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Abstract

Let G be a graph of order n. Let K−
l be the graph obtained from

Kl by removing one edge.
In this paper, we propose the following conjecture:
Let G be a graph of order n ≥ lk with δ(G) ≥ (n−k+1) l−3

l−2 +k−1.
Then G has k vertex-disjoint K−

l .
This conjecture is motivated by Hajnal and Szemerédi’s [6] famous

theorem.
In this paper, we verify this conjecture for l = 4.
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1. Introduction

In this paper, all graphs considered are finite, undirected and without loops
or multiple edges. For a graph G, V (G), E(G), δ(G) and χ(G) denote
the set of vertices and the set of edges, the minimum degree of G and the
chromatic number of G, respectively. For a given graph G and v ∈ V (G),
we write NG(x) the neighborhood of V (G) and dG(x) = |NG(x)|. For a
subset S of V (G), the subgraph induced by S is denoted by < S >. For
a subgraph H of G, G − H =< V (G) − V (H) > and for a vertex x of G,
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G− x =< V (G)− {x} > and also for an edge e of E(G), G− e means the
graph obtained from G by removing e. For a graph G, n is always the order
of G. With a slight abuse of notation, for a subgraph H of G and a vertex
v ∈ V (G), NH(v) = NG(v)∩ V (H) and dH(v) = |NH(v)|. In addition, for a
subgraph H of G and a subset S of V (G), NG(S) =

⋃
v∈S NG(v) and when

S ∩ V (H) = ∅, NH(S) =
⋃

v∈S NH(v). Let F be a given connected graph.
Suppose that |V (G)| is a multiple of |V (F )|. A spanning subgraph of G is
called an F -factor if its components are all isomorphic to F .

There are many results concerning minimum degree conditions for a
graph to have an F -factor. Hajnal and Szemerédi [6] proved that for F =
Kl, δ(G) ≥ l−1

l n suffices. More generally, Alon and Yuster [1] proved an
asymptotic result that δ(G) ≥ (χ(F )−1

χ(F ) + o(1))n assures the existence of an
F -factor.

In this paper, we will look at two classes of connected graphs of order
4, namely, K−

4 which is the graph obtained from K4 by removing one edge
(In this paper, we call it D), and the graph obtained from K4 by removing
two edges which have a common vertex (In this paper, we call it S).

For D, the author [7] proved the following.

Theorem 1 [7]. Let G be a graph of order 4k with δ(G) ≥ 5
2k. Then G has

a D-factor.

What happens if we consider the minimum degree condition for a given
graph G of order n ≥ 4k to have k vertex-disjoint F ?

In case that F is K1,3, Egawa and Ota [3] proved that, if G is a graph
of order n ≥ 4k + 6 with δ(G) ≥ k + 2, then G has k vertex-disjoint K1,3.

In this paper, we prove the following theorem.

Theorem 2. Suppose G is a graph of order n ≥ 4k with δ(G) ≥ n+k
2 . Then

G has k vertex-disjoint D.

The condition of δ(G) is best possible. Consider the graph G = Kk−1 +
(Kn−k+1

2
+ Kn−k+1

2
). It is obvious that G contains at most k − 1 vertex-

disjoint triangles. So G does not have k vertex-disjoint D and the minimum
degree is n+k

2 − 1.
For the case S, as S is a subgraph of D and S has a triangle, we can

get the following, and the condition of δ(G) is also best possible because of
the same example as in Theorem 3.
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Note that, in [8], it was proved that even the degree sum condition n + k is
good enough to have k vertex-disjoint S.

Let e be an edge in Kl. What happens if we consider k vertex-disjoint
(Kl−e)? Since D is the graph obtained from complete graph K4 by removing
just one edge, for the case l = 4, we can get the result that a graph G of
order n ≥ 4k with δ(G) ≥ n+k

2 has k vertex-disjoint (K4 − e). We propose
the following conjecture.

Conjecture 1. Suppose G is a graph with |V (G)| = n ≥ lk and δ(G) ≥
(n− k + 1) l−3

l−2 + k − 1, where l ≥ 3. Then G has k vertex-disjoint (Kl − e).

The condition of δ(G) is best possible. Consider the graph G = Kk−1 + G′,
where G′ is Kl−1-free graph. It is obvious that G contains at most k − 1
vertex-disjoint Kl−1. So G does not have k vertex-disjoint (Kl − e) and if
G′ is Kl−1-free, then the minimum degree is

n− k + 1
l − 2

× (l − 3) + k − 1

= (n− k + 1)
l − 3
l − 2

+ k − 1.

Conjecture 1 is true for the case that l = 3, 4. (For l = 3, this case may
follow from the result in [4] with some exceptional cases.) It seems that this
conjecture is much more difficult than the complete graph Kl case. Note that
Conjecture 1 is true for almost version, namely, if δ(G) ≥ (n−k+1) l−3

l−2+k−1,
then G contains (1−o(1))k vertex disjoint copies of K−

l when l is large. This
result was proved by Komlós [9].

2. Preparation for the Proof of Theorem 2

The case of n = 4k was already proved in [7], so we may assume n > 4k.
Let G be an edge-maximal counterexample. Since a complete graph of

order n > 4k has k vertex-disjoint D, so G is not a complete graph. Let
u and v be nonadjacent vertices of G and define G′ = G + uv, the graph
obtained from G by adding the edge uv. Then G′ is not a counterexample
by the maximality of G and so G′ has k vertex-disjoint D and that is, G′

contains k vertex-disjoint subgraphs D1, . . . , Dk, where Di is isomorphic to
D or K4. Since G is a counterexample, the edge uv lies in one of D1, . . . , Dk.
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Without loss of generality, we may assume uv ∈ E(Dk), that is, G has k− 1
vertex-disjoint subgraph, D1, . . . , Dk−1 such that

∑k−1
i=1 |Di| = 4k − 4. Let

H be the subgraph of G induced by
⋃k−1

i=1 V (Di). Let M be the subgraph
of G induced by V (Dk). And also, let Z be the subgraph of G such that
Z := G−H −M . Note that < V (Z) ∪ V (M) > does not contain D.

Since uv ∈ E(Dk), M is obtained from D by removing just one edge.
So there are two possibilities for M , namely S, C4.

Now we choose D1, . . . , Dk−1 so that

(a) M is S or C4.
(b) Subject to the condition (a),

∑k−1
i=1 |E(Di)| is as large as possible, that

is, take K4 instead of D as many as possible.
(c) Subject to the conditions (a) and (b), if there are still two possibilities

for M , namely S, C4, we choose S.

3. The Case where M is Isomorphic to C4

We shall settle the case where M is isomorphic to C4 by reducing the situ-
ation to the case where M is isomorphic to S.

With an additional notation, for each i, let ai, bi, ci, di be the vertex
in Di such that dDi(ai) = dDi(ci) = 3, dDi(bi) ≤ 3 and dDi(di) ≤ 3. (If
Di is D, dDi(bi) = dDi(di) = 2 and bi, di are nonadjacent. If Di is K4,
dDi(bi) = dDi(di) = 3.)

Suppose M is C4. Let a, b, c, d be the vertices in C4 with a and c being
nonadjacent.

For a subgraph N of G, let µN = dN (a) + dN (b) + dN (c) + dN (d).

Claim 1. For any z ∈ Z, µz ≤ 2.

Proof. Assume the contrary. Since a, b, c, d are symmetric, without loss of
generality, we may assume az, bz, cz ∈ E(G). Then < a, b, c, z > contains
D, a contradiction. So, the result follows.

For each Di, (i = 1, . . . , k − 1), we consider µDi . If µDi ≤ 10 for any Di,
(i = 1, . . . , k − 1), then, since dM (a) + dM (b) + dM (c) + dM (d) = 8, we get
the following:

µG ≤ 10(k − 1) + 8 + 2(n− 4k) = 2n + 2k − 2 < 2n + 2k

So, for some i, µDi ≥ 11.
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In the proof of Theorem 1 in [7], we have already proved the following lemma.

Lemma 1 ([7], Lemma 1). If µDi ≥ 11, then the following hold:

(1) Di is isomorphic to K4,
(2) µDi = 11 and
(3) for each vertex x ∈ V (M), dDi(x) = 1, 3 or 4 and for each edge xy ∈

E(M), dDi(x) + dDi(y) = 4 or 7.

So, without loss of generality, we may assume µDk−1
= 11. We need some

more definition.
Let e, f, g, h be the vertices in Dk−1. By (1), Dk−1 is isomorphic to

K4. Hence e, f, g, h are symmetric. Also, by (2) and (3), we may assume
NDk−1

(a) ∩ NDk−1
(c) = {f, g, h}, dDk−1

(b) = 4 and de ∈ E(G). See in
Figure 1.

Figure 1

First, note that the following fact is easily observed.
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Fact 1. < a, d, e, f > is C4 and < b, c, g, h > is K4. Also, < c, d, e, f > is
C4 and < a, b, g, h > is K4, < b, d, c, e > is C4 and < a, f, g, h > is K4, and
< b, d, a, e > is C4 and < c, f, g, h > is K4.

Proof. Trivial by Figure 1.

For a subgraph N of G, let νN = dN (a) + dN (b) + dN (c) + dN (d) + dN (e) +
dN (f). In the proof of Theorem 1 in [7], we proved the following claims.

Claim 2 ([7], Claim 3). For i = 1, . . . , k − 2, if dDi(d) = 4, then νDi ≤ 12.

Claim 3 ([7], Claim 4). For i = 1, . . . , k − 2, if dDi(d) = 3, then νDi ≤ 13.

Claim 4 ([7], Claim 5). For i = 1, . . . , k − 2, if dDi(d) = 2, then νDi ≤ 16.

Claim 5 ([7], Claim 6). For i = 1, . . . , k − 2, if dDi(d) = 1, then νDi ≤ 18.

Claim 6 ([7], Claim 7). For i = 1, . . . , k − 2, if dDi(d) = 0, then νDi ≤ 18.

For 0 ≤ j ≤ 4, let pj denote the number of indices i such that dDi(d) = j.

By the definition, we get the following:

4∑

j=0

pj = k − 2 .(1)

We prove the following claim.

Claim 7. For any z ∈ Z, νz ≤ 3.

Proof. Assume the contrary. By Fact 1, < c, d, e, f > contains C4 and
< a, b, g, h > is K4. So, by Claim 1, d<a,b,c,d>(z) ≤ 2 and d<c,d,e,f>(z) ≤ 2.
Hence, we may assume az, bz, ez, fz ∈ E(G). Then < a, e, f, z > is D and
< b, c, g, h > is K4, a contradiction. So, the result follows.

Let z ∈ Z be the vertex such that νz = 3. By Claim 1 and Fact 1, we can
get the following fact:
|N<a,d,e,f>(z)| ≤ 2, |N<c,d,e,f>(z)| ≤ 2, |N<b,d,c,e>(z)| ≤ 2 and
|N<b,d,a,e>(z)| ≤ 2.

Suppose dz ∈ E(G). Then, since < a, b, c, d > is also C4, the only
possibility is bz, dz, fz ∈ E(G). But in this case, < z, b, f, c > contains a
D, and < a, e, g, h > contains a D, a contradiction. So, if dz ∈ E(G), then
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Theorem 3 holds. Therefore, we may assume dz 6∈ E(G). This means, for
any z′ ∈ Z, if dz′ ∈ E(G), then νz′ ≤ 2.

Let x be the number of the vertices z ∈ Z such that dz ∈ E(G) and let y be
the number of the vertices z ∈ Z such that dz 6∈ E(G). For 0 ≤ j ≤ 4, let
pj denote the number of indices i such that dDi(d) = j. By the definition,
we get the following:

dG(d) = p1 + 2p2 + 3p3 + 4p4 + 3 + x ≥ n + k

2
.(2)

x + y = n− 4k.(3)

We can easily get the facts that dM (a) = dM (b) = dM (c) = dM (d) = 2,
dM (e) = 2 and dM (f) = 3. And dDk−1

(d) = 1, dDk−1
(a) = dDk−1

(c) = 3,
dDk−1

(b) = 4, dDk−1
(e) = 3 and dDk−1

(f) = 3. So, by Claims 2-6, we get
the following:

n + k

2
× 6 = 3n + 3k ≤ νG

≤ 18p0 + 18p1 + 16p2 + 13p3 + 12p4 + 30 + 2x + 3y.

(4)

From (2)× 4 + (4)× 2, we get the following:

36p0 + 40p1 + 40p2 + 38p3 + 40p4 + 8x + 6y + 72 ≥ 8n + 8k.(5)

From (1) and (3), we get the following:

36p0 + 40p1 + 40p2 + 38p3 + 40p4 + 8x + 6y + 72

≤ 40(k − 2) + 8(n− 4k) + 72 = 8n + 8k − 8.
(6)

But this contradicts (5). This completes the proof of the case that M is
isomorphic to C4.

4. The Case where M is Isomorphic to S

Finally, we consider the case that M is S.
Let a, b, c, d be the vertices of S such that dM (a) = 1, dM (b) = 3,

dM (c) = dM (d) = 2. (c and d are symmetric.)
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For a subgraph N of G, let µN = dN (a) + dN (b) + dN (c) + dN (d). Let B be
the graph < b, c, d >.

Claim 8. For any z ∈ Z, |NB(z)| ≤ 1.

Proof. Assume, to the contrary. Then < b, c, d, z > contains D, a contra-
diction. So, the result follows.

Note that, by Claim 8, we can get the fact that, for any z ∈ Z, µz ≤ 2.
In the proof of Theorem 1 in [7], we have already proved the following

claims.

Claim 9 ([7], Claim 8). For i = 1, . . . , k − 1, if dDi(a) = 0, then µDi ≤ 12.

Claim 10 ([7], Claim 9). For i = 1, . . . , k−1, if dDi(a) = 1, then µDi ≤ 12.

Claim 11 ([7], Claim 10). For i = 1, . . . , k−1, if dDi(a) = 2, then µDi ≤ 10.

Claim 12 ([7], Claim 11). For i = 1, . . . , k−1, if dDi(a) = 3, then µDi ≤ 8.

Claim 13 ([7], Claim 12). For i = 1, . . . , k−1, if dDi(a) = 4, then µDi ≤ 8.

For 0 ≤ j ≤ 4, let qj denote the number of indices i such that dDi(a) = j.

By the definition, we get the following:

4∑

j=0

qj = k − 1.(7)

We prove the following claim.

Claim 14. For some z ∈ Z, µz = 2.

Proof. Assume, to the contrary. By Claim 8, we can easily get the fact
that µz ≤ 2. So, we may assume that, for any z ∈ Z, µz ≤ 1. By the
definition, we get the following:

q1 + 2q2 + 3q3 + 4q4 + 1 + n− 4k ≥ dG(a) ≥ n + k

2
.(8)
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And, since dM (a) + dM (b) + dM (c) + dM (d) = 8, by Claims 9-13, we get the
following:

n + k

2
× 4 = 2n + 2k ≤ µG

≤ 12q0 + 12q1 + 10q2 + 8q3 + 8q4 + 8 + n− 4k.

(9)

From (8) ×4+ (9) ×3, we can get the following:

36q0 + 40q1 + 38q2 + 36q3 + 40q4 + 28 ≥ n + 36k > 40k.(10)

From (7), we get the following:

36q0 + 40q1 + 38q2 + 36q3 + 40q4 + 28 ≤ 40(k − 1) + 28 = 40k − 12.(11)

But, this contradicts (10). So, the result follows.

We prove the following claim.

Claim 15. < V (D)∪V (M) > does not contain two vertex-disjoint triangles.

Proof. Assume, not. Note that we can assume n ≥ 4k + 2. Let T1 and
T2 be two vertex-disjoint triangle induced by {v1, v2, v3} and induced by
{v4, v5, v6}, respectively. Let Z ′ be the subgraph of G such that Z ′ :=
G−H − T1 − T2.

For a subgraph N of G, let νN =
∑6

i=1 dN (vi). We prove the following
fact.

Fact 2. For any z′ ∈ Z ′, |NT1(z
′)| ≤ 1 and |NT2(z

′)| ≤ 1.

Proof. Assume, to the contrary. Without loss of generality, we may assume
|NT1(z

′)| ≥ 2. Then < z′, v1, v2, v3 > contains D, a contradiction. So, the
result follows.

Fact 3. For any i = 1, . . . , k − 1, νDi ≤ 15.

Proof. Assume, to the contrary. Since T1 and T2 are symmetric, with-
out loss of generality, we may assume dDi(v1) + dDi(v2) + dDi(v3) ≥ 8.
Then, there must exist at least two distinct vertices vi, ui ∈ V (Di) such that
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|NT1(vi)| ≥ 2 and |NT1(ui)| ≥ 2. In this case, for any si ∈ V (Di), |NT2(si)| ≤
1. For otherwise, for some si ∈ V (Di), if |NT2(si)| ≥ 2, then < v4, v5, v6, si >
contains D and < V (T1)∪(V (Di)−{si}) > contains D, a contradiction. So,
for any si ∈ V (Di), |NT2(si)| ≤ 1. Therefore, dDi(v4)+dDi(v5)+dDi(v6) ≤ 4.
So, we may assume dDi(v1)+dDi(v2)+dDi(v3) = 12 and dDi(v4)+dDi(v5)+
dDi(v6) = 4. In this case, for some vertex u ∈ V (T2), say v4, dDi(v4) ≥ 2.

We consider two cases for D.

Case 1. Di is isomorphic to K4.
Since ai, bi, ci, di are symmetric, without loss of generality, we may assume
v4ai, v4bi ∈ E(G). Then, < v4, ai, bi, ci > contains D and < v1, v2, v3, di >
is K4, a contradiction. So, the result follows.

Case 2. Di is isomorphic to D.
Since ai, ci and bi, di are symmetric, without loss of generality, we may as-
sume v4ai, v4bi ∈ E(G) or v4ai, v4ci ∈ E(G) or v4bi, v4di ∈ E(G).

Suppose v4ai, v4bi ∈ E(G) or v4ai, v4ci ∈ E(G). Then < v4, ai, bi, ci >
contains D and < v1, v2, v3, di > is K4, a contradiction. So, the result
follows.

Suppose v4bi, v4di ∈ E(G). Then < v4, ai, bi, di > contains C4 and
< v1, v2, v3, ci > is K4, contrary to (b). So, the result follows.

Since there exist at most three edges connecting T1 to T2, by Facts 2 and 3,
we get the following:

νG ≤ 15(k − 1) + 12 + 6 + 2(n− 4k − 2) = 2n + 7k − 1.(12)

But, this contradicts the fact that νG ≥ n+k
2 × 6 = 3n + 3k > 2n + 7k. So,

Claim 15 follows.

By Claim 14, there exists a vertex z ∈ Z such that µz = 2. For a subgraph
N of G, let ν ′N = µN + dN (z). Let Z1 be the subgraph of G that Z1 :=
G−H−M−{z}. Since < z, b, c, d > is S, by using Claims 9-12, the following
fact is easily observed.

Fact 4.
(1) If dDi(a) + dDi(z) = 0, then ν ′Di

≤ 12.
(2) If dDi(a) + dDi(z) = 1, then ν ′Di

≤ 12.
(3) If dDi(a) + dDi(z) = 2, then ν ′Di

≤ 13.
(4) If dDi(a) + dDi(z) = 3, then ν ′Di

≤ 11.
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(5) If dDi(a) + dDi(z) = 4, then ν ′Di
≤ 12.

(6) If dDi(a) + dDi(z) = 5, then ν ′Di
≤ 10.

(7) If dDi(a) + dDi(z) = 6, then ν ′Di
≤ 11.

(8) If dDi(a) + dDi(z) = 7, then ν ′Di
≤ 11.

(9) If dDi(a) + dDi(z) = 8, then ν ′Di
≤ 12.

By Claim 8, we may assume az ∈ E(G). Since c, d are symmetric, we only
consider two cases that bz ∈ E(G) or cz ∈ E(G). We shall settle the case
where cz ∈ E(G) by reducing the situation to the case where bz ∈ E(G).

Suppose cz ∈ E(G). We prove the following fact.

Fact 5. For any z1 ∈ Z1, ν ′z1
≤ 2.

Proof. Assume, to the contrary. Since < z, a, b, c > is C4, by Claim 1,
|N<z,a,b,c>(z1)| ≤ 2. So, we may assume dz1 ∈ E(G). So, by Claim 8, we
may assume dz1, az1, zz1 ∈ E(G). Then < z, z1, a > is a triangle. As B is a
triangle, this contradicts Claim 15. So the result follows.

We prove the following claim.

Claim 16. For any i = 1, . . . , k − 1, ν ′Di
≤ 12.

Proof. Assume, to the contrary. To prove Claim 16, it is sufficient to
consider only the case (3) of Fact 4.

Suppose dDi(a)+dDi(z) = 2 and ν ′Di
= 13. First, we prove the following

subclaim.

Subclaim 1. If dDi(a) = 1 and µDi = 12, then the followings hold:

(1) Di is isomorphic to K4.
(2) dDi(b) = 3 and NDi(a) ∩NDi(b) = ∅.

Proof of (1). Assume that Di is isomorphic to D. Since ai, ci and bi, di

are symmetric, without loss of generality, we may assume aai ∈ E(G) or
abi ∈ E(G).

Suppose aai ∈ E(G). Then |NB(bi)| ≤ 2 and |NB(di)| ≤ 2. For oth-
erwise, if |NB(bi)| = 3, then < a, ai, ci, di > is S and < b, c, d, bi > is
K4, contrary to (b). Since bi, di are symmetric, |NB(di)| ≤ 2. Therefore,
µDi ≤ 1 + 10 = 11, a contradiction.
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Suppose abi ∈ E(G). Then |NB(di)| ≤ 2. For otherwise, < a, ai, bi, ci > is S
and < b, c, d, di > is K4, contrary to (b). Since µDi−dDi(a) = 11, we may as-
sume that |NB(ai)| = 3, |NB(bi)| = 3, |NB(ci)| = 3 and |NB(di)| = 2. Then
< a, b, ai, bi > contains D and < c, d, ci, di > contains D, a contradiction.
So, the result follows.

Proof of (2). By (1), Di is isomorphic to K4. So, without loss of general-
ity, we may assume aai ∈ E(G). Suppose dDi(b) ≥ 3 and NDi(a)∩NDi(b) =
{ai}. Without loss of generality, we may assume bbi, bci ∈ E(G). Then
< a, b, ai, bi > is D and, since |NB(ci)| = 3 and |NB(di)| ≥ 2 or |NB(ci)| ≥ 2
and |NB(di)| = 3, < c, d, ci, di > contains D, a contradiction. So, the result
follows.

If dDi(a) = 2 or dDi(z) = 2, then, by Claim 11, µDi ≤ 10, the result follows.
So, we may assume dDi(a) = dDi(z) = 1. By (1), we may assume that
Di is isomorphic to K4. By (2), NDi(a) ∩ NDi(b) = NDi(z) ∩ NDi(c) = ∅.
Therefore, dDi(b) ≤ 3 and dDi(c) ≤ 3. Hence, ν ′Di

≤ 12. So, Claim 16
follows.

We can easily get the fact that dM (a) + dM (b) + dM (c) + dM (d) = 8 and
µz = 2, |NM (z)| = 2. So, by Claim 16 and Fact 5, we get the following:

ν ′G ≤ 12(k − 1) + 2(n− 4k − 1) + 12 = 2n + 4k − 2.(13)

And also, we get the following:

ν ′G ≥
n + k

2
× 5 > 2n +

9
2
k.(14)

But this contradicts (13). This proves the case cz ∈ E(G).
Finally, suppose bz ∈ E(G). By the same argument in the proof of

Claim 8, we can easily get the following fact.

Fact 6. For any z1 ∈ Z1, ν ′z1
≤ 2.

We prove the following claim.

Claim 17. For any i = 1, . . . , k − 1, ν ′Di
≤ 12.
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Proof. Assume, to the contrary. To prove Claim 17, it is sufficient to
consider the case (3) of Fact 4.

Suppose dDi(a) + dDi(z) = 2 and νDi = 13. If dDi(a) = 2 or dDi(z) =
2, then, by Claim 11, µDi ≤ 10, the result follows. So, we may assume
dDi(a) = dDi(z) = 1. Since < z, b, c, d > is S and zb ∈ E(G), by the
same proof of Subclaim 1, we may assume that Di is isomorphic to K4 and
NDi(a) ∩ NDi(b) = NDi(z) ∩ NDi(b) = ∅. If NDi(a) ∩ NDi(z) = ∅, then
dDi(b) ≤ 2, and hence ν ′Di

≤ 12, and the result follows. So, we may assume
that aai, zai ∈ E(G), dDi(c) = dDi(d) = 4, dDi(b) = 3 and bai 6∈ E(G).
Then < a, b, z, ai > contains D and < c, bi, ci, di > is K4, a contradiction.
So, the result follows.

We can easily get the fact that dM (a) + dM (b) + dM (c) + dM (d) = 8 and
µz = 2, |NM (z)| = 2. So, by Claim 17 and Fact 6, we get the followings:

ν ′G ≤ 12(k − 1) + 2(n− 4k − 1) + 12 = 2n + 4k − 2.(15)

And also, we get the following:

ν ′G ≥
n + k

2
× 5 > 2n +

9
2
k.(16)

But this contradicts (15). So, Theorem 3 follows.
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