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Abstract

For a graphical property P and a graph G, we say that a subset
S of the vertices of G is a P-set if the subgraph induced by S has
the property P. Then the P-domination number of G is the minimum
cardinality of a dominating P-set and the P-independence number the
maximum cardinality of a P-set. We show that several properties
of domination, independent domination and acyclic domination hold
for arbitrary properties P that are closed under disjoint unions and
subgraphs.

Keywords: domination, hereditary property, independence.

2000 Mathematics Subject Classification: 05C69.



240 W. Goddard, T. Haynes and D. Knisley

1. Introduction

There are many variations on the domination number of a graph. In the
book [6], it is proposed that a type of domination is “fundamental” if
(i) every connected nontrivial graph has a domination set of this type; and
(ii) this type of dominating set S is defined in terms of some “natural”
property of the subgraph induced by S. Examples include domination, to-
tal domination, independent domination, connected domination and paired
domination. More recently, Hedetniemi et al. [9] proposed acyclic domina-
tion, and Haynes and Henning [8] proposed path-free domination.

Formally, a property is a set of graphs (closed under isomorphism). We
define four parameters of a graph G for any property P. We say that a set
S of vertices is a P-set if the subgraph 〈S〉 induced by S is in P.

• γP(G) is the minimum cardinality of a dominating set that is a P-set;
• βP(G) is the maximum cardinality of a P-set;
• iP(G) is the minimum cardinality of a maximal P-set;
• ΓP(G) is the maximum cardinality of a minimal dominating set that is

a P-set.

The generalized independence number βP(G) has been studied before (for
example in [2]) with various notations. The other general definitions do not
appear in the literature, though recently Michalak [10] has independently
introduced the same parameters. Hedetniemi et al. [9] studied the case
where P is the set of acyclic graphs, while Haynes and Henning [8] studied
the case where P is the set of all Pk-free graphs for some fixed k.

We note that if the property P contains all edgeless graphs, then every
maximal independent set is a P-set and thus the four parameters exist for
all graphs. We will call such a property nondegenerate.

There are two special properties: we will denote by all the property of
all graphs and by 0 the property of being edgeless. Thus the four standard
parameters are γall , i0, β0 and Γall . It is well known that, in fact, i0 = γ0.
(For graphical parameters µ and ν, we will write µ ≥ ν if µ(G) ≥ ν(G) for
all G, and so on.) In an attempt to reduce clutter, we will drop the subscript
when the property is all graphs; so γ and Γ have their normal meanings (and
we will avoid using β or i).

In the spirit of independent domination and acyclic domination, we
focus on a general property which is additive and hereditary. A property
is hereditary if it closed under subgraphs, and additive if it is closed under
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disjoint unions. For example, edgeless graphs, acyclic graphs, or graphs
with maximum degree at most k are additive and hereditary. Michalak
[10] has considered these parameters where the property is additive and
induced-hereditary, where induced-hereditary means closed under induced
subgraphs. (This is more general then hereditary.) Note that an additive
induced-hereditary property is always nondegenerate.

A key aspect of hereditary properties is that, unless P is all graphs,
there is a largest complete graph KMP in P, and no graph has clique number
exceeding MP . Further,

if γ(G) ≤ MP , then γP(G) = γ(G).

In general, we will say that a property P is clique-bounded if there is a
number MP such that KMP is the largest complete graph in P, and no
graph in P has clique number exceeding MP .

The relationship between generalized colorings and hereditary proper-
ties, and hereditary properties themselves, are now well explored. See, for
example, [3] or [1].

2. Comparable and Incomparable Parameters

For any nondegenerate property P, from the definitions,

γP ≤ ΓP ≤ βP ,

and
iP ≤ βP .

If P is also closed under disjoint union with K1, then

γP ≤ iP .

For, if S is a set such that 〈S〉 in P but S does not dominate vertex z, then
S ∪ {z} is also in P.

The above comments generalize to:

Theorem 1. For any nondegenerate properties P and Q with P ⊆ Q:
(a) γQ ≤ γP ≤ ΓP ≤ ΓQ.
(b) If P is closed under union with K1, then γQ ≤ iP ≤ βQ.
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(Aside: a nondegenerate property can indeed fail to be closed under union
with K1—consider for example the property of every component being iso-
morphic.)

This establishes the Hasse diagram shown in Figure (which was ob-
tained for additive induced-hereditary properties by Michalak [10]). It is
important to note that the Hasse diagram holds for each nondegenerate
property P that is closed under disjoint union with K1. The dashed edge is
used to represent the fact that there are properties P such that iP ≥ i0 and
there are properties P for which iP and i0 are incomparable (see below).
That there are no more inequalities for any additive (induced-) hereditary
property P is established by the following theorem. Hedetniemi et al. [9]
showed that there were no more inequalities in the special case P being the
acyclic graphs.
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Figure 1. Relationships between parameters for a fixed property P.

Theorem 2. For any nondegenerate clique-bounded property P with
MP ≥ 2,

(a) There exists a graph with iP(G) > Γ(G).
(b) There exists a graph with iP(G) < β0(G).
(c) There exists a graph with βP(G) < Γ(G).
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Proof. (a) The complete graph Ks has Γ(Ks) = 1 and iP(Ks) = MP for
s ≥ MP .

(b) Consider the join G = KMP + sK1. This has iP(G) ≤ MP (the
clique is a maximal P-set), while β0(G) = s and so can be made arbitrarily
large.

(c) Consider the prism (cartesian product) G = Ka×K2. Then βP(G) ≤
2MP (can take at most MP vertices from each copy of Ka), while Γ(G) = a
and so can be made arbitrarily large.

In general, iP and iQ are not comparable. Indeed, as mentioned above, there
are properties where there exist graphs G with iP(G) < i0(G) and there are
properties where iP ≥ i0. Hedetniemi et al. [9] showed that the former is
true when P is the acyclic graphs. The latter is true for P the k-colorable
graphs, as we now show.

Following [3], we say that property P is the product of properties Q and
R if for every graph G ∈ P, the vertices of G can be two-colored so that
one color class induces a subgraph in Q and the other color class induces a
subgraph in R.

Lemma 1. If property P = Q · R with Q and R hereditary, then iP ≥ iQ.

Proof. Let G be any graph and consider a smallest maximal P-subgraph;
say with vertex set S. Let (T, U) be a partition of S such that 〈T 〉 ∈ Q
and 〈U〉 ∈ R, with T as large as possible. By the maximality of S, no
vertex in V − S can be added to 〈T 〉 and still have a subgraph in Q; and
by the maximality of T , no vertex in U can be added to 〈T 〉 and still have
a subgraph in Q. Thus iQ(G) ≤ |T | ≤ |S| = iP(G).

It follows that if P = 0k (the property of being k-colorable), then iP ≥ i0.
On the other hand, many properties have iP incomparable with i0.

Consider, for example, any hereditary property P which does not contain
the triangle but does contain some odd cycle Cn. For positive integer s,
define Gs

n by taking Cn and for every pair of consecutive vertices on the
cycle, introducing s vertices adjacent to them only. Then iP(Gs

n) ≤ n (the
cycle is maximal), while i0(Gs

n) = (n− 1)/2 + s.

3. Calculations

We start with the values for the complete graph.
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Observation 1. For any nondegenerate property P,

(a) γP(Kn) = ΓP(Kn) = 1 and
(b) if P is hereditary then iP(Kn) = βP(Kn) = min(MP , n).

Next we consider the star with s leaves.

Observation 2. For any nondegenerate property P, γP(K1,s) = 1, ΓP(K1,s)
= s, and βP(K1,s) ∈ {s, s + 1}.

Next we look at the path on n vertices. Let ZP denote the length of the
longest path in P (possibly ZP = ∞). If nondegenerate P 6= 0, then ZP ≥ 2.

Observation 3. For any additive hereditary property P 6= 0,
(a) γP(Pn) = dn/3e and ΓP(Pn) = d2n/3e.
(b) If ZP = ∞ then βP(Pn) = n; otherwise βP(Pn) = dZPn/(ZP + 1)e.
(c) If ZP = ∞ then iP(Pn) = n. Otherwise let n = r(ZP + 2) + s for

0 ≤ s < ZP + 2. Then iP(Pn) = rZP + min(s, ZP).

Proof. (a) A minimal dominating set cannot contain three consecutive
vertices; thus any minimal dominating set is a P-set and so γP(Pn) = γ(Pn)
and ΓP(Pn) = Γ(Pn).

(b) A P-set S must miss (not contain) at least one vertex in every
subpath of length Zp+1. Thus |S| ≤ dZPn/(ZP+1)e, with equality possible
by taking the first ZP vertices, skipping one vertex, taking the next ZP
vertices, and so on.

(c) Consider a maximal P-set S. Then S misses at most two vertices
in every subpath of length ZP + 2; for, if S were to miss three vertices, the
middle vertex of the triad could be added to S. This means that if n is a
multiple of ZP + 2, the claimed value is a lower bound.

For an actual set S, partition the path into subpaths such that all but
possibly the last have length ZP + 2. Take for S the middle ZP vertices
from each full subpath. From the incomplete subpath, take all its vertices if
s < ZP + 1 and ZP consecutive vertices if s = ZP + 1. So the claimed value
is an upper bound.

For the lower bound when s 6= 0, consider the first vertex. If it is not
in S, then at least the next ZP are, and one can induct on the remainder.
Similar ideas work when the first vertex is in S. The details are omitted.

Similar results hold for the cycle.
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For positive integers a1 ≥ a2 ≥ . . . ≥ as, we define the generalized corona
C(a1, a2, . . . , as) as the complete graph on s vertices (say v1, . . . , vs), to-
gether with aj new end-vertices adjacent to vj for each j. Obviously
γ(C(a1, a2, . . . , as)) = s.

Observation 4. For an additive hereditary property P and s ≥ MP ,
γP(C(a1, a2, . . . , as)) = MP +

∑s
i=MP+1 ai.

As a consequence, it follows that one can arbitrarily prescribe γ(G), γP(G)
and i0(G) provided γ(G) > MP .

Large minimum degree and/or regularity is not enough to force γ(G) =
γP(G). The idea is to turn a corona into a regular graph. See Fricke’s graph
in Figure 6 of [9].

We look now at graphs with small maximum degree. Recall that for a
dominating set S, a private neighbor of a vertex v is a vertex in V−S adjacent
only to v. It is easy to see that if one takes a minimum dominating set S
with the minimum number of internal edges, every nonisolated vertex of S
has at least two private neighbors. (Otherwise replace by unique private
neighbor and contradict minimality of S.) In particular, we obtain the
following (which is surely known):

Observation 5. For graph G with maximum degree ∆, there is a minimum
dominating set S such that 〈S〉 has maximum degree at most ∆ − 2. In
particular, for a cubic graph G, γ(G) = γP(G) if P is an additive induced-
hereditary property with MP ≥ 2.

For example, this was observed for P the P3-free graphs in [8].
It is interesting to note that for P = 0 the difference between γ(G) and

γP(G) can be arbitrarily large for cubic graphs, even if they are required to
be 3-connected [11]. If we consider the specific additive hereditary property
P = 0k (k-colorable), our next result follows directly from Observation 5
and Brooks’ theorem:

Observation 6. For an r-regular graph G and P = 0r−1, γP(G) = γ(G).

By a grid, we mean the cartesian product of two paths (though the following
result extends to products of cycles).

Theorem 3. For an additive hereditary property P and a grid G, γP(G) =
γ(G) provided P3 ∈ P.
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Proof. We extend the argument in [9] to show that there is a minimum
dominating set of G whose components are each a subgraph of P3. We will
use uij to denote the vertex in row i and column j.

Take a minimum dominating set S with the minimum number of edges.
As noted above, every nonisolated vertex of S has at least two private neigh-
bors. Suppose S contains a component not restricted to a single row or single
column. Then, without loss of generality, S contains three vertices say u11,
u12 and u21. Then, because each has two private neighbors, this component
is either a P3, and we are done, or is a 4-cycle, contains u22 and is not on the
boundary of the grid. Then one can replace these four vertices in S with the
four vertices u20, u32, u13 and u01, and thus decrease the number of edges
in S, a contradiction.

Suppose S contains a component with at least four vertices restricted
to a single row; say u11 to u14. Then because of the private neighbors, this
component is in neither the first nor the last row; so one can replace u12

and u13 in S by u02 and u23 and thus decrease the number of edges in S, a
contradiction. Hence we have shown that each component in S has at most
three vertices.

The result actually extends to any induced subgraph of a grid.

4. Extreme Values

We determine the maximum value of γP for a given order. This depends
again on the maximum clique size. The following theorem generalizes The-
orem 2 of [8], for example.

Theorem 4. Let P be an additive hereditary property. For a graph G with
n vertices and no isolates,

γP(G) ≤ n + 2MP − 2
√

nMP ,

and this bound is sharp for all P and infinitely many n ≥ 4MP .

Proof. We extend the proof of Gimbel and Vestergaard [5] for the result
for γ0. Let S be a minimum dominating set {v1, . . . , vγ} of G such that
every vertex has an external private neighbor. (Choose S such that 〈S〉 has
the minimum number of isolates.) The claimed upper bound is at least MP ;
so we may assume that γ ≥ MP . For convenience we write M for MP .
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Now, partition V into sets Nj , 1 ≤ j ≤ γ, such that vj ∈ Nj ⊆ N [vj ]. By
the choice of S, each Nj has at least two vertices. Assume |N1| ≥ |N2| ≥
. . . ≥ |Nγ |.

Now construct a dominating set T by taking the union of {v1, . . . , vM}
and a maximal independent set of G−N [{v1, . . . , vM}]. Then T is a P-set.
The set T must miss at least one vertex from each Nj for j > M . Thus

γP(G) ≤ M + (n−∑M
j=1 |Nj |)− (γ −M)

≤ M + n−Mn/γ − γ + M

= n + 2M −Mn/γ − γ.

The last expression is maximized as a function of γ at γ =
√

nM in general.
Thus we get the stated upper bound. If M ≥ n/4, then the optimal value
of γ is actually n/2, the maximum it can be, and the bound γP(G) ≤ n/2
is better.

For equality, assume n/M is a perfect square, and consider the gen-
eralized corona with a complete graph on

√
Mn vertices and

√
n/M − 1

end-vertices attached to each vertex.

The other extreme values are less interesting. The minimum value of γP(G)
is 1 as it is for ΓP(G) (the complete graph); the maximum value for ΓP(G)
is n−1 (the star). The maximum value for βP(G) and iP(G) is n (e.g. union
of cliques of cardinality at most MP); and the minimum value is min(MN , n)
(e.g. the join KMP + K̄n−MP ).

5. Future Work

In [4], it is observed that βP is always NP-hard for an hereditary property.
The standard reduction from 3SAT to domination (see [4] or [6]) actually
shows that γP is NP-hard for any additive hereditary property; indeed, by
Observation 5, γP remains NP-hard for cubic graphs. However, we have no
idea about the complexity of ΓP or iP .

Commonly studied additive hereditary properties include graphs with
maximum degree at most k, graphs which are k-degenerate (any subgraph
has minimum degree at most k), k-colorable graphs, graphs with compo-
nent orders at most k, planar graphs and F -free graphs for a fixed graph F .
Maybe one can prove more specific results for particular families of proper-
ties (similar to our Observation 6).
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Another direction is to consider generalized irredundance, but the results
are again likely to mirror those of acyclic domination.
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[3] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: Advances in
Graph Theory (Vishwa, 1991) 41–68.

[4] M.R. Garey and D.S. Johnson, Computers and Intractability (W H Freeman,
1979).

[5] J. Gimbel and P.D. Vestergaard, Inequalities for total matchings of graphs, Ars
Combin. 39 (1995) 109–119.

[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination
in Graphs (Marcel Dekker, 1997).

[7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater (eds.) Domination in Graphs:
Advanced topics (Marcel Dekker, 1997).

[8] T.W. Haynes and M.A. Henning, Path-free domination, J. Combin. Math.
Combin. Comput. 33 (2000) 9–21.

[9] S.M. Hedetniemi, S.T. Hedetniemi and D.F. Rall, Acyclic domination, Discrete
Math. 222 (2000) 151–165.

[10] D. Michalak, Domination, independence and irredundance with respect to ad-
ditive induced-hereditary properties, Discrete Math., to appear.

[11] C.M. Mynhardt, On the difference between the domination and independent
domination number of cubic graphs, in: Graph Theory, Combinatorics, and
Applications, Y. Alavi et al. eds, Wiley, 2 (1991) 939–947.

Received 24 July 2002
Revised 27 January 2003

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

