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Abstract

Let G be a graph of order n. Let K  be the graph obtained from
K; by removing one edge.

In this paper, we propose the following conjecture:

Let G be a graph of order n > Ik with 6(G) > (n—k+1) =3 +k—1.
Then G has k vertex-disjoint K .

This conjecture is motivated by Hajnal and Szemerédi’s [6] famous
theorem.

In this paper, we verify this conjecture for [ = 4.
Keywords: extremal graph theory, vertex disjoint copy, minimum
degree.
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1. Introduction

In this paper, all graphs considered are finite, undirected and without loops
or multiple edges. For a graph G, V(G), E(G), 6(G) and x(G) denote
the set of vertices and the set of edges, the minimum degree of G and the
chromatic number of G, respectively. For a given graph G and v € V(G),
we write Ng(x) the neighborhood of V(G) and dg(x) = |Ng(x)|. For a
subset S of V(G), the subgraph induced by S is denoted by < S >. For
a subgraph H of G, G — H =< V(G) — V(H) > and for a vertex z of G,
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G — 2z =< V(G) — {z} > and also for an edge e of E(G), G — e means the
graph obtained from G by removing e. For a graph G, n is always the order
of G. With a slight abuse of notation, for a subgraph H of G and a vertex
v e V(G), Nug(v) = Ng(v)NV(H) and dy(v) = |[Ng(v)|. In addition, for a
subgraph H of G and a subset S of V(G), Ng(S) = U,es Na(v) and when
SNV(H) =0, Ng(S) = Upyes Nu(v). Let F be a given connected graph.
Suppose that |V(G)| is a multiple of |[V(F)|. A spanning subgraph of G is
called an F-factor if its components are all isomorphic to F.

There are many results concerning minimum degree conditions for a
graph to have an F-factor. Hajnal and Szemerédi [6] proved that for F' =
K, 0(G) > Z_Tln suffices. More generally, Alon and Yuster [1] proved an

asymptotic result that §(G) > (X;}EEI + o(1))n assures the existence of an
F-factor.

In this paper, we will look at two classes of connected graphs of order
4, namely, K, which is the graph obtained from K, by removing one edge
(In this paper, we call it D), and the graph obtained from K, by removing
two edges which have a common vertex (In this paper, we call it S).

For D, the author [7] proved the following.

Theorem 1 [7]. Let G be a graph of order 4k with 6(G) > %k Then G has
a D-factor.

What happens if we consider the minimum degree condition for a given
graph G of order n > 4k to have k vertex-disjoint F' ?
In case that F'is K 3, Egawa and Ota [3] proved that, if G is a graph
of order n > 4k + 6 with §(G) > k + 2, then G has k vertex-disjoint K7 3.
In this paper, we prove the following theorem.

Theorem 2. Suppose G is a graph of order n > 4k with §(G) > "TH“ Then
G has k vertex-disjoint D.

The condition of §(G) is best possible. Consider the graph G = Kj_1 +
(Kn-tt1 + Knry1). It is obvious that G contains at most k — 1 vertex-
2 2

disjoint triangles. So G does not have k vertex-disjoint D and the minimum
degree is "T‘H“ —1.

For the case S, as S is a subgraph of D and S has a triangle, we can
get the following, and the condition of §(G) is also best possible because of
the same example as in Theorem 3.
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Note that, in [8], it was proved that even the degree sum condition n + k is
good enough to have k vertex-disjoint S.

Let e be an edge in K;. What happens if we consider k vertex-disjoint
(K;—e)? Since D is the graph obtained from complete graph K4 by removing
just one edge, for the case | = 4, we can get the result that a graph G of
order n > 4k with §(G) > "t has k vertex-disjoint (K4 — e). We propose
the following conjecture.

Conjecture 1. Suppose G is a graph with |V(G)| = n > lk and §(G) >
(n—k+1)=3 +k — 1, where | > 3. Then G has k vertex-disjoint (I — e).
The condition of §(G) is best possible. Consider the graph G = Kj,_1 + G/,
where G’ is K;_i-free graph. It is obvious that G contains at most k — 1
vertex-disjoint K;_1. So G does not have k vertex-disjoint (K; — e) and if
G’ is K;_i-free, then the minimum degree is

k41
7’”[; X (1—3)+k—1

-3
—(n—k+1)l_2 +k—1
Conjecture 1 is true for the case that | = 3,4. (For [ = 3, this case may
follow from the result in [4] with some exceptional cases.) It seems that this
conjecture is much more difficult than the complete graph K; case. Note that
Conjecture 1 is true for almost version, namely, if 6(G) > (n—k+1)§:—§+k—l,
then G contains (1—o0(1))k vertex disjoint copies of K, when [ is large. This
result was proved by Komlés [9].

2. Preparation for the Proof of Theorem 2

The case of n = 4k was already proved in [7], so we may assume n > 4k.
Let G be an edge-maximal counterexample. Since a complete graph of
order n > 4k has k vertex-disjoint D, so G is not a complete graph. Let
u and v be nonadjacent vertices of G and define G’ = G + wuv, the graph
obtained from G by adding the edge uv. Then G’ is not a counterexample
by the maximality of G' and so G’ has k vertex-disjoint D and that is, G’
contains k vertex-disjoint subgraphs D1, ..., Dy, where D; is isomorphic to
D or K4. Since G is a counterexample, the edge uv lies in one of Dy, ..., Dy.
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Without loss of generality, we may assume uv € E(Dy), that is, G has k —1
vertex-disjoint subgraph, D1,..., Dj_1 such that Zf;ll |D;| = 4k — 4. Let
H be the subgraph of G induced by U=} V/(D;). Let M be the subgraph
of G induced by V(Dy). And also, let Z be the subgraph of G such that
Z:=G— H — M. Note that < V(Z) UV (M) > does not contain D.

Since uv € E(Dy), M is obtained from D by removing just one edge.
So there are two possibilities for M, namely S, Cy.

Now we choose D1, ..., D;_1 so that

(a) M is S or Cy.
(b) Subject to the condition (a), X! |[E(D;)] is as large as possible, that
is, take K4 instead of D as many as possible.

(c) Subject to the conditions (a) and (b), if there are still two possibilities
for M, namely S, Cy4, we choose S.

3. The Case where M is Isomorphic to C;

We shall settle the case where M is isomorphic to Cy by reducing the situ-
ation to the case where M is isomorphic to S.

With an additional notation, for each %, let a;,b;,c;,d; be the vertex
in D; such that dDi(ai) = dDi(Ci) = 3, le(bZ> < 3 and le(dz) < 3. (If
D, is D, dp,(b;) = dp,(d;) = 2 and b;, d; are nonadjacent. If D; is Ky,
dp,(b;) = dp,(di) = 3.)

Suppose M is Cy. Let a, b, c,d be the vertices in C4 with a and ¢ being
nonadjacent.

For a subgraph N of G, let uny = dy(a) + dn(b) + dn(c) + dn(d).

Claim 1. For any z € Z, pu, < 2.

Proof. Assume the contrary. Since a, b, ¢, d are symmetric, without loss of
generality, we may assume az,bz,cz € E(G). Then < a,b,c,z > contains
D, a contradiction. So, the result follows. [

For each D;, (i = 1,...,k — 1), we consider up,. If pup, < 10 for any D;,
(t=1,...,k—1), then, since dy(a) + dr(b) + drr(c) + dp(d) = 8, we get
the following:

pe < 10(k—1)+8+2(n—4k) =2n+2k — 2 < 2n + 2k

So, for some 4, pup, > 11.
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In the proof of Theorem 1 in [7], we have already proved the following lemma.

Lemma 1 ([7], Lemma 1). If up, > 11, then the following hold:
(1) D; is isomorphic to Ky,
(2) pp, =11 and

(3) for each vertex x € V(M), dp,(xz) = 1,3 or 4 and for each edge xy €
E(M), dp,(z) +dp,(y) =4 or 7.

So, without loss of generality, we may assume up, , = 11. We need some
more definition.

Let e, f,g,h be the vertices in Dy_1. By (1), Dg_; is isomorphic to
Ky. Hence e, f,g,h are symmetric. Also, by (2) and (3), we may assume
Np,_,(a) N Np,_,(c) = {f,g,h}, dp,_,(b) = 4 and de € E(G). See in
Figure 1.

Cy

M)

Figure 1

First, note that the following fact is easily observed.
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Fact 1. < a,d,e, f > is Cy and < b,c,g,h > is K4. Also, < c¢,d,e, f > is
Cyand < a,b,g,h >1is K4, < b,d,c,e > is Cy and < a, f,g,h > is K4, and
<b,d,a,e>is Cq and < ¢, f,g,h > is Ky.

Proof. Trivial by Figure 1. [
For a subgraph N of G, let vy = dy(a) +dn(b) +dn(c) +dn(d) +dn(e) +
dn(f). In the proof of Theorem 1 in [7], we proved the following claims.
Claim 2 ([7], Claim 3). Fori=1,...,k — 2, if dp,(d) = 4, then vp, < 12.
Claim 3 ([7], Claim 4). Fori=1,...,k — 2, if dp,(d) = 3, then vp, < 13.
Claim 4 ([7], Claim 5). Fori=1,...,k —2,if dp,(d) = 2, then vp, < 16.
Claim 5 ([7], Claim 6). Fori=1,...,k—2,if dp,(d) = 1, then vp, < 18.
Claim 6 ([7], Claim 7). Fori=1,...,k—2,if dp,(d) = 0, then vp, < 18.

For 0 < j <4, let p; denote the number of indices ¢ such that dp,(d) = j.

By the definition, we get the following;:

4
(1) ij:k‘—Z.
j=0

We prove the following claim.
Claim 7. For any z € Z, v, < 3.

Proof. Assume the contrary. By Fact 1, < ¢,d,e, f > contains C4 and
< a,b,g,h >1is K4. So, by Claim 1, degpca>(2) <2 and decge r>(2) < 2.
Hence, we may assume az, bz, ez, fz € E(G). Then < a,e, f,z > is D and
< b,c,g,h > is Ky, a contradiction. So, the result follows. [

Let z € Z be the vertex such that v, = 3. By Claim 1 and Fact 1, we can
get the following fact:
’N<a,d,e,f>(z)‘ <2, ‘N<c,d,e,f>(z)’ <2, ‘N<b,d,c,e>(z)‘ <2 and
’N<b,d,a,e> (Z)| <2

Suppose dz € E(G). Then, since < a,b,c,d > is also Cy, the only
possibility is bz,dz, fz € E(G). But in this case, < z,b, f,c¢ > contains a
D, and < a,e,g,h > contains a D, a contradiction. So, if dz € F(G), then
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Theorem 3 holds. Therefore, we may assume dz ¢ E(G). This means, for
any 2’ € Z,if d2’ € E(G), then v,, < 2.

Let  be the number of the vertices z € Z such that dz € F(G) and let y be
the number of the vertices z € Z such that dz ¢ E(G). For 0 < j < 4, let
p; denote the number of indices i such that dp,(d) = j. By the definition,
we get the following:

n+k
(2) da(d) =p1+2p2+3p3s+4ps+3+x > 5

(3) r+y=n—4k.

We can easily get the facts that dy(a) = dap(b) = duy(c) = dy(d) = 2,
du(e) = 2 and dy(f) = 3. And dp, ,(d) =1, dp,_,(a) = dp,_,(c) = 3,
dp, ,(b) =4, dp,_,(e) =3 and dp,_,(f 3. So, by Claims 2-6, we get
the following:

n+k
(4) 2
< 18pp + 18py + 16p2 + 13p3 + 12p4 + 30 + 22 + 3y.

X6=3n+3k <vg

From (2) x 4 + (4) x 2, we get the following:
(5) 36pg + 40p1 + 40p2 + 38ps + 40py + 8z + 6y + 72 > 8n + 8k.
From (1) and (3), we get the following:
36pg + 40p1 + 40p2 + 38ps + 40py + 8z + 6y + 72
) < 40(k — 2) + 8(n — 4k) + 72 = 8n + 8k — 8.

But this contradicts (5). This completes the proof of the case that M is
isomorphic to Cjy.

4. The Case where M is Isomorphic to S

Finally, we consider the case that M is S.
Let a,b,c,d be the vertices of S such that dy/(a) = 1, dp(b) = 3,
dyr(c) = dp(d) = 2. (c and d are symmetric.)
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For a subgraph N of G, let un = dy(a) 4+ dn(b) +dn(c) +dn(d). Let B be
the graph < b,¢,d >.

Claim 8. For any z € Z, |[Np(z)| < 1.

Proof. Assume, to the contrary. Then < b, ¢, d, z > contains D, a contra-
diction. So, the result follows. [

Note that, by Claim 8, we can get the fact that, for any z € Z, u, < 2.

In the proof of Theorem 1 in [7], we have already proved the following
claims.
Claim 9 ([7], Claim 8). Fori=1,...,k— 1, if dp,(a) = 0, then pp, < 12.
Claim 10 ([7], Claim 9). Fori=1,...,k—1,if dp,(a) =1, then up, < 12.
Claim 11 ([7], Claim 10). Fori =1,...,k—1,ifdp,(a) = 2, then pp, < 10.
Claim 12 ([7], Claim 11). Fori=1,...,k—1, if dp,(a) = 3, then up, < 8.

Claim 13 ([7], Claim 12). Fori=1,...,k—1,if dp,(a) = 4, then pup, < 8.

For 0 < j <4, let g; denote the number of indices ¢ such that dp,(a) = j.

By the definition, we get the following:

4
(7) qu' =k-1.
=0

We prove the following claim.
Claim 14. For some z € Z, p, = 2.

Proof. Assume, to the contrary. By Claim 8, we can easily get the fact
that p, < 2. So, we may assume that, for any z € Z, u, < 1. By the
definition, we get the following;:

n+k

(8) 01+ 202+ 3g3 +4qs + 1 +n— 4k > dg(a) > ——.
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And, since dps(a) + dar(b) + dar(c) + dar(d) = 8, by Claims 9-13, we get the
following:

n+k
(9) 2

< 12qo 4+ 12q; + 10g2 + 8g3 + 8q4 + 8 + n — 4k.

x4 =2n+2k < ug

From (8) x4+ (9) x3, we can get the following:

(10)  36qo + 40q; + 38¢s + 36q3 + 40qs + 28 > n + 36k > 40k.

From (7), we get the following:

(11) 360 + 40g1 + 382 + 3643 + 40qs + 28 < 40(k — 1) + 28 = 40k — 12.
But, this contradicts (10). So, the result follows. |
We prove the following claim.

Claim 15. < V(D)UV (M) > does not contain two vertex-disjoint triangles.

Proof. Assume, not. Note that we can assume n > 4k 4+ 2. Let 77 and
T5 be two vertex-disjoint triangle induced by {v1,vs,v3} and induced by
{vy, v5,v6}, respectively. Let Z' be the subgraph of G such that Z’' :=
G—-—H-T, —1Ts.

For a subgraph N of G, let vy = 3%, dn(v;). We prove the following
fact.

Fact 2. For any 2z’ € Z', |[Np, (2')| <1 and |Np,(2')] < 1.

Proof. Assume, to the contrary. Without loss of generality, we may assume
|N, (2')] > 2. Then < z/,v1,v9,v3 > contains D, a contradiction. So, the
result follows. ]

Fact 3. Forany i =1,...,k—1, vp, <15.
Proof. Assume, to the contrary. Since T and T are symmetric, with-

out loss of generality, we may assume dp,(v1) + dp,(v2) + dp,(v3) > 8.
Then, there must exist at least two distinct vertices v;, u; € V(D;) such that
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|N1, (vi)| > 2 and [N, (u;)| > 2. In this case, for any s; € V(D;), [N, (si)] <

1. For otherwise, for some s; € V(D;), if [N, (s;)| > 2, then < vy, vs, v, 8; >

contains D and < V(T1)U(V(D;)—{si}) > contains D, a contradiction. So,

for any s; € V/(D;), |[N7,(s;)| < 1. Therefore, dp, (va)+dp, (vs)+dp,(vs) < 4.

So, we may assume dp, (vi)+dp,(v2) +dp,(v3) = 12 and dp,(v4) +dp, (vs) +

dp,(ve) = 4. In this case, for some vertex u € V(T3), say va, dp,(vs) > 2.
We consider two cases for D.

Case 1. D; is isomorphic to Kjy.
Since a;, b;, ¢;, d; are symmetric, without loss of generality, we may assume
v4a;,v4b; € E(G). Then, < vy, a;,b;, ¢; > contains D and < vy, va,v3,d; >
is K4, a contradiction. So, the result follows.

Case 2. D; is isomorphic to D.

Since a;, ¢; and b;, d; are symmetric, without loss of generality, we may as-
sume v4a;,v4b; € E(G) or vga;,vac; € E(G) or vgb;,vad; € E(G).

Suppose v4a;,v4b; € E(QG) or vaa;,vac; € E(G). Then < vy, a;,b;,¢; >
contains D and < wi,vs,v3,d; > is Ky, a contradiction. So, the result
follows.

Suppose v4b;,v4d; € E(G). Then < wvy4,a4,b;,d; > contains Cy and
< vy, v2,v3,¢ > is Ky, contrary to (b). So, the result follows. [

Since there exist at most three edges connecting 1 to Ts, by Facts 2 and 3,
we get the following:

(12) vg <15(k — 1)+ 1246 +2(n — 4k — 2) = 2n+ Tk — 1.

But, this contradicts the fact that vg > ”—;rk x 6 =3n+ 3k > 2n+ 7k. So,
Claim 15 follows. [}

By Claim 14, there exists a vertex z € Z such that p, = 2. For a subgraph
N of G, let vy = pun + dn(z). Let Z; be the subgraph of G that Z; :=
G—H—-M—{z}. Since < z,b,c,d > is S, by using Claims 9-12, the following
fact is easily observed.

Fact 4.
(1) If dp,(
(2) If dp,(a
(3) Tt i (
(4) If dp,(

0
1, then v, < 12.
+dp,(z) = 2, then Vbi < 13.
a) +dp,(z) = 3, then z/bi < 11.
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(5) If dp,(a) + dp,(2) = 4, then v, <12.
(6) If dp,(a) + dp,(2) = 5, then vp, < 10.
(7) If dp,(a) + dp,(2) = 6, then v, < 11.
(8) If dp,(a) +dp,(z) = 7, then v, < 11.
(9) If dp,(a) +dp,(z) = 8, then vp, < 12.

By Claim 8, we may assume az € E(G). Since ¢,d are symmetric, we only

consider two cases that bz € E(G) or cz € E(G). We shall settle the case

where cz € E(G) by reducing the situation to the case where bz € E(G).
Suppose cz € E(G). We prove the following fact.

Fact 5. For any 2z € Z1, v, < 2.

Proof. Assume, to the contrary. Since < z,a,b,c¢ > is Cy, by Claim 1,
|INezapes(21)] < 2. So, we may assume dz; € E(G). So, by Claim 8, we
may assume dz1,az1,221 € E(G). Then < z,z1,a > is a triangle. As B is a
triangle, this contradicts Claim 15. So the result follows. [

We prove the following claim.
Claim 16. For any i = 1,...,k — 1, v, < 12.

Proof. Assume, to the contrary. To prove Claim 16, it is sufficient to
consider only the case (3) of Fact 4.

Suppose dp,(a)+dp,(z) = 2 and v}, = 13. First, we prove the following
subclaim.

Subclaim 1. If dp,(a) = 1 and pup, = 12, then the followings hold:
(1) D; is isomorphic to Kjy.
(2) dp,(b) =3 and Np,(a) N Np,(b) = 0.

Proof of (1). Assume that D; is isomorphic to D. Since a;,¢; and b;, d;
are symmetric, without loss of generality, we may assume aa; € FE(G) or
ab; € E(G)

Suppose aa; € E(G). Then |Np(b;)| < 2 and |Np(d;)| < 2. For oth-
erwise, if |[Ng(b;)| = 3, then < a,a;,¢;,d; > is S and < b,c,d,b; > is
Ky, contrary to (b). Since b;,d; are symmetric, |[Np(d;)| < 2. Therefore,
wp;, <1410 =11, a contradiction.
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Suppose ab; € E(G). Then |Np(d;)| < 2. For otherwise, < a,a;, b;,¢; > is S
and < b,¢,d,d; > is K4, contrary to (b). Since up, —dp,(a) = 11, we may as-
sume that |[Np(a;)| = 3, |Np(b;)| =3, |[Np(ci)| = 3 and |Np(d;)| = 2. Then
< a,b,a;,b; > contains D and < c¢,d,c;,d; > contains D, a contradiction.
So, the result follows. n

Proof of (2). By (1), D; is isomorphic to K4. So, without loss of general-
ity, we may assume aa; € E(G). Suppose dp,(b) > 3 and Np,(a) NNp,(b) =
{a;}. Without loss of generality, we may assume bb;,bc; € E(G). Then
< a,b,a;,b; >1is D and, since |[Np(¢;)| = 3 and |[Np(d;)| > 2 or |[Np(c;)| > 2
and |Np(d;)| = 3, < ¢,d, ¢;,d; > contains D, a contradiction. So, the result
follows. [

If dp,(a) =2 or dp,(z) = 2, then, by Claim 11, up, < 10, the result follows.
So, we may assume dp,(a) = dp,(z) = 1. By (1), we may assume that
D; is isomorphic to K4. By (2), Np,(a) N Np,(b) = Np,(z) N Np,(c) = 0.
Therefore, dp,(b) < 3 and dp,(c) < 3. Hence, Vbi < 12. So, Claim 16
follows. |

We can easily get the fact that dys(a) + dar(b) + dpr(c) + dpr(d) = 8 and
pz =2, |Na(2)| = 2. So, by Claim 16 and Fact 5, we get the following:

(13) v <12(k —1) +2(n — 4k — 1) + 12 = 2n + 4k — 2.
And also, we get the following:

n+k

9
(14) vg > X5 >2n+ 5]{:

But this contradicts (13). This proves the case cz € E(G).

Finally, suppose bz € E(G). By the same argument in the proof of
Claim 8, we can easily get the following fact.
Fact 6. For any 2 € Z1, v, < 2.

We prove the following claim.

Claim 17. For any i = 1,...,k — 1, vp < 12.
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Proof. Assume, to the contrary. To prove Claim 17, it is sufficient to
consider the case (3) of Fact 4.

Suppose dp,(a) + dp,(z) = 2 and vp, = 13. If dp,(a) =2 or dp,(z) =
2, then, by Claim 11, up, < 10, the result follows. So, we may assume
dp,(a) = dp,(z) = 1. Since < z,b,¢,d > is S and zb € E(G), by the
same proof of Subclaim 1, we may assume that D; is isomorphic to K4 and
NDi(a) N NDl(b) = NDZ-(Z) N NDl(b) = 0. If NDi(a) N NDZ-(Z) = @, then
dp,(b) < 2, and hence I/bi < 12, and the result follows. So, we may assume
that aa;, za; € E(G), dp,(c) = dp,(d) = 4, dp,(b) = 3 and ba; ¢ E(G).
Then < a,b,z,a; > contains D and < ¢, b;,¢;,d; > is Ky, a contradiction.
So, the result follows. n

We can easily get the fact that dys(a) + dar(b) + da(c) + dar(d) = 8 and
pz =2, |[Nap(2)| = 2. So, by Claim 17 and Fact 6, we get the followings:

(15) ve <12(k—1)+2(n—4k — 1) + 12 = 2n + 4k — 2.
And also, we get the following:

n+k

(16) vg > X 5> 2n+ gk.

But this contradicts (15). So, Theorem 3 follows. |
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