(H)=\emptyset, N_{H}(S)=\bigcup_{v \in S} N_{H}(v)$. Let F be a given connected graph. Suppose that $|V(G)|$ is a multiple of $|V(F)|$. A spanning subgraph of G is called an F-factor if its components are all isomorphic to F.

There are many results concerning minimum degree conditions for a graph to have an F-factor. Hajnal and Szemerédi [6] proved that for $F=$ $K_{l}, \delta(G) \geq \frac{l-1}{l} n$ suffices. More generally, Alon and Yuster [1] proved an asymptotic result that $\delta(G) \geq\left(\frac{\chi(F)-1}{\chi(F)}+o(1)\right) n$ assures the existence of an F-factor.

In this paper, we will look at two classes of connected graphs of order 4, namely, K_{4}^{-}which is the graph obtained from K_{4} by removing one edge (In this paper, we call it D), and the graph obtained from K_{4} by removing two edges which have a common vertex (In this paper, we call it S).

For D, the author [7] proved the following.
Theorem 1 [7]. Let G be a graph of order $4 k$ with $\delta(G) \geq \frac{5}{2} k$. Then G has a D-factor.

What happens if we consider the minimum degree condition for a given graph G of order $n \geq 4 k$ to have k vertex-disjoint F ?

In case that F is $K_{1,3}$, Egawa and Ota [3] proved that, if G is a graph of order $n \geq 4 k+6$ with $\delta(G) \geq k+2$, then G has k vertex-disjoint $K_{1,3}$.

In this paper, we prove the following theorem.
Theorem 2. Suppose G is a graph of order $n \geq 4 k$ with $\delta(G) \geq \frac{n+k}{2}$. Then G has k vertex-disjoint D.

The condition of $\delta(G)$ is best possible. Consider the graph $G=\overline{K_{k-1}}+$ $\left(\overline{K_{\frac{n-k+1}{}}}+\overline{K_{\frac{n-k+1}{2}}^{2}}\right)$. It is obvious that G contains at most $k-1$ vertexdisjoint triangles. So G does not have k vertex-disjoint D and the minimum degree is $\frac{n+k}{2}-1$.

For the case S, as S is a subgraph of D and S has a triangle, we can get the following, and the condition of $\delta(G)$ is also best possible because of the same example as in Theorem 3.

Note that, in [8], it was proved that even the degree sum condition $n+k$ is good enough to have k vertex-disjoint S.

Let e be an edge in K_{l}. What happens if we consider k vertex-disjoint $\left(K_{l}-e\right)$? Since D is the graph obtained from complete graph K_{4} by removing just one edge, for the case $l=4$, we can get the result that a graph G of order $n \geq 4 k$ with $\delta(G) \geq \frac{n+k}{2}$ has k vertex-disjoint ($K_{4}-e$). We propose the following conjecture.

Conjecture 1. Suppose G is a graph with $|V(G)|=n \geq l k$ and $\delta(G) \geq$ $(n-k+1) \frac{l-3}{l-2}+k-1$, where $l \geq 3$. Then G has k vertex-disjoint $\left(K_{l}-e\right)$.

The condition of $\delta(G)$ is best possible. Consider the graph $G=K_{k-1}+G^{\prime}$, where G^{\prime} is K_{l-1}-free graph. It is obvious that G contains at most $k-1$ vertex-disjoint K_{l-1}. So G does not have k vertex-disjoint ($K_{l}-e$) and if G^{\prime} is K_{l-1}-free, then the minimum degree is

$$
\begin{aligned}
& \frac{n-k+1}{l-2} \times(l-3)+k-1 \\
& =(n-k+1) \frac{l-3}{l-2}+k-1 .
\end{aligned}
$$

Conjecture 1 is true for the case that $l=3,4$. (For $l=3$, this case may follow from the result in [4] with some exceptional cases.) It seems that this conjecture is much more difficult than the complete graph K_{l} case. Note that Conjecture 1 is true for almost version, namely, if $\delta(G) \geq(n-k+1) \frac{l-3}{l-2}+k-1$, then G contains ($1-o(1)) k$ vertex disjoint copies of K_{l}^{-}when l is large. This result was proved by Komlós [9].

2. Preparation for the Proof of Theorem 2

The case of $n=4 k$ was already proved in [7], so we may assume $n>4 k$.
Let G be an edge-maximal counterexample. Since a complete graph of order $n>4 k$ has k vertex-disjoint D, so G is not a complete graph. Let u and v be nonadjacent vertices of G and define $G^{\prime}=G+u v$, the graph obtained from G by adding the edge $u v$. Then G^{\prime} is not a counterexample by the maximality of G and so G^{\prime} has k vertex-disjoint D and that is, G^{\prime} contains k vertex-disjoint subgraphs D_{1}, \ldots, D_{k}, where D_{i} is isomorphic to D or K_{4}. Since G is a counterexample, the edge $u v$ lies in one of D_{1}, \ldots, D_{k}.

Without loss of generality, we may assume $u v \in E\left(D_{k}\right)$, that is, G has $k-1$ vertex-disjoint subgraph, D_{1}, \ldots, D_{k-1} such that $\sum_{i=1}^{k-1}\left|D_{i}\right|=4 k-4$. Let H be the subgraph of G induced by $\bigcup_{i=1}^{k-1} V\left(D_{i}\right)$. Let M be the subgraph of G induced by $V\left(D_{k}\right)$. And also, let Z be the subgraph of G such that $Z:=G-H-M$. Note that $\langle V(Z) \cup V(M)\rangle$ does not contain D.

Since $u v \in E\left(D_{k}\right), M$ is obtained from D by removing just one edge. So there are two possibilities for M, namely S, C_{4}.

Now we choose D_{1}, \ldots, D_{k-1} so that
(a) M is S or C_{4}.
(b) Subject to the condition (a), $\sum_{i=1}^{k-1}\left|E\left(D_{i}\right)\right|$ is as large as possible, that is, take K_{4} instead of D as many as possible.
(c) Subject to the conditions (a) and (b), if there are still two possibilities for M, namely S, C_{4}, we choose S.

3. The Case where M is Isomorphic to C_{4}

We shall settle the case where M is isomorphic to C_{4} by reducing the situation to the case where M is isomorphic to S.

With an additional notation, for each i, let $a_{i}, b_{i}, c_{i}, d_{i}$ be the vertex in D_{i} such that $d_{D_{i}}\left(a_{i}\right)=d_{D_{i}}\left(c_{i}\right)=3, d_{D_{i}}\left(b_{i}\right) \leq 3$ and $d_{D_{i}}\left(d_{i}\right) \leq 3$. (If D_{i} is $D, d_{D_{i}}\left(b_{i}\right)=d_{D_{i}}\left(d_{i}\right)=2$ and b_{i}, d_{i} are nonadjacent. If D_{i} is K_{4}, $d_{D_{i}}\left(b_{i}\right)=d_{D_{i}}\left(d_{i}\right)=3$.)

Suppose M is C_{4}. Let a, b, c, d be the vertices in C_{4} with a and c being nonadjacent.

For a subgraph N of G, let $\mu_{N}=d_{N}(a)+d_{N}(b)+d_{N}(c)+d_{N}(d)$.
Claim 1. For any $z \in Z, \mu_{z} \leq 2$.
Proof. Assume the contrary. Since a, b, c, d are symmetric, without loss of generality, we may assume $a z, b z, c z \in E(G)$. Then $\langle a, b, c, z\rangle$ contains D, a contradiction. So, the result follows.
For each $D_{i},(i=1, \ldots, k-1)$, we consider $\mu_{D_{i}}$. If $\mu_{D_{i}} \leq 10$ for any D_{i}, $(i=1, \ldots, k-1)$, then, since $d_{M}(a)+d_{M}(b)+d_{M}(c)+d_{M}(d)=8$, we get the following:

$$
\mu_{G} \leq 10(k-1)+8+2(n-4 k)=2 n+2 k-2<2 n+2 k
$$

So, for some $i, \mu_{D_{i}} \geq 11$.

In the proof of Theorem 1 in [7], we have already proved the following lemma.
Lemma 1 ([7], Lemma 1). If $\mu_{D_{i}} \geq 11$, then the following hold:
(1) D_{i} is isomorphic to K_{4},
(2) $\mu_{D_{i}}=11$ and
(3) for each vertex $x \in V(M), d_{D_{i}}(x)=1,3$ or 4 and for each edge $x y \in$ $E(M), d_{D_{i}}(x)+d_{D_{i}}(y)=4$ or 7 .

So, without loss of generality, we may assume $\mu_{D_{k-1}}=11$. We need some more definition.

Let e, f, g, h be the vertices in D_{k-1}. By (1), D_{k-1} is isomorphic to K_{4}. Hence e, f, g, h are symmetric. Also, by (2) and (3), we may assume $N_{D_{k-1}}(a) \cap N_{D_{k-1}}(c)=\{f, g, h\}, d_{D_{k-1}}(b)=4$ and $d e \in E(G)$. See in Figure 1.

Figure 1
First, note that the following fact is easily observed.

Fact 1. $<a, d, e, f>$ is C_{4} and $<b, c, g, h>$ is K_{4}. Also, $\langle c, d, e, f\rangle$ is C_{4} and $<a, b, g, h>$ is $K_{4},<b, d, c, e>$ is C_{4} and $<a, f, g, h>$ is K_{4}, and $<b, d, a, e>$ is C_{4} and $<c, f, g, h>$ is K_{4}.

Proof. Trivial by Figure 1.
For a subgraph N of G, let $\nu_{N}=d_{N}(a)+d_{N}(b)+d_{N}(c)+d_{N}(d)+d_{N}(e)+$ $d_{N}(f)$. In the proof of Theorem 1 in [7], we proved the following claims.

Claim 2 ([7], Claim 3). For $i=1, \ldots, k-2$, if $d_{D_{i}}(d)=4$, then $\nu_{D_{i}} \leq 12$.
Claim 3 ([7], Claim 4). For $i=1, \ldots, k-2$, if $d_{D_{i}}(d)=3$, then $\nu_{D_{i}} \leq 13$.
Claim 4 ([7], Claim 5). For $i=1, \ldots, k-2$, if $d_{D_{i}}(d)=2$, then $\nu_{D_{i}} \leq 16$.
Claim 5 ([7], Claim 6). For $i=1, \ldots, k-2$, if $d_{D_{i}}(d)=1$, then $\nu_{D_{i}} \leq 18$.
Claim 6 ([7], Claim 7). For $i=1, \ldots, k-2$, if $d_{D_{i}}(d)=0$, then $\nu_{D_{i}} \leq 18$.
For $0 \leq j \leq 4$, let p_{j} denote the number of indices i such that $d_{D_{i}}(d)=j$.
By the definition, we get the following:

$$
\begin{equation*}
\sum_{j=0}^{4} p_{j}=k-2 \tag{1}
\end{equation*}
$$

We prove the following claim.
Claim 7. For any $z \in Z, \nu_{z} \leq 3$.
Proof. Assume the contrary. By Fact $1,<c, d, e, f>$ contains C_{4} and $<a, b, g, h>$ is K_{4}. So, by Claim $1, d_{<a, b, c, d>}(z) \leq 2$ and $d_{<c, d, e, f>}(z) \leq 2$. Hence, we may assume $a z, b z, e z, f z \in E(G)$. Then $<a, e, f, z>$ is D and $<b, c, g, h>$ is K_{4}, a contradiction. So, the result follows.

Let $z \in Z$ be the vertex such that $\nu_{z}=3$. By Claim 1 and Fact 1, we can get the following fact:
$\left|N_{<a, d, e, f>}(z)\right| \leq 2,\left|N_{<c, d, e, f>}(z)\right| \leq 2,\left|N_{<b, d, c, e>}(z)\right| \leq 2$ and $\left|N_{<b, d, a, e>}(z)\right| \leq 2$.

Suppose $d z \in E(G)$. Then, since $\left\langle a, b, c, d>\right.$ is also C_{4}, the only possibility is $b z, d z, f z \in E(G)$. But in this case, $\langle z, b, f, c>$ contains a D, and $<a, e, g, h>$ contains a D, a contradiction. So, if $d z \in E(G)$, then

Theorem 3 holds. Therefore, we may assume $d z \notin E(G)$. This means, for any $z^{\prime} \in Z$, if $d z^{\prime} \in E(G)$, then $\nu_{z^{\prime}} \leq 2$.

Let x be the number of the vertices $z \in Z$ such that $d z \in E(G)$ and let y be the number of the vertices $z \in Z$ such that $d z \notin E(G)$. For $0 \leq j \leq 4$, let p_{j} denote the number of indices i such that $d_{D_{i}}(d)=j$. By the definition, we get the following:

$$
\begin{gather*}
d_{G}(d)=p_{1}+2 p_{2}+3 p_{3}+4 p_{4}+3+x \geq \frac{n+k}{2} \tag{2}\\
x+y=n-4 k
\end{gather*}
$$

We can easily get the facts that $d_{M}(a)=d_{M}(b)=d_{M}(c)=d_{M}(d)=2$, $d_{M}(e)=2$ and $d_{M}(f)=3$. And $d_{D_{k-1}}(d)=1, d_{D_{k-1}}(a)=d_{D_{k-1}}(c)=3$, $d_{D_{k-1}}(b)=4, d_{D_{k-1}}(e)=3$ and $d_{D_{k-1}}(f)=3$. So, by Claims 2-6, we get the following:

$$
\begin{align*}
& \frac{n+k}{2} \times 6=3 n+3 k \leq \nu_{G} \tag{4}\\
& \leq 18 p_{0}+18 p_{1}+16 p_{2}+13 p_{3}+12 p_{4}+30+2 x+3 y .
\end{align*}
$$

From $(2) \times 4+(4) \times 2$, we get the following:

$$
\begin{equation*}
36 p_{0}+40 p_{1}+40 p_{2}+38 p_{3}+40 p_{4}+8 x+6 y+72 \geq 8 n+8 k \tag{5}
\end{equation*}
$$

From (1) and (3), we get the following:

$$
\begin{align*}
& 36 p_{0}+40 p_{1}+40 p_{2}+38 p_{3}+40 p_{4}+8 x+6 y+72 \\
& \leq 40(k-2)+8(n-4 k)+72=8 n+8 k-8 \tag{6}
\end{align*}
$$

But this contradicts (5). This completes the proof of the case that M is isomorphic to C_{4}.

4. The Case where M is Isomorphic to S

Finally, we consider the case that M is S.
Let a, b, c, d be the vertices of S such that $d_{M}(a)=1, d_{M}(b)=3$, $d_{M}(c)=d_{M}(d)=2$. (c and d are symmetric.)

For a subgraph N of G, let $\mu_{N}=d_{N}(a)+d_{N}(b)+d_{N}(c)+d_{N}(d)$. Let B be the graph $\langle b, c, d>$.

Claim 8. For any $z \in Z,\left|N_{B}(z)\right| \leq 1$.
Proof. Assume, to the contrary. Then $\langle b, c, d, z\rangle$ contains D, a contradiction. So, the result follows.

Note that, by Claim 8, we can get the fact that, for any $z \in Z, \mu_{z} \leq 2$.
In the proof of Theorem 1 in [7], we have already proved the following claims.

Claim 9 ([7], Claim 8). For $i=1, \ldots, k-1$, if $d_{D_{i}}(a)=0$, then $\mu_{D_{i}} \leq 12$.

Claim 10 ([7], Claim 9). For $i=1, \ldots, k-1$, if $d_{D_{i}}(a)=1$, then $\mu_{D_{i}} \leq 12$.

Claim 11 ([7], Claim 10). For $i=1, \ldots, k-1$, if $d_{D_{i}}(a)=2$, then $\mu_{D_{i}} \leq 10$.

Claim 12 ([7], Claim 11). For $i=1, \ldots, k-1$, if $d_{D_{i}}(a)=3$, then $\mu_{D_{i}} \leq 8$.

Claim 13 ([7], Claim 12). For $i=1, \ldots, k-1$, if $d_{D_{i}}(a)=4$, then $\mu_{D_{i}} \leq 8$.

For $0 \leq j \leq 4$, let q_{j} denote the number of indices i such that $d_{D_{i}}(a)=j$.
By the definition, we get the following:

$$
\begin{equation*}
\sum_{j=0}^{4} q_{j}=k-1 \tag{7}
\end{equation*}
$$

We prove the following claim.

Claim 14. For some $z \in Z, \mu_{z}=2$.

Proof. Assume, to the contrary. By Claim 8, we can easily get the fact that $\mu_{z} \leq 2$. So, we may assume that, for any $z \in Z, \mu_{z} \leq 1$. By the definition, we get the following:

$$
\begin{equation*}
q_{1}+2 q_{2}+3 q_{3}+4 q_{4}+1+n-4 k \geq d_{G}(a) \geq \frac{n+k}{2} \tag{8}
\end{equation*}
$$

And, since $d_{M}(a)+d_{M}(b)+d_{M}(c)+d_{M}(d)=8$, by Claims 9-13, we get the following:

$$
\begin{align*}
& \frac{n+k}{2} \times 4=2 n+2 k \leq \mu_{G} \tag{9}\\
& \leq 12 q_{0}+12 q_{1}+10 q_{2}+8 q_{3}+8 q_{4}+8+n-4 k .
\end{align*}
$$

From (8) $\times 4+(9) \times 3$, we can get the following:

$$
\begin{equation*}
36 q_{0}+40 q_{1}+38 q_{2}+36 q_{3}+40 q_{4}+28 \geq n+36 k>40 k \tag{10}
\end{equation*}
$$

From (7), we get the following:
(11) $36 q_{0}+40 q_{1}+38 q_{2}+36 q_{3}+40 q_{4}+28 \leq 40(k-1)+28=40 k-12$.

But, this contradicts (10). So, the result follows.
We prove the following claim.
Claim 15. $<V(D) \cup V(M)>$ does not contain two vertex-disjoint triangles.
Proof. Assume, not. Note that we can assume $n \geq 4 k+2$. Let T_{1} and T_{2} be two vertex-disjoint triangle induced by $\left\{v_{1}, v_{2}, v_{3}\right\}$ and induced by $\left\{v_{4}, v_{5}, v_{6}\right\}$, respectively. Let Z^{\prime} be the subgraph of G such that $Z^{\prime}:=$ $G-H-T_{1}-T_{2}$.

For a subgraph N of G, let $\nu_{N}=\sum_{i=1}^{6} d_{N}\left(v_{i}\right)$. We prove the following fact.

Fact 2. For any $z^{\prime} \in Z^{\prime},\left|N_{T_{1}}\left(z^{\prime}\right)\right| \leq 1$ and $\left|N_{T_{2}}\left(z^{\prime}\right)\right| \leq 1$.
Proof. Assume, to the contrary. Without loss of generality, we may assume $\left|N_{T_{1}}\left(z^{\prime}\right)\right| \geq 2$. Then $<z^{\prime}, v_{1}, v_{2}, v_{3}>$ contains D, a contradiction. So, the result follows.

Fact 3. For any $i=1, \ldots, k-1, \nu_{D_{i}} \leq 15$.
Proof. Assume, to the contrary. Since T_{1} and T_{2} are symmetric, without loss of generality, we may assume $d_{D_{i}}\left(v_{1}\right)+d_{D_{i}}\left(v_{2}\right)+d_{D_{i}}\left(v_{3}\right) \geq 8$. Then, there must exist at least two distinct vertices $v_{i}, u_{i} \in V\left(D_{i}\right)$ such that
$\left|N_{T_{1}}\left(v_{i}\right)\right| \geq 2$ and $\left|N_{T_{1}}\left(u_{i}\right)\right| \geq 2$. In this case, for any $s_{i} \in V\left(D_{i}\right),\left|N_{T_{2}}\left(s_{i}\right)\right| \leq$ 1. For otherwise, for some $s_{i} \in V\left(D_{i}\right)$, if $\left|N_{T_{2}}\left(s_{i}\right)\right| \geq 2$, then $<v_{4}, v_{5}, v_{6}, s_{i}>$ contains D and $<V\left(T_{1}\right) \cup\left(V\left(D_{i}\right)-\left\{s_{i}\right\}\right)>$ contains D, a contradiction. So, for any $s_{i} \in V\left(D_{i}\right),\left|N_{T_{2}}\left(s_{i}\right)\right| \leq 1$. Therefore, $d_{D_{i}}\left(v_{4}\right)+d_{D_{i}}\left(v_{5}\right)+d_{D_{i}}\left(v_{6}\right) \leq 4$. So, we may assume $d_{D_{i}}\left(v_{1}\right)+d_{D_{i}}\left(v_{2}\right)+d_{D_{i}}\left(v_{3}\right)=12$ and $d_{D_{i}}\left(v_{4}\right)+d_{D_{i}}\left(v_{5}\right)+$ $d_{D_{i}}\left(v_{6}\right)=4$. In this case, for some vertex $u \in V\left(T_{2}\right)$, say $v_{4}, d_{D_{i}}\left(v_{4}\right) \geq 2$.

We consider two cases for D.
Case 1. D_{i} is isomorphic to K_{4}.
Since $a_{i}, b_{i}, c_{i}, d_{i}$ are symmetric, without loss of generality, we may assume $v_{4} a_{i}, v_{4} b_{i} \in E(G)$. Then, $<v_{4}, a_{i}, b_{i}, c_{i}>$ contains D and $<v_{1}, v_{2}, v_{3}, d_{i}>$ is K_{4}, a contradiction. So, the result follows.

Case 2. D_{i} is isomorphic to D.
Since a_{i}, c_{i} and b_{i}, d_{i} are symmetric, without loss of generality, we may assume $v_{4} a_{i}, v_{4} b_{i} \in E(G)$ or $v_{4} a_{i}, v_{4} c_{i} \in E(G)$ or $v_{4} b_{i}, v_{4} d_{i} \in E(G)$.

Suppose $v_{4} a_{i}, v_{4} b_{i} \in E(G)$ or $v_{4} a_{i}, v_{4} c_{i} \in E(G)$. Then $<v_{4}, a_{i}, b_{i}, c_{i}>$ contains D and $<v_{1}, v_{2}, v_{3}, d_{i}>$ is K_{4}, a contradiction. So, the result follows.

Suppose $v_{4} b_{i}, v_{4} d_{i} \in E(G)$. Then $<v_{4}, a_{i}, b_{i}, d_{i}>$ contains C_{4} and $<v_{1}, v_{2}, v_{3}, c_{i}>$ is K_{4}, contrary to (b). So, the result follows.
Since there exist at most three edges connecting T_{1} to T_{2}, by Facts 2 and 3 , we get the following:

$$
\begin{equation*}
\nu_{G} \leq 15(k-1)+12+6+2(n-4 k-2)=2 n+7 k-1 \tag{12}
\end{equation*}
$$

But, this contradicts the fact that $\nu_{G} \geq \frac{n+k}{2} \times 6=3 n+3 k>2 n+7 k$. So, Claim 15 follows.

By Claim 14, there exists a vertex $z \in Z$ such that $\mu_{z}=2$. For a subgraph N of G, let $\nu_{N}^{\prime}=\mu_{N}+d_{N}(z)$. Let Z_{1} be the subgraph of G that $Z_{1}:=$ $G-H-M-\{z\}$. Since $<z, b, c, d>$ is S, by using Claims $9-12$, the following fact is easily observed.

Fact 4.

(1) If $d_{D_{i}}(a)+d_{D_{i}}(z)=0$, then $\nu_{D_{i}}^{\prime} \leq 12$.
(2) If $d_{D_{i}}(a)+d_{D_{i}}(z)=1$, then $\nu_{D_{i}}^{\prime} \leq 12$.
(3) If $d_{D_{i}}(a)+d_{D_{i}}(z)=2$, then $\nu_{D_{i}}^{\prime} \leq 13$.
(4) If $d_{D_{i}}(a)+d_{D_{i}}(z)=3$, then $\nu_{D_{i}}^{\prime} \leq 11$.
(5) If $d_{D_{i}}(a)+d_{D_{i}}(z)=4$, then $\nu_{D_{i}}^{\prime} \leq 12$.
(6) If $d_{D_{i}}(a)+d_{D_{i}}(z)=5$, then $\nu_{D_{i}}^{\prime} \leq 10$.
(7) If $d_{D_{i}}(a)+d_{D_{i}}(z)=6$, then $\nu_{D_{i}}^{\prime} \leq 11$.
(8) If $d_{D_{i}}(a)+d_{D_{i}}(z)=7$, then $\nu_{D_{i}}^{\prime} \leq 11$.
(9) If $d_{D_{i}}(a)+d_{D_{i}}(z)=8$, then $\nu_{D_{i}}^{\prime} \leq 12$.

By Claim 8, we may assume $a z \in E(G)$. Since c, d are symmetric, we only consider two cases that $b z \in E(G)$ or $c z \in E(G)$. We shall settle the case where $c z \in E(G)$ by reducing the situation to the case where $b z \in E(G)$.

Suppose $c z \in E(G)$. We prove the following fact.
Fact 5. For any $z_{1} \in Z_{1}, \nu_{z_{1}}^{\prime} \leq 2$.
Proof. Assume, to the contrary. Since $\langle z, a, b, c\rangle$ is C_{4}, by Claim 1, $\left|N_{<z, a, b, c\rangle}\left(z_{1}\right)\right| \leq 2$. So, we may assume $d z_{1} \in E(G)$. So, by Claim 8 , we may assume $d z_{1}, a z_{1}, z z_{1} \in E(G)$. Then $\left\langle z, z_{1}, a\right\rangle$ is a triangle. As B is a triangle, this contradicts Claim 15. So the result follows.
We prove the following claim.
Claim 16. For any $i=1, \ldots, k-1, \nu_{D_{i}}^{\prime} \leq 12$.
Proof. Assume, to the contrary. To prove Claim 16, it is sufficient to consider only the case (3) of Fact 4.

Suppose $d_{D_{i}}(a)+d_{D_{i}}(z)=2$ and $\nu_{D_{i}}^{\prime}=13$. First, we prove the following subclaim.

Subclaim 1. If $d_{D_{i}}(a)=1$ and $\mu_{D_{i}}=12$, then the followings hold:
(1) D_{i} is isomorphic to K_{4}.
(2) $d_{D_{i}}(b)=3$ and $N_{D_{i}}(a) \cap N_{D_{i}}(b)=\emptyset$.

Proof of (1). Assume that D_{i} is isomorphic to D. Since a_{i}, c_{i} and b_{i}, d_{i} are symmetric, without loss of generality, we may assume $a a_{i} \in E(G)$ or $a b_{i} \in E(G)$.

Suppose $a a_{i} \in E(G)$. Then $\left|N_{B}\left(b_{i}\right)\right| \leq 2$ and $\left|N_{B}\left(d_{i}\right)\right| \leq 2$. For otherwise, if $\left|N_{B}\left(b_{i}\right)\right|=3$, then $<a, a_{i}, c_{i}, d_{i}>$ is S and $<b, c, d, b_{i}>$ is K_{4}, contrary to (b). Since b_{i}, d_{i} are symmetric, $\left|N_{B}\left(d_{i}\right)\right| \leq 2$. Therefore, $\mu_{D_{i}} \leq 1+10=11$, a contradiction.

Suppose $a b_{i} \in E(G)$. Then $\left|N_{B}\left(d_{i}\right)\right| \leq 2$. For otherwise, $\left\langle a, a_{i}, b_{i}, c_{i}>\right.$ is S and $<b, c, d, d_{i}>$ is K_{4}, contrary to (b). Since $\mu_{D_{i}}-d_{D_{i}}(a)=11$, we may assume that $\left|N_{B}\left(a_{i}\right)\right|=3,\left|N_{B}\left(b_{i}\right)\right|=3,\left|N_{B}\left(c_{i}\right)\right|=3$ and $\left|N_{B}\left(d_{i}\right)\right|=2$. Then $\left.<a, b, a_{i}, b_{i}\right\rangle$ contains D and $\left\langle c, d, c_{i}, d_{i}\right\rangle$ contains D, a contradiction. So, the result follows.

Proof of (2). By (1), D_{i} is isomorphic to K_{4}. So, without loss of generality, we may assume $a a_{i} \in E(G)$. Suppose $d_{D_{i}}(b) \geq 3$ and $N_{D_{i}}(a) \cap N_{D_{i}}(b)=$ $\left\{a_{i}\right\}$. Without loss of generality, we may assume $b b_{i}, b c_{i} \in E(G)$. Then $<a, b, a_{i}, b_{i}>$ is D and, since $\left|N_{B}\left(c_{i}\right)\right|=3$ and $\left|N_{B}\left(d_{i}\right)\right| \geq 2$ or $\left|N_{B}\left(c_{i}\right)\right| \geq 2$ and $\left|N_{B}\left(d_{i}\right)\right|=3,<c, d, c_{i}, d_{i}>$ contains D, a contradiction. So, the result follows.

If $d_{D_{i}}(a)=2$ or $d_{D_{i}}(z)=2$, then, by Claim 11, $\mu_{D_{i}} \leq 10$, the result follows. So, we may assume $d_{D_{i}}(a)=d_{D_{i}}(z)=1$. By (1), we may assume that D_{i} is isomorphic to K_{4}. By (2), $N_{D_{i}}(a) \cap N_{D_{i}}(b)=N_{D_{i}}(z) \cap N_{D_{i}}(c)=\emptyset$. Therefore, $d_{D_{i}}(b) \leq 3$ and $d_{D_{i}}(c) \leq 3$. Hence, $\nu_{D_{i}}^{\prime} \leq 12$. So, Claim 16 follows.

We can easily get the fact that $d_{M}(a)+d_{M}(b)+d_{M}(c)+d_{M}(d)=8$ and $\mu_{z}=2,\left|N_{M}(z)\right|=2$. So, by Claim 16 and Fact 5, we get the following:

$$
\begin{equation*}
\nu_{G}^{\prime} \leq 12(k-1)+2(n-4 k-1)+12=2 n+4 k-2 . \tag{13}
\end{equation*}
$$

And also, we get the following:

$$
\begin{equation*}
\nu_{G}^{\prime} \geq \frac{n+k}{2} \times 5>2 n+\frac{9}{2} k . \tag{14}
\end{equation*}
$$

But this contradicts (13). This proves the case $c z \in E(G)$.
Finally, suppose $b z \in E(G)$. By the same argument in the proof of Claim 8, we can easily get the following fact.

Fact 6. For any $z_{1} \in Z_{1}, \nu_{z_{1}}^{\prime} \leq 2$.
We prove the following claim.
Claim 17. For any $i=1, \ldots, k-1, \nu_{D_{i}}^{\prime} \leq 12$.

Proof. Assume, to the contrary. To prove Claim 17, it is sufficient to consider the case (3) of Fact 4.

Suppose $d_{D_{i}}(a)+d_{D_{i}}(z)=2$ and $\nu_{D_{i}}=13$. If $d_{D_{i}}(a)=2$ or $d_{D_{i}}(z)=$ 2 , then, by Claim 11, $\mu_{D_{i}} \leq 10$, the result follows. So, we may assume $d_{D_{i}}(a)=d_{D_{i}}(z)=1$. Since $<z, b, c, d>$ is S and $z b \in E(G)$, by the same proof of Subclaim 1, we may assume that D_{i} is isomorphic to K_{4} and $N_{D_{i}}(a) \cap N_{D_{i}}(b)=N_{D_{i}}(z) \cap N_{D_{i}}(b)=\emptyset$. If $N_{D_{i}}(a) \cap N_{D_{i}}(z)=\emptyset$, then $d_{D_{i}}(b) \leq 2$, and hence $\nu_{D_{i}}^{\prime} \leq 12$, and the result follows. So, we may assume that $a a_{i}, z a_{i} \in E(G), d_{D_{i}}(c)=d_{D_{i}}(d)=4, d_{D_{i}}(b)=3$ and $b a_{i} \notin E(G)$. Then $\left\langle a, b, z, a_{i}\right\rangle$ contains D and $\left\langle c, b_{i}, c_{i}, d_{i}\right\rangle$ is K_{4}, a contradiction. So, the result follows.

We can easily get the fact that $d_{M}(a)+d_{M}(b)+d_{M}(c)+d_{M}(d)=8$ and $\mu_{z}=2,\left|N_{M}(z)\right|=2$. So, by Claim 17 and Fact 6 , we get the followings:

$$
\begin{equation*}
\nu_{G}^{\prime} \leq 12(k-1)+2(n-4 k-1)+12=2 n+4 k-2 . \tag{15}
\end{equation*}
$$

And also, we get the following:

$$
\begin{equation*}
\nu_{G}^{\prime} \geq \frac{n+k}{2} \times 5>2 n+\frac{9}{2} k . \tag{16}
\end{equation*}
$$

But this contradicts (15). So, Theorem 3 follows.

References

[1] N. Alon and R. Yuster, H-factor in dense graphs, J. Combin. Theory (B) 66 (1996) 269-282.
[2] G.A. Dirac, On the maximal number of independent triangles in graphs, Abh. Math. Semin. Univ. Hamb. 26 (1963) 78-82.
[3] Y. Egawa and K. Ota, Vertex-Disjoint $K_{1,3}$ in graphs, Discrete Math. 197/198 (1999), 225-246.
[4] Y. Egawa and K. Ota, Vertex-disjoint paths in graphs, Ars Combinatoria 61 (2001) 23-31.
[5] Y. Egawa and K. Ota, $K_{1,3}$-factors in graphs, preprint.
[6] A. Hajnal and E. Szemerédi, Proof of a conjecture of P. Erdős, Colloq. Math. Soc. János Bolyai 4 (1970) 601-623.
[7] K. Kawarabayashi, K_{4}^{-}-factor in a graph, J. Graph Theory 39 (2002) 111-128.
[8] K. Kawarabayashi, F-factor and vertex disjoint F in a graph, Ars Combinatoria 62 (2002) 183-187.
[9] J. Komlós, Tiling Túran theorems, Combinatorica 20 (2000) 203-218.
Received 31 August 2002
Revised 6 February 2004

[^0]: *Research partly supported by the Japan Society for the Promotion of Science for Young Scientists.

