
Discussiones Mathematicae 213
Graph Theory 24 (2004 ) 213–221

BOUNDS FOR INDEX OF A MODIFIED GRAPH

Bo Zhou∗

Department of Mathematics
South China Normal University
Guangzhou 510631, P.R. China

e-mail: zhoubo@scnu.edu.cn

Abstract

If a graph is connected then the largest eigenvalue (i.e., index)
generally changes (decreases or increases) if some local modifications
are performed. In this paper two types of modifications are considered:
(i) for a fixed vertex, t edges incident with it are deleted, while s new

edges incident with it are inserted;
(ii) for two non-adjacent vertices, t edges incident with one vertex

are deleted, while s new edges incident with the other vertex are
inserted.

Within each case, we provide lower and upper bounds for the indices
of the modified graphs, and then give some sufficient conditions for the
index to decrease or increase when a graph is modified as above.
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2000 Mathematics Subject Classification: 05C50, 15A42.

1. Introduction and Preliminaries

We consider only finite undirected graphs without loops or multiple edges.
The eigenvalues of a graph are the eigenvalues of the adjacency matrix of
this graph. The largest eigenvalue of a graph G is called the index of G,
denoted by µ1(G). If a graph G is connected, then the unique positive
unit eigenvector x corresponding to µ1(G) is called the principal eigenvector
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of the labelled graph G. The study of graph perturbations is concerned
primarily with changes in eigenvalues which result from local modifications
of a graph. Maas [2], Rowlinson [3, 4] and Zhou [6] have investigated the
indices of various modified graphs of a connected graph.

Let G be a graph with u ∈ V (G). The neighborhood NG(u) of u is
the set of vertices adjacent to u. The closed neighborhood of u is the set
NG[u] = NG(u) ∪ {u}.

In this paper, we provide lower and upper bounds for the indices of
two types of modified graphs obtained from a connected graph G; one is
obtained from G by deleting t edges incident with a given vertex u and
adding s new edges between u and the vertices in V (G) \ N [u]; the other
is obtained from G by deleting t edges incident with a given vertex v and
adding s new edges between another given vertex u which is not adjacent
to v and the vertices in V (G) \ (N [u] ∪ {v}). These bounds are then used
to derive sufficient conditions for the index to decrease or increase when G
is modified as above. Some results of [2, 4] are generalized.

Our proof of the upper bounds for indices of modified graphs is based on
intermediate eigenvalue problems of the second type. We outline the results
required from [5] (also see [1]) in terms of an n-dimensional Euclidean space
V in which (u,v) denotes the inner product of vectors u and v. For a
symmetric linear transformation T of V , let λ1(T ), . . . , λn(T ) denote the
eigenvalues of T in non-decreasing order.

Let Ã be a symmetric linear transformation of V and let B̃ be a posi-
tive linear transformation of V . A second inner product is defined on V by
[u, v] = (B̃u, v). Choose any basis {v1, . . . , vn} for V and, using the second
inner product, let Pr be the orthogonal projection onto the subspace spanned
by v1, . . . ,vr (1 ≤ r ≤ n). Thus Pn = I and if P0 is the zero transformation
of V then [Pr−1v, v] ≤ [Prv, v], whence ((Ã+B̃Pr−1)v, v) ≤ ((Ã+B̃Pr)v, v)
for all v ∈ V and 1 ≤ r ≤ n. Note that for 0 ≤ r ≤ n, B̃Pr is a symmet-
ric linear transformation of the original inner product space V , and that
for any symmetric linear transformation T of V , λi(T ) is the minimum
of max{(Tv, v) : ‖v‖ = 1, v ∈ U} taken over all i-dimensional subspaces
U of V . It follows that λi(Ã) ≤ λi(Ã + B̃P1) ≤ λi(Ã + B̃P2) ≤ · · · ≤
λi(Ã + B̃Pn−1) ≤ λi(Ã + B̃) (1 ≤ i ≤ n). The problem of determining
the eigenvalues of Ã + B̃Pr for some r is called an intermediate eigenvalue
problem of the second type.

Let Ãui = λ̃iui where λ̃i = λi(Ã) (i = 1, . . . , n) and u1, . . . , un are
orthonormal. Choose vi = B̃−1ui (i = 1, . . . , n). Then Pruj =

∑r
i=1 γijvi,
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where (γij)−1 is the r × r Gram matrix Tr with (i, j)-entry [vi, vj ] (i, j =
1, . . . , r); moreover the matrix of Ã + B̃Pr with respect to the basis
{u1, . . . ,un} is

diag(λ̃1, λ̃2, . . . , λ̃n) +

(
T−1

r O
O O

)
.

In what follows we take V = IRn, (u, v) = uT v and identify a linear trans-
formation on IRn and its matrix with respect to the standard basis of IRn. As
usual, Jn×k denotes the n× k matrix with all entries equal to 1, Jn = Jn×n,
In denotes the n × n identity matrix. If A and A + B are the adjacency
matrices of a graph G and its modified graph G′, then we take

Ã = −A− (λn(B) + δ)I and B̃ = (λn(B) + δ)I −B, where δ > 0.

Thus B̃ is positive, Ã + B̃ = −A−B and µ1(G′) = −λ1(Ã + B̃) ≤ −λ1(Ã +
B̃Pr). For a given r, we can choose δ to optimize this upper bound for
µ1(G′).

2. The Results

Let G be a connected graph, and let u ∈ V (G), S ⊆ V (G) \ NG[u], T ⊆
NG(u) with |S| = s, |T | = t and s+ t ≥ 1. The graph G(u;S, T ) is obtained
from G by replacing edges uj, j ∈ T with edges ui, i ∈ S.

Maas [2] obtained upper bounds for the index of G(u; S, T ) with s = 1,
t = 0, while Rowlinson [4, Theorems 3.2 and 5.1] investigated the cases
s = t = 1 and s = 0, t = 1, respectively.

Theorem 1. Let G be a connected graph with eigenvalues µ1, µ2, . . . , µn

(in non-increasing order), and (x1, x2, . . . , xn)T be the principal eigenvector
of G. Write G′ = G(u; S, T ). Then

µ1(G′) ≥ µ1 + 2xu

(∑

v∈S

xv −
∑

v∈T

xv

)
,

and
µ1(G′) ≤ µ1 +

√
s + t + δ − γ

where δ > 0, and

γ =
δ(
√

s + t + δ)(2
√

s + t + δ)
α− δβ + δ(2

√
s + t + δ)

= µ1 − µ2(1)
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with
α = (s + t)x2

u +
(∑

v∈S

xv

)2
+

(∑

v∈T

xv

)2

−2
∑

v∈S

xv

∑

v∈T

xv − 2
√

s + txu

(∑

v∈T

xv −
∑

v∈S

xv

)
,

and
β = 2xu

(∑

v∈T

xv −
∑

v∈S

xv

)
.

Proof. Suppose without loss of generality that u = 1, S = {2, . . . , s + 1}
and T = {s + 2, . . . , s + t + 1}. Let A, A + B be the adjacency matrices of
G and G′ respectively so that

B =




0 J1×s −J1×t

Js×1

−Jt×1

O
O

O O




.

Since µ1(G′) = max{yT (A+B)y : ‖y‖ = 1}, by taking y to be the principal
eigenvector of G, we get

µ1(G′) ≥ µ1 + 2x1

(s+1∑

i=2

xi −
s+t+1∑

i=s+2

xi

)
.

In what follows we will consider the upper bound for µ1(G′). It is easy
to see that the largest eigenvalue of B is

√
s + t. Using the notation as in

Section 1, we have Ã = −A − (
√

s + t + δ)In, B̃ = (
√

s + t + δ)In − B,
and hence λ̃i = −µi −

√
s + t − δ (i = 1, . . . , n). Write a =

√
s + t + δ and

b = a2 − (s + t). Then we have

1
b
B̃−1 =




a J1×s −J1×t

Js×1
b
aIs + 1

aJs − 1
aJs×t

−Jt×1 − 1
aJt×s

b
aIt + 1

aJt

O

O b
aI




.

We use now the results from Section 1 with r = 1 and with u1 = (x1,
x2, . . . , xn)T . The matrix of Ã + B̃P1 is similar to diag(λ̃1 + γ, λ̃2, . . . , λ̃n)
where
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γ = γ−1
11 = [v1, v1]−1 = [B̃−1u1, B̃

−1u1]−1 = (u1, B̃
−1u1)−1

=
δ(
√

s + t + δ)(2
√

s + t + δ)
α− δβ + δ(2

√
s + t + δ)

.

Now λ1(Ã + B̃P1) = min{λ̃1 + γ, λ̃2} and so µ1(G′) = −λ1(Ã + B̃) ≤
−λ1(Ã + B̃P1) = max{µ1 +

√
s + t + δ − γ, µ2 +

√
s + t + δ}. As function

of δ (δ > 0), γ has range (0,∞) and so we may choose δ > 0 such that
γ = µ1 − µ2. Hence (1) holds, and µ1(G′) ≤ µ1 +

√
s + t + δ − γ.

As a direct application, we use Theorem 1 to obtain sufficient conditions
in terms of µ1, µ2, xi(i ∈ {u} ∪ S ∪ T ) for the index to decrease or increase
when replacing edges uj, j ∈ T with edges ui, i ∈ S.

Theorem 2. Let G be a connected graph with eigenvalues µ1, µ2, . . . , µn

(in non-increasing order), and (x1, x2, . . . , xn)T be the principal eigenvector
of G. Write G′ = G(u; S, T ). If

∑
v∈S xv ≥

∑
v∈T xv, then µ1(G′) > µ1. If∑

v∈S xv <
∑

v∈T xv and

µ1 − µ2 >

(s + t)x2
u + (

∑
v∈S

xv)2 + (
∑

v∈T
xv)2 − 2

∑
v∈S

xv
∑

v∈T
xv

2xu(
∑

v∈T
xv −

∑
v∈S

xv)
,(2)

then µ1(G′) < µ1.

Proof. We use the notation in the proof of Theorem 1. If
∑

v∈S xv ≥∑
v∈T xv, then by Theorem 1, µ1(G′) ≥ µ1 +2xu(

∑
v∈S xv−

∑
v∈T xv) ≥ µ1.

Moreover, we have µ1(G′) > µ1. Otherwise, x = (x1, x2, . . . , xn)T is an
eigenvector of A + B corresponding to the eigenvalue µ1(G′) = µ1; hence
Bx = 0. But then xv = ±(Bx)v = 0 for v ∈ S ∪T , which is a contradiction.

Now suppose that
∑

v∈S xv <
∑

v∈T xv. Then β = 2xu(
∑

v∈T xv −∑
v∈S xv) > 0. By Theorem 1, µ1(G′) ≤ µ1 +

√
s + t+δ−γ where γ is given

by (1). Note that (2) is equivalent to γ >
√

s + t+αβ−1. We have α−δβ < 0.
Otherwise, by the expression of γ,

√
s + t + αβ−1 < γ ≤ √

s + t + δ, and
hence αβ−1 < δ, a contradiction. It follows that γ >

√
s + t+δ and we have

µ1(G′) < µ1.
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Let G be a connected graph, let u, v ∈ V (G) such that u and v are not
adjacent, and let S ⊆ V (G)\ (NG[u]∪{v}), T ⊆ NG(v) with |S| = s, |T | = t
and s+t ≥ 1. The graph G(u, v; S, T ) is obtained from G by replacing edges
vj, j ∈ T with ui, i ∈ S. Note that the case s = t = 1 has been considered
in [4].

Theorem 3. Let G be a connected graph with eigenvalues µ1, µ2, . . . , µn (in
non-increasing order), and let (x1, x2, . . . , xn)T be the principal eigenvector
of G. Write G′ = G(u, v;S, T ) where S ∩ T = ∅. Then

µ1(G′) ≥ µ1 + 2xu

∑

i∈S

xi − 2xv

∑

i∈T

xi,

and
µ1(G′) ≤ µ1 + max{√s,

√
t}+ δ − γ

where δ > 0, γ = µ1 − µ2, and

γ−1 =
sx2

u + (
∑
i∈S

xi)2 + 2axu
∑
i∈S

xi

a(a2 − s)
+

tx2
v + (

∑
i∈T

xi)2 − 2axv
∑
i∈T

xi

a(a2 − t)
+

1
a

(3)

with a = max{√s,
√

t}+ δ.

Proof. Suppose without loss of generality that u = 1, S = {2, . . . , s + 1},
v = s+2, T = {s+3, . . . , s+ t+2}. Let A, A+B be the adjacency matrices
of G and G′ respectively so that

B =




Cs+1 O O

O −Ct+1 O

O O O


 where Ck =

(
0 J1×k

Jk×1 Ok

)
.

Since µ1(G′) = max{yT (A+B)y : ‖y‖ = 1}, by taking y to be the principal
eigenvector of G, we get

µ1(G′) ≥ µ1 + 2x1

s+1∑

i=2

xi − 2xs+2

s+t+2∑

i=s+3

xi.

Note that the largest eigenvalue of B is max{√s,
√

t}. Using the notation
in Section 1, we have Ã = −A− aIn, B̃ = aIn −B, and hence λ̃i = −µi − a
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(i = 1, . . . , n). It can be checked readily that

B̃−1 =




a
a2−s

1
a2−s

J1×s

1
a2−s

Js×1
1
aIs + 1

a(a2−s)
Js

O

O
a

a2−t
− 1

a2−t
J1×t

− 1
a2−t

Jt×1
1
aIt + 1

a(a2−t)
Jt

O

O 1
aI




.

Using the results from Section 1 with r = 1 and u1 = (x1, x2, . . . , xn)T , we
know that the matrix Ã + B̃P1 is similar to diag(λ̃1 + γ, λ̃2, . . . , λ̃n) where

γ−1 = γ11 = [v1, v1] = (u1, B̃
−1u1)

is given by (3). Now λ1(Ã + B̃P1) = min{λ̃1 + γ, λ̃2} and so µ1(G′) =
−λ1(Ã + B̃) ≤ −λ1(Ã + B̃P1) = max{µ1 + a − γ, µ2 + a}. As function
of δ (δ > 0), γ has range (0,∞) and so we may choose δ > 0 such that
γ = µ1 − µ2.

Remark. One can consider in a similar way the general case |S∩T | = r > 0
for G′ = G(u, v; S, T ). It can be showed that

µ1(G′) ≥ µ1 + 2xu

∑

i∈S

xi − 2xv

∑

i∈T

xi,

and
µ1(G′) ≤ µ1 + a− γ

where δ > 0, γ = µ1 − µ2, and

γ−1 =
(a2 − t)s + r2

a∆
x2

u +
(a2 − s)t + r2

a∆
x2

v +
a2 − t

a∆

( ∑

i∈S\T
xi

)2

+
a2 − s

a∆

( ∑

i∈T\S
xi

)2
+

2a2 − s− t + 2r2

a∆

( ∑

i∈S∩T

xi

)2

+
(
2
a2 − t

∆
xu − 2

r

∆
xv

) ∑

i∈S

xi −
(
2
a2 − s

∆
xv − 2

r

∆
xu

) ∑

i∈T

xi
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+
2

a∆

∑

i∈S∩T

xi

(
(a2 − t + r)

∑

i∈S\T
xi − (a2 − s + r)

∑

i∈T\S
xi

)

+ 2
r

a∆

∑

i∈S\T
xi

∑

i∈T\S
xi − 2

ar

∆
xuxv +

1
a

with a =

√
s+t+

√
(s−t)2+4r2

2 + δ, and ∆ = (a2 − s)(a2 − t)− r2.
We may use Theorem 3 to derive sufficient conditions in terms of µ1, µ2, xi

(i ∈ {u, v}∪S∪T ) for the index to decrease or increase when replacing edges
vj, j ∈ T with ui, i ∈ S (provided s = t).

Theorem 4. Let G be a connected graph with eigenvalues µ1, µ2, . . . , µn (in
non-increasing order), and let (x1, x2, . . . , xn)T be the principal eigenvector
of G. Write G′ = G(u, v; S, T ) where S ∩ T = ∅ and s = t. If xu

∑
i∈S xi ≥

xv
∑

i∈T xi, then µ1(G′) > µ1. If xu
∑

i∈S xi < xv
∑

i∈T xi and

µ1 − µ2 >

s(x2
u + x2

v) + (
∑
i∈S

xi)2 + (
∑
i∈T

xi)2

2(xv
∑
i∈T

xi − xu
∑
i∈S

xi)
,(4)

then µ1(G′) < µ1.

Proof. We use the notation in the proof of Theorem 3. If xu
∑

i∈S xi ≥
xv

∑
i∈T xi, then by Theorem 3, µ1(G′) ≥ 2xu

∑
i∈S xi − 2xv

∑
i∈T xi ≥ µ1.

Moreover, we have µ1(G′) > µ1. Otherwise, x = (x1, x2, . . . , xn)T is an
eigenvector of A + B corresponding to the eigenvalue µ1(G′) = µ1; hence
Bx = 0. But then xu = (Bx)i = 0 for i ∈ S, which is a contradiction.

Now suppose that xu
∑

i∈S xi < xv
∑

i∈T xi. By Theorem 3, µ1(G′) ≤
µ1 +

√
s + δ − γ with

γ =
δ(
√

s + δ)(2
√

s + δ)
α− δβ + δ(2

√
s + δ)

where α = s(x2
u+x2

v)+(
∑

i∈S xi)2+(
∑

i∈T xi)2−2
√

s(xv
∑

i∈T xi−xu
∑

i∈S xi)
and β = 2(xv

∑
i∈T xi − xu

∑
i∈S xi) > 0. Note that (4) is equivalent to

γ >
√

s + αβ−1 and we have α− δβ < 0. It follows that γ >
√

s + δ and we
have µ1(G′) < µ1.
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