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1. Introduction

Let G be a graph. The girth of G is the length of a smallest cycle in G. The
crossing number of G, denoted cr(G), is the minimum number of pairwise
intersections of its edges when G is drawn in the plane.

An (r, g)-graph is an r-regular graph with girth g. Let f(r, g) denote
the minimum number of vertices in an (r, g)-graph. An (r, g)-graph with
the minimum number of vertices is known as an (r, g)-cage. The problem
of determining f(r, g) or finding an (r, g)-cage is an old problem in graph
theory. (See [11].) Most of the cages have high crossing numbers as is shown
by inequality (2) below.
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Let G be a graph. The removal number of G, denoted rem(G), is defined
to be the minimum number of edges in G whose removal results in a planar
graph. Obviously cr(G) ≥ rem(G).

Recall Euler’s formula for plane graphs. This states that n + f ≥ m +2
where n,m and f denote the number of vertices, edges and faces in the plane
graph G. Equality holds if and only if G is a connected graph.

Let n and m denote the number of vertices and edges respectively in an
(r, g)-graph G. Then rn = 2m. Let G∗ denote the planar graph obtained
from G by deleting rem(G) edges. Let f denote the number of faces in G∗.
Then from Euler’s formula and from the Hand-Shaking Lemma for plane
graphs, we have n − (m − rem(G)) + f ≥ 2 and 2(m − rem(G)) ≥ gf
respectively. By getting rid of m and f , we have

rem(G) ≥ 4g + (r(g − 2)− 2g)n
2(g − 2)

(1)

Since cr(G) ≥ rem(G) and n ≥ f(r, g), we have

cr(G) ≥ 4g + (r(g − 2)− 2g)f(r, g)
2(g − 2)

.(2)

In this paper, we are interested in those (r, g)-graphs having small crossing
numbers.

Call a graph an (r, g, c)-graph if it is an (r, g)-graph with crossing number
c. Let f(r, g, c) denote the minimum number of vertices in an (r, g, c)-graph.
Our problem is to determine f(r, g, c) and, if possible, a smallest (r, g, c)-
graph. Note that for a given c, an (r, g, c)-graph may not exist.

Obviously, f(2, g, 0) = g for any g ≥ 3 and the g-cycle is the only
smallest (2, g, 0)-graph. Note that f(2, g, c) does not exist for any c ≥ 1. In
what follows, we shall assume that r, g ≥ 3. There are three cases which we
wish to consider. The case c = 0 is treated in Section 2 and the cases c = 1
and c = 2 in the subsequent sections.

Throughout this paper, we let Ks denote a complete graph on s vertices
and Ks,t the complete bipartite graphs whose two partite sets have s and t
vertices.

2. The Case c = 0

In this case, all the graphs under consideration are planar graphs. Let G be
an (r, g, 0)-graph. Then by counting the number of edges and the number



Minimal Regular Graphs with Given ... 225

of vertices in G, and by using Euler’s formula for plane graphs, we have

∑

i≥g

(2i− (i− 2)r)fi = 4r(3)

where fi is the number of i-sided faces in G. From this formula, it is
easily deduced that g ≤ 5 and that r ≤ 5. A closer look at the above
formula reveals that there are only five possible pairs of (r, g), namely
(3, 3), (3, 4), (3, 5), (4, 3) and (5, 3). For each pair of (r, g), we shall determine
the value of f(r, g, 0) and the corresponding possible smallest (r, g, 0)-graphs.

Note that in an (r, g, 0)-graph G with n vertices, m edges and f faces,
we have rn = 2m ≥ gf . Substituting these into Euler’s formula for plane
graphs, we have m ≤ g

g−2(n − 2) where equality holds if and only if every
face of G is a g-sided face. Replacing m by rn

2 , we have

n ≥ 4g

2r + 2g − rg
.(4)

Immediate from the above inequality, it is deduced that f(3, 3, 0) ≥ 4,
f(3, 4, 0) ≥ 8, f(3, 5, 0) ≥ 20, f(4, 3, 0) ≥ 6 and f(5, 3, 0) ≥ 12. It is
easy to see that K4 is the only smallest (3, 3, 0)-graph and so f(3, 3, 0) = 4.
Also, it is easily shown that the cube is the only smallest (3, 4, 0)-graph and
so f(3, 4, 0) = 8.

Likewise, it is readily verified that the octahedron is the only smallest
(4, 3, 0)-graph and so f(4, 3, 0) = 6.

The icosahedron shows that f(5, 3, 0) = 12. To see that it is the only
smallest (5, 3, 0)-graph, note that any (5, 3, 0)-graph on 12 vertices is maxi-
mal planar. This means that every face is a triangle and that f3 = 20. The
only graph that satisfies these conditions is the icosahedron. (See [1] pp.
159–161.)

The dodecahedron shows that f(3, 5, 0) = 20. To see that it is the only
smallest (3, 5, 0)-graph, note that any (3, 5, 0)-graph G on 20 vertices has 30
edges. Since m = g(n−2)

g−2 , every face in G is a 5-sided face. Hence f5 = 12.
The only graph that satisfies these conditions is the dodecahedron. (See [1]
pp. 159–161.)

We shall summarize the above observations in the following theorem.

Theorem 1. The five platonic solids are the only smallest (r, g, 0)-graphs.
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3. The Case c = 1

Let G be an (r, g, 1)-graph with n vertices and m edges. Then cr(G) = 1 =
rem(G) and so there exists an edge e in G such that G − e is planar with
degree sequence (r−1, r−1, r, . . . , r). Note that the girth of G−e is at least
g. Let f denote the number of faces in G− e and let fi denote the number
of i-sided faces in G − e. Then 2(m − 1) =

∑
i≥g ifi = 2(r − 1) + r(n − 2)

and f =
∑

i≥g fi. Substituting these into Euler’s formula for plane graphs,
we have

∑

i≥g

(2i− (i− 2)r)fi ≥ 4r − 4.(5)

Like the case of planar graphs, it is readily deduced that there are only five
possible pairs of (r, g), namely (3, 3), (3, 4), (3, 5), (4, 3) and (5, 3).

Notice that the number of vertices in G satisfies the following inequality

n ≥ 2g + 4
2r + 2g − rg

.(6)

It is easy to see that f(4, 3, 1) = 5 because K5 is the smallest (4, 3, 1)-
graph. Also, f(3, 4, 1) = 6 because K3,3 is the smallest (3, 4, 1)-graph.

Now f(3, 3, 1) ≥ 8. To see this, let H be a (3, 3, 1)-graph on no more
than 6 vertices. Then H must be isomorphic to the complete bipartite graph
K3,3. But this is not possible because K3,3 contains no triangle.

A smallest (3, 3, 1)-graph is obtained from K3,3 by replacing a vertex by
a triangle with edges joining the triangle in a corresponding way (see Figure
1). To see the uniqueness of this graph, let H be a smallest (3, 3, 1)-graph.

Figure 1. Smallest (3, 3, 1)-graph
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Then H contains a triangle. Replace this triangle by a vertex of degree 3,
the resulting graph is a non-planar cubic graph on 6 vertices which must be
the complete bipartite graph K3,3.

It follows from the inequality (6) that f(3, 5, 1) ≥ 14. The graph de-
picted in Figure 2 is a (3, 5, 1)-graph and so f(3, 5, 1) ≤ 18. In [10], Royle
has listed all the (3, 5)-graphs on 14 and 16 vertices. We check that all these
graphs have crossing number at least 2. There are eight (3, 5)-graphs with
14 vertices. Six of them contains a subdivision of the Petersen graph as a
subgraph. One of the two remaining graphs in the list is the graph G7 of
Figure 6 (which has crossing number 2 as will be explained later in the last
section). The last graph in the list has removal number at least 2 because
the resulting graph obtained by deleting any edge from this graph contains
a subdivision of K3,3 as subgraph. There are 48 (3, 5)-graphs on 16 vertices.
Except for the last graph, all of them has crossing number at least 2 because
they all contain a subdivision of the graph G3 (which has crossing number
2 as will be explained later in the section) of Figure 6 as subgraph. The last
graph in the list contains a subdivision of the Petersen graph as a subgraph.
Hence all of these graphs have crossing number at least 2. Thus we may
conclude that f(3, 5, 1) = 18. However we do not know whether or not the
graph in Figure 2 is the only smallest (3, 5, 1)-graph.

Figure 2. Smallest (3, 5, 1)-graph

The graph in Figure 3 is a (5, 3, 1)-graph and so f(5, 3, 1) ≤ 14. Since
10 ≤ f(5, 3, 1), there are only three possible values of f(5, 3, 1). In the next
section, we shall prove that f(5, 3, 1) ≥ 12. We do not know whether or not
a smallest (5, 3, 1)-graph is unique.
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Figure 3. A (5, 3, 1)-graph

We shall summarize the above observations in the following theorem.

Theorem 2. f(3, 3, 1) = 8, f(3, 4, 1) = 6, f(3, 5, 1) = 18, f(4, 3, 1) = 5 and
12 ≤ f(5, 3, 1) ≤ 14.

4. (5, 3, 1)-Graphs

In this section, we prove that (5, 3, 1)-graphs do not exist if the number of
vertices is no more than 10.

Proposition 1. Let G be a 5-regular graph on 10 vertices. Then cr(G) ≥ 2.

The proof of this proposition is by contradiction. It consists of a series of
lemmas that we shall now prove. It is easy to see that if G is 5-regular and
has 10 vertices, then it is non-planar and so cr(G) ≥ 1. In this section,
unless otherwsie stated, we shall assume that G is a 5-regular graph on 10
vertices and that cr(G) = 1 and obtain a contradiction.

Let H be a regular graph and let v be a vertex of H. Let Av denote
the subgraph of H induced by the set of vertices adjacent to v. Also, let Bv

denote the subgraph obtained by deleting Av ∪ {v} from H.

Lemma 1. Let H be an r-regular graph on 2r vertices. Suppose v ∈ V (H).
Then Av and Bv have the same number of edges.

Proof. Note that Av and Bv have r and r − 1 vertices respectively. Let
(a1, . . . , ar) and (b1, . . . , br−1) denote the degree sequences of Av and Bv

respectively.
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Note that the number of edges in the subgraph H − v is r(r − 1) and that
it is also equal to |E(Av)|+ |E(Bv)|+ number of edges from Av to Bv.

Therefore,
∑r

i=1 ai

2
+

∑r−1
i=1 bi

2
+

r∑

i=1

(r − 1− ai) = r(r − 1)

which, on simplification, leads to
∑r

i=1
ai

2 =
∑r−1

i=1
bi

2 . Thus Av and Bv have
the same number of edges.

Lemma 2. If rem(G) = 1, then there is an edge e in G such that G− e is
a planar triangulation.

Proof. Since rem(G) = 1, there is an edge e in G such that G−e is planar.
Since G− e has 10 vertices and 24 edges, G− e is a triangulation.

Lemma 3. If G contains a 4-cycle a0a1a2a3, then either aiai+2 ∈ E(G) for
some i or else there is a vertex u ∈ V (G) such that u is adjacent to ai for
all i. Here i is considered modulo 4.

Proof. This is a consequence of Lemma 2 because otherwise G − e is not
a triangulation for any edge e in G.

Lemma 4. Av is connected for any vertex v in G.

Proof. Suppose Av is disconnected for some vertex v in G. Let w1 and w2

be two vertices in two different components of Av, say G1 and G2 respec-
tively.

Since |V (G1)| + |V (G2)| ≤ 5, we may assume that w1 is of degree d
where d ≤ 1 and w2 is of degree 3− d in Av. Therefore w1 and w2 must be
adjacent to a common vertex z in Bv. But then w1zw2v is a 4-cycle in G
not satisfying Lemma 3. This contradiction proves that Av is connected.

Lemma 4 implies that Av has at least 4 edges because it has 5 vertices. By
Lemma 1, because Av and Bv have the same number of edges, it follows that
Av has at most 6 edges because Bv has 4 vertices. Next, we shall dispose of
some degree sequences of Av.

Lemma 5. For any v ∈ V (G), Av contains no vertices of degree 4.
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Proof. Suppose on the contrary that Av contains a vertex u of degree 4.
Evidently there exist two non-adjacent vertices x and y in Av − u.

If x and y are adjacent to a common vertex z in Bv (call this condition
(∗)), then xzyu is a 4-cycle in G not satisfying Lemma 3.

Notice that the condition (∗) is always satisfied if |E(Av)| ≤ 5.
So assume that |E(Av)| = 6 and that the condition (∗) is not satisfied.

Then Av is the graph of Figure 4(a). In this case, the only graph in which
condition (∗) is not satisfied is the graph of Figure 4(b). However, the
removal number of this graph is at least 2 because it contains a subdivision
of K3,4 (the subgraph induced by the thick edges) as a subgraph. This
contradiction proves the lemma.

Figure 4. Graph not satisfying condition (∗)

Lemma 6. It is not possible that Av contains two non-adjacent vertices v1

and v2 such that dAv(v1) = 1 and dAv(v2) ≤ 2.

Proof. If these conditions are satisfied, then v1 must be adjacent to three
vertices of Bv and v2 must be adjacent to at least two vertices of Bv. This
means that they must be adjacent to a common vertex z of Bv. But then
G contains a 4-cycle vv1zv2 not satisfying Lemma 3.

Lemmas 5 and 6 imply that the only possible degree sequences for Av left
to be considered are (2, 2, 2, 2, 2) and (2, 2, 2, 3, 3). There are only three
graphs associated with these degree sequences. However, these three cases
are disposed of in the next three lemmas.

Lemma 7. Av is not the graph K2,3.
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Proof. In this case, Bv is the complete graph on 4 vertices. Let x1, x2

and x3 denote the three vertices of degree 2 in K2,3. Then each xi must
be adjacent to two vertices in Bv. But this means that there are xi and
xj (i 6= j) which are adjacent to a common vertex z in Bv giving rise to a
4-cycle vxizxj in G not satisfying Lemma 3.

Lemma 8. Av is not a cycle on 5 vertices.

Proof. Suppose Av is a cycle on 5 vertices whose vertices are labelled as
v1, v2, . . . , v5 in cyclic order.

Note that Bv is the graph obtained from the complete graph on 4 vertices
by deleting an edge. So Bv contains two vertices x1 and x2 of degree 2, and
two vertices y1 and y2 of degree 3. Clearly each xi is adjacent to three
vertices of Av.

Now, x1 and x2 are adjacent to a common vertex w in Av. But then
x1wx2y1 or x1wx2y2 is a 4-cycle in G not satisfying Lemma 3.

Lemma 9. Av is not the graph of Figure 5(a).

Proof. Suppose Av is the graph of Figure 5(a). In this case, Bv is the
complete graph on 4 vertices. Let V (Bv) = {u1, . . . , u4}.

Figure 5

Note that any two non-adjacent vertices x and y in Av must not be adjacent
to a common vertex z in Bv. This is because otherwise we have a 4-cycle
vxzy in G not satisfying Lemma 3.
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Hence we may assume without loss of generality that v2 is adjacent to u3 and
u4 and that v4 is adjacent to u1 and u2. Since v5 and v2 are non-adjacent,
v5 is adjacent to u1 and u2 (see Figure 5(b)).

Now v1 is adjacent either to u3 or u4. However in either case, we have
a 4-cycle v1v5u1w not satisfying Lemma 3, where w ∈ {u3, u4}. This con-
tradiction proves the lemma.

5. The Case c = 2

Let G be an (r, g, 2)-graph with n vertices. Then 1 ≤ rem(G) ≤ 2. Let
fi(r, g, c) denote the minimum number of vertices in an (r, g, c)-graph with
removal number i, i = 1, 2.

The rest of this paper is to prove the following theorem.

Theorem 3. f1(3, 3, 2) = 12, f1(3, 4, 2) =10, f1(3, 5, 2) =14, f1(4, 3, 2)= 8,
12 ≤ f1(5, 3, 2) ≤ 16, f2(3, 3, 2) = 12, f2(3, 4, 2) = 12, f2(3, 5, 2) = 10,
f2(4, 3, 2) = 7 and f2(5, 3, 2) = 8.

Suppose rem(G) = 1. Then inequalities (5) and (6) also hold for G and so
there are only five possible pairs of (r, g), namely (3, 3), (3, 4), (3, 5), (4, 3)
and (5, 3).

Suppose rem(G) = 2. Let x1 and x2 be two edges of G such that
G − {x1, x2} is planar. Then the degree sequence of G − {x1, x2} is either
(r − 2, r − 1, r − 1, r, · · · , r) or (r − 1, r − 1, r − 1, r − 1, r, · · · , r). Following
similar argument as was done for the case c = 1, we have

∑

i≥g

(2i− (i− 2)r)fi ≥ 4r − 8(7)

and the number of vertices in G satisfies the following inequality

n ≥ 8
2r + 2g − rg

.(8)

Again, only the same five pairs of (r, g) satisfy inequality (7).
Let G be a non-planar graph and let e be an edge in G. Then e is called

a p-critical edge if G− e is a planar graph.

Lemma 10. Let G be a non-planar graph. If G contains a unique p-critical
edge, then cr(G) ≥ 2.
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Proof. If cr(G) = 1, then there exist two edges e1 and e2 in G which
intersect each other and such that G − {ei} is planar for i = 1, 2. But this
contradicts the uniqueness of the removal edge of G.

5..1 (3, g, 2)-graphs

In [9] (p. 647–648), Royle has listed all connected cubic graphs of order up
to and including 10. It is easily seen that there are only two cubic graphs
in the list with c > 1, the Petersen graph G8 and the graph G3 in Figure 6.
Thus fi(3, g, 2) ≥ 10. Further, Royle’s list also indicates that f2(3, 4, 2) ≥ 12
and that fi(3, 3, 2) ≥ 12.

Clearly, the Petersen graph is a (3, 5, 2)-graph. It has removal number 2
because removing any one of its edges yields a non-planar graph. Therefore
f2(3, 5, 2) = 10 and the Petersen graph is the only smallest (3, 5, 2)-graph
with removal number 2.

Note that the graph G3 in Figure 6 has crossing number 2. To see
this, we note that G3 contains two vertex-disjoint graphs K2,3 which are
not outerplanar. If cr(G3) = 1, then at least one of these subgraphs has a
planar drawing. This subgraph does not separate the vertices of the other
K2,3 subgraph and, because of outerplanarity, its edges are crossed by at
least one of the edges e1, e2 and e3. A similar argument can be used for
the other K2,3 subgraph. Hence G3 is a (3, 4, 2)-graph. Moreover it has
removal number 1 because G3 − ei is planar for any 1 ≤ i ≤ 3. Therefore
f1(3, 4, 2) = 10 and G3 is the only smallest (3, 4, 2)-graph with removal
number 1.

f1(3, 5, 2) ≥ 14 follows from inequality (1). In Royle’s list of cubic
graphs on 14 vertices [10], there are eight graphs with girth equal to 5. All
but the graph G7 contain a subdivision of the Petersen graph as a subgraph.
This means that except for the graph G7, they all have removal number at
least 2. It is a routine exercise to verify that the edge e is the only p-critical
edge in G7. By Lemma 10, cr(G7) ≥ 2. Therefore f1(3, 5, 2) = 14 and G7 is
the only smallest (3, 5, 2)-graph with removal number 1.

Let H be a smallest (3, g, 2)-graph with removal number i and g 6= 3.
We may obtain a (3, 3, 2)-graph with removal number i by replacing a vertex
of degree 3 from H by a triangle with edges joining the triangle in a cor-
responding way. The graph G1 (respectively G2) is obtained from G3 (re-
spectively the Petersen graph) in this way. Combining this with the previous
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observations, we have f1(3, 3, 2) = 12 and f2(3, 3, 2) = 12. The uniqueness
of these graphs follows from that of the graph G3 and the Petersen graph.

We now look at Royle’s list of cubic graphs on 12 vertices with girth
4 (see [10]). There are twenty such cubic graphs. However there are only
three graphs G4, G5 and G6 from this list with removal number at least
2. Since these three graphs can all be drawn on the plane with only two
crossings, they are the smallest (3, 4, 2)-graphs with removal number 2. Thus
f2(3, 4, 2) = 12.

5..2 (4, 3, 2)-graphs

Let G be a (4, 3, 2)-graph on n vertices. Then clearly n ≥ 6.
If n = 6, then G is the complementary graph of 3K2 and is planar.

Hence n ≥ 7.
If n = 7, then G is a 2-regular graph which is either C3 ∪ C4 or C7.

If G is C3 ∪ C4, then G is the graph G10 and rem(G10) = 2 because G10

contains K3,4 as a subgraph. If G is C7, then cr(G) = 1 (see [2]). Therefore
f2(4, 3, 2) = 7 and G10 is the only smallest (4, 3, 2)-graph with removal
number 2.

If n = 8, then G is a cubic graph on 8 vertices. There are precisely
five cubic graphs on 8 vertices. If G is the cube, then G is the graph G9

which is the cartesian product K4×K2 and has crossing number 2 (see [8]).
Now, rem(G9) = 1 because G9 − ei is planar for each i = 1, 2, 3. If G is not
the cube, we have checked, by direct verification that either rem(G) ≥ 2
or else cr(G) ≤ 1. Therefore f1(4, 3, 2) = 8 and G9 is the only smallest
(4, 3, 2)-graph with removal number 1.

5..3 (5, 3, 2)-graphs

It follows from inequality (1) that f1(5, 3, 2) ≥ 10. However the proof of
Proposition 1 implies that f1(5, 3, 2) ≥ 12. Clearly, the graph G11 in Figure
6 has removal number 1. We have checked that the edge e is the only
removal edge. By Lemma 10, cr(G11) = 2. Hence G11 is a (5, 3, 2)-graph
with rem(G11) = 1 and so 12 ≤ f1(5, 3, 2) ≤ 16.

Let G be a 5-regular graph on 8 vertices. Then G is a 2-regular graph.
Hence there are only three 5-regular graphs on 8 vertices namely, C8, C3 ∪ C5

and C4 ∪ C4. Since Cr ∪ Cs contains Kr,s as a subgraph, it follows that
cr(C3 ∪ C5) ≥ 4 and cr(C4 ∪ C4) ≥ 4.
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Now it follows from inequality (1) that rem(C8) ≥ 2. Figure 6 depicts a
drawing of C8 (∼= G12) with two crossings and we have rem(G12) = 2 =
cr(G12). Thus f2(5, 3, 2) = 8 and G12 is the only smallest (5, 3, 2)-graph
with removal number 2.
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Figure 6
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