$P_{m^{\prime}}$-SATURATED BIPARTITE GRAPHS WITH MINIMUM SIZE

Aneta Dudek and A. Pawee Wojda*
Faculty of Applied Mathematics
AGH University of Science and Technology
Kraków, Poland

Abstract

A graph G is said to be H-saturated if G is H-free i.e., (G has no subgraph isomorphic to H) and adding any new edge to G creates a copy of H in G. In 1986 L . Kászonyi and Zs. Tuza considered the following problem: for given m and n find the minimum size $\operatorname{sat}\left(n ; P_{m}\right)$ of P_{m}-saturated graph of order n. They gave the number $\operatorname{sat}\left(n ; P_{m}\right)$ for n big enough. We deal with similar problem for bipartite graphs.

Keywords: graph, saturated graph, extremal graph, bipartite graph. 2000 Mathematics Subject Classification: 05C35.

1. Preliminaries

We deal with simple graphs without loops and multiple edges. As usual $V(G)$ and $E(G)$ denote the vertex set and the edge set, respectively, $|G|, e(G)$ the order and the size of G, and $d_{G}(v)$ the degree of $v \in V(G)$. By P_{m} we denote the path of order m, and by K_{m} the complete graph on m vertices. We define $G_{a, b}$ to be a bipartite graph where a, b are the numbers of vertices in bipartition sets. Let us consider two graphs G and H. We say that G is H-free if it contains no copy of H, that is, no subgraph of G is isomorphic to H. A graph G is H-saturated if G is H-free and adding any new edge e to G creates a copy of H. In particular complete H-free graphs trivially satisfy this condition and therefore are H-saturated. We define also:
*This work was carried out while the second author was visiting University of Orleans.

$$
\begin{aligned}
& \operatorname{ex}(n ; F)=\max \{e(G):|G|=n, G \text { is } F \text {-saturated }\}, \\
& E x(n ; F)=\{G:|G|=n, e(G)=e x(n ; F), G \text { is } F \text {-saturated }\}, \\
& \operatorname{sat}(n ; F)=\min \{e(G):|G|=n, G \text { is } F \text {-saturated }\}, \\
& \operatorname{Sat}(n ; F)=\{G:|G|=n, e(G)=\operatorname{sat}(n ; F), G \text { is } F \text {-saturated }\} .
\end{aligned}
$$

Observe that in the definitions of $E x(n ; F)$ and $e x(n ; F)$ the word saturated may be replaced with free. The first results concerning saturated graphs were given by Turán [6] in 1941 who asked for $e x\left(n ; K_{p}\right)$ and $E x\left(n ; K_{p}\right)$. Later results were given by P. Erdös, A. Hajnal and J.W. Moon [3] (see also [2]) in 1964 who proved

$$
\begin{aligned}
\operatorname{sat}\left(n ; K_{p}\right)= & \binom{p-2}{2}+(p-2)(n-p+2), \quad(n \geq p \geq 2) \\
& \operatorname{Sat}\left(n ; K_{p}\right)=\left\{K_{p-2} * \bar{K}_{n-p+2}\right\}
\end{aligned}
$$

A corresponding theorem for bipartite graphs was given by N. Alon in 1983 (see [1]). The extremal problem for P_{m}-saturated bipartite graphs was solved by A. Gyárfás, C.C. Rousseau and R.H. Schelp [4]. We are interested in finding P_{m}-saturated bipartite graphs with minimum size. In Section 2 we present some results concerning P_{m}-saturated bipartite graphs. The proofs are given in Section 3.

In [5] L. Kászonyi and Zs. Tuza, gave the following results on $\operatorname{Sat}\left(n ; P_{m}\right)$ and $\operatorname{sat}\left(n ; P_{m}\right)$.

Theorem 1 ([5]).

$$
\begin{aligned}
& \operatorname{sat}\left(n ; P_{3}\right)=\left\lfloor\frac{n}{2}\right\rfloor, \\
& \operatorname{Sat}\left(n ; P_{3}\right)=\left\{\begin{array}{lll}
k K_{2} & \text { if } & n=2 k \\
k K_{2} \cup K_{1} & \text { if } & n=2 k+1,
\end{array}\right. \\
& \operatorname{sat}\left(n ; P_{4}\right)=\left\{\begin{array}{lll}
k & \text { if } n=2 k, \\
k+2 & \text { if } & n=2 k+1,
\end{array}\right. \\
& \operatorname{Sat}\left(n ; P_{4}\right)= \begin{cases}k K_{2} & \text { if } n=2 k \\
(k-1) K_{2} \cup K_{3} & \text { if } n=2 k+1,\end{cases} \\
& \operatorname{sat}\left(n ; P_{5}\right)=n-\left\lfloor\frac{n-2}{6}\right\rfloor-1 \quad \text { for } n \geq 6
\end{aligned}
$$

Let

$$
a_{m}= \begin{cases}3 \cdot 2^{k-1}-2 & \text { if } m=2 k, k>2 \\ 2^{k+1}-2 & \text { if } m=2 k+1, k \geq 2\end{cases}
$$

Then $\operatorname{sat}\left(n ; P_{m}\right)=n-\left\lfloor\frac{n}{a_{m}}\right\rfloor$ for $n \geq a_{m}$.

$$
\operatorname{Sat}\left(n ; P_{5}\right) \text { for } n \geq 6
$$

Figure 1

2. $\quad P_{m}$-Saturated Bipartite Graphs with Minimum Size

Let $G=(B, W ; E)$ be a bipartite graph with vertex set $V=B \cup W$, $B \cap W=\emptyset$. For convenience of the reader we call the set B the set of black vertices and the set W the set of white vertices. For bipartite graphs $G=(B, W ; E)$ and $F=\left(B^{\prime}, W^{\prime} ; E^{\prime}\right)$ such that the sets B, W, B^{\prime} and W^{\prime} are mutually disjoint we define: $G \cup F=\left(B \cup B^{\prime}, W \cup W^{\prime} ; E \cup E^{\prime}\right)$.

Definition 1. Let $G=(B, W ; E)$ be a bipartite graph. Then G is called F-saturated if

1. G is F-free,
2. $(x \in B, y \in W, x y \notin E) \Rightarrow G \cup x y \supseteq F$.

We denote also

$$
\begin{gathered}
\operatorname{sat}_{\text {bip }}(p, q ; F)=\min \{e(G):|B|=p,|W|=q, G \text { is } F \text {-saturated }\}, \\
\operatorname{Sat}_{b i p}(p, q ; F)=\left\{G=(B, W ; E):|B|=p,|W|=q, e(G)=\operatorname{sat}_{\text {bip }}(p, q ; F),\right. \\
G \text { is } F \text {-saturated }\} .
\end{gathered}
$$

Proposition 2. $\operatorname{sat}_{b i p}\left(p, q ; P_{3}\right)=p, p \leq q$.

$S_{a t}{ }_{b i p}\left(p, q ; P_{3}\right)$.
Figure 2

Proposition 3. $\operatorname{sat}_{b i p}\left(p, q ; P_{4}\right)=p, \quad 2 \leq p \leq q$.

Figure 3
Proposition 4. Let $p \geq 2, q \geq 3, p \leq q$. Then

$$
\operatorname{sat}_{\text {bip }}\left(p, q ; P_{5}\right)= \begin{cases}2 p & \text { if } 2 p \leq q, p \text { is even or } q=2 p-2, \\ q & \text { if } 2 p \leq q, p \text { is odd, } \\ p+\left\lceil\frac{q}{2}\right\rceil & \text { if } 3<q<2 p, q \neq 2 p-2, \\ 5 & \text { if } p=q=3, \\ 4 & \text { if } p=2 .\end{cases}
$$

Proposition 5. Let $3 \leq p \leq q$. Then

Definition 2. Let us suppose that $m \geq 7$ is an integer. Then A_{m} is the following tree. All penultimate vertices of A_{m} have degree two and all vertices of A_{m} which are neither penultimate nor pendant have their degree equal to three. If $m=2 k, k \geq 4$ then A_{m} has two centers $u \in B$ and $w \in W$ and each component of $G-u w$ has $k-1$ levels (see Figure 4). If $m=2 k+1, k \geq 3$ then A_{m} has one center and k levels. The center is black when k is even (see Figure 5).

Figure 4
When $m=2 k, k \geq 4$ we observe that $|B|=|W|=3 \cdot 2^{k-3}-1$.

Figure 5
If $m=2 k+1, k \geq 3$ and the center is white then in A_{m} we have $|B|=$ $4 \cdot 2^{k-3}-1$ and $|W|=5 \cdot 2^{k-3}-1$ when k is odd or $|W|=4 \cdot 2^{k-3}-1$ and $|B|=5 \cdot 2^{k-3}-1$ when k is even. Denote by v the center of $A_{2 k+1}, k \geq 3$.

Observe that if $|B| \leq|W|$ then for $m=2 k+1, k \geq 3$ we obtain $|B|=$ $4 \cdot 2^{k-3}-1,|W|=5 \cdot 2^{k-3}-1$ and $v \in B$ if k is even or $v \in W$ if k is odd.

Remark 1. Observe that A_{m} is P_{m}-saturated and P_{m-1}-saturated for every $m \geq 7$.

Remark 2. $l A_{2 k}$ is $P_{2 k}$-saturated for $k \geq 4, l=1,2, \ldots, n$.
Remark 3. The union of two copies of $A_{2 k+1}$ is $P_{2 k+1}$-saturated, $k \geq 3$, if and only if their centers have the same colour (see Figure 6).

Theorem 6. Let $k \geq 4$ and let $G=(B, W ; E)$ be a $P_{2 k}$-saturated bipartite graph without isolated vertices and with the minimum size, $|B|=p,|W|=$ $q, 3 \cdot 2^{k-3}-1 \leq p \leq q$. Then

$$
e(G)=p+q-\left\lfloor\frac{p}{3 \cdot 2^{k-3}-1}\right\rfloor .
$$

Theorem 7. Let $k \geq 3$ and let $G=(B, W ; E)$ be a $P_{2 k+1}$-saturated bipartite graph without isolated vertices and with the minimum size, $|B|=p \leq|W|=$ $q, 4 \cdot 2^{k-3}-1 \leq p, 5 \cdot 2^{k-3} \leq q$. Then
$e(G)=\left\{\begin{array}{l}p+q-\frac{q}{5 \cdot 2^{k-3}-1}+1 \quad \text { if } \quad \frac{q}{5 \cdot 2^{k-3}-1}=\left\lfloor\frac{q}{5 \cdot 2^{k-3}-1}\right\rfloor<\frac{p}{4 \cdot 2^{k-3}-1}, \\ p+q-\min \left\{\left\lfloor\frac{p}{4 \cdot 2^{k-3}-1}\right\rfloor,\left\lfloor\frac{q}{5 \cdot 2^{k-3}-1}\right\rfloor\right\} \quad \text { otherwise. }\end{array}\right.$

Figure 6

Theorem 6 and 7 imply the following corollary.
Corollary 8. If $|B|=p,|W|=q, 3 \cdot 2^{k-3}-1 \leq p \leq q, k \geq 4$ then

$$
\begin{gathered}
\qquad \operatorname{sat}_{b i p}\left(p, q ; P_{2 k}\right) \leq p+q-\left\lfloor\frac{p}{3 \cdot 2^{k-3}-1}\right\rfloor . \\
\text { If }|B|=p,|W|=q, p \leq q, 4 \cdot 2^{k-3}-1 \leq p, 5 \cdot 2^{k-3} \leq q, \text { then } \\
\operatorname{sat}_{b i p}\left(p, q ; P_{2 k+1}\right) \\
=\left\{\begin{array}{l}
p+q-\frac{q}{5 \cdot 2^{k-3}-1}+1 \quad \text { if } \quad \frac{q}{5 \cdot 2^{k-3}-1}=\left\lfloor\frac{q}{5 \cdot 2^{k-3}-1}\right\rfloor<\frac{p}{4 \cdot 2^{k-3}-1}, \\
p+q-\min \left\{\left\lfloor\frac{p}{4 \cdot 2^{k-3}-1}\right\rfloor,\left\lfloor\frac{q}{5 \cdot 2^{k-3}-1}\right\rfloor\right\} \quad \text { otherwise. }
\end{array}\right.
\end{gathered}
$$

3. Proofs

We first give some definitions. The graphs $K_{1, n}$ and $K_{n, 1}$ are called stars when $n \geq 1$ and non-trivial stars if $n \geq 2$. Let $K_{1, b}$ and $K_{a, 1}$ be two vertex disjoint stars. Then the tree obtained by join of their centers is called double star $S_{a, b}^{2}$ (see Figure 7). A double star $S_{a, b}^{2}$ is said to be non-trivial if $a>0, b>0$ and $a+b \geq 3$. Propositions 2 and 3 are evident. To prove Proposition 4 we give Lemmas 9-13 and Proposition 14 below.

Lemma 9. Let $G=(B, W ; E)$ be a connected bipartite P_{5}-saturated graph $|B|=p,|W|=q$. Then either

1. G is a star or
2. G is non-trivial double star $S_{a, b}^{2}$ or else
3. $G=K_{2,2}$.

Lemma 10. Let $G=(B, W ; E)$ be a bipartite P_{5}-saturated graph, $|B|=$ $p,|W|=q, p \leq q, p \geq 2, q \geq 3$, such that there is at least one isolated vertex in W. Then $p=2 k, k \geq 1$ and $G=k K_{2,2} \cup K_{0, q-p}$. In particular we have

1. $p<q$ and
2. $e(G)=2 p$.

Lemma 9 is evidently true. Lemma 10 follows from Lemma 9 easily.

Lemma 11. Let $G=(B, W ; E)$ be a bipartite P_{5}-saturated graph without isolated vertices $|B|=p,|W|=q, p \leq q, p \geq 2, q \geq 3$. Then G is vertex disjoint union of

1. complete graphs $K_{2,2}$,
2. non-trivial double stars,
3. non-trivial stars,
4. at most one trivial star $K_{1,1}$.

If $K_{1,1}$ is a component of G then no other star is a component of G.

Lemma 11 follows from Lemma 9.
If $G=(B, W ; E)$ is a bipartite P_{5}-saturated graph with $|B|=p,|W|=q$ then we have either

$$
\begin{align*}
& G=n K_{2,2} \cup \bigcup_{i=1}^{k} S_{a_{i}, b_{i}}^{2} \cup \bigcup_{j=1}^{l} K_{1, c_{j}} \cup \delta K_{1,1} \tag{1}\\
& G=n K_{2,2} \cup \bigcup_{i=1}^{k} S_{a_{i}, b_{i}}^{2} \cup \bigcup_{j=1}^{l} K_{d_{j}, 1} \cup \delta K_{1,1}
\end{align*}
$$

where $S_{a_{i}, b_{i}}^{2}$ are non-trivial double stars, $K_{1, c_{j}}$ and $K_{d_{j}, 1}$ are non-trivial stars, and $\delta \in\{0,1\}$. We have $p=2 n+\left(\sum_{i=1}^{k} a_{i}+k\right)+l+\delta$, $q=2 n+\left(\sum_{i=1}^{k} b_{i}+k\right)+\sum_{j=1}^{l} c_{j}+\delta$ if G is given by (1), and
$p=2 n+\left(\sum_{i=1}^{k} a_{i}+k\right)+\sum_{j=1}^{l} d_{j}+\delta, q=2 n+\left(\sum_{i=1}^{k} b_{i}+k\right)+l+\delta$ if G is given by (2), and $\delta=0$ if $l>0$.

Lemma 12. Let $G=(B, W ; E)$ be a union of non-trivial double stars, such that $|B|=p,|W|=q, p \leq q, p \geq 2, q \geq 3$. Then G has the minimum size if

$$
e(G)= \begin{cases}p+q-\left\lfloor\frac{p}{2}\right\rfloor & \text { if } 3 p \leq 2 q \\ p+q-\left\lfloor\frac{1}{2}\left(p-\left\lceil\frac{3 p-2 q}{5}\right\rceil\right)\right\rfloor & \text { if } 2 q \leq 3 p\end{cases}
$$

Proof. Let G be a union of non-trivial double stars, $G=\bigcup_{i=1}^{l} S_{a_{i}, b_{i}}^{2}$ where

$$
\begin{gathered}
S_{a_{i}, b_{i}}^{2}=\left(B_{i}, W_{i} ; E_{i}\right),\left|B_{i}\right|=a_{i}+1,\left|W_{i}\right|=b_{i}+1, i=1, \ldots, l \\
\bigcup_{i=1}^{l} B_{i}=B, \bigcup_{i=1}^{l} W_{i}=W
\end{gathered}
$$

such that for fixed p and q, G has the minimum size $e(G)$. We observe that $e(G)=p+q-c$ where $c=c(G)$ is the number of components of G. So, $e(G)$ is the minimum whenever $c(G)$ is the maximum. Since every component of G has at least two vertices in B then $c(G) \leq\left\lfloor\frac{p}{2}\right\rfloor$. If $3 p \leq 2 q$, then $c=\left\lfloor\frac{p}{2}\right\rfloor$ and c components of G are $S_{1, b_{i}}^{2}$ stars with $b_{i} \geq 2, i=1,2, \ldots, c-1$ and $a_{c}=1, b_{c} \geq 2$ if p is even, and $a_{c}=2, b_{c} \geq 1$ when p is odd.

Therefore $e(G)=p+q-\left\lfloor\frac{p}{2}\right\rfloor$ when $3 p \leq 2 q$. So we may assume from now that $3 p>2 q$. Since the lemma is easy to verify for $p \leq 4$ we shall assume $p \geq 5$. Observe that there are two different components C_{1} and C_{2} of G such that $C_{1}=S_{a_{1}, b_{1}}^{2}, C_{2}=S_{a_{2}, b_{2}}^{2}, b_{1} \geq 2$ and $a_{2} \geq 2$.

If $p \leq 6$ or $q \leq 7$ then $c(G)=2$ and the proof is finished. So we suppose $p \geq 7$ and $q \geq 8$. Then there is at least one component $C, C \neq C_{1}, C \neq C_{2}$. Let x, y be the centers of C, x_{1}, y_{1} be the centers of C_{1}, x_{2}, y_{2} be the centers of C_{2}, such that $x, x_{1}, x_{2} \in B, y, y_{1}, y_{2} \in W$. It is clear that the number of components of G will not change if we proceed the following operation:

- delete from C_{1} all but one black pendant vertices and all but two white pendant vertices (we denote then by C_{1}^{\prime} the obtained component),
- delete from C_{2} all but two black pendant vertices and all but one white pendant vertices (we denote then by C_{2}^{\prime} the obtained component),
- join x with all white vertices deleted from C_{1} and C_{2} and join y with all black vertices deleted from C_{1} and C_{2} (we denote then by C^{\prime} the obtained component).
The new graph G^{\prime} has exactly the same number of components as G and all the components of G^{\prime} are non-trivial double stars. The number of components of G is equal to $c=2 t+\left\lfloor\left(\frac{p-5 t}{2}\right)\right\rfloor=\left\lfloor\left(\frac{p-t}{2}\right)\right\rfloor$ where t is the minimum integer verifying $3(p-5 t) \leq 2(q-5 t), 3 p-2 q \leq 5 t$ and by consequence $t=\left\lceil\left(\frac{3 p-2 q}{5}\right)\right\rceil$ and Lemma 12 is proved.

Lemma 13. Let $p \geq 4$ and let $G=(B, W ; E)$ be a bipartite P_{5}-saturated graph such that $|B|=p \leq q=|W|, K_{1,1}$ is a component of G and G has the
minimum size. Then

$$
e(G)= \begin{cases}p+q-\left\lfloor\frac{p-1}{2}\right\rfloor-2 & \text { if } 3 p-1 \leq 2 q \\ p+q-\left\lfloor\frac{1}{2}\left(p-1-\left\lceil\frac{3 p-2 q-1}{5}\right\rceil\right)\right\rfloor-2 & \text { if } 2 q \leq 3 p-1\end{cases}
$$

Proof. By Lemma 11 each component of G is either complete graph $K_{2,2}$ or non-trivial double star $S_{a, b}^{2}$ and exactly one component is isomorphic to $K_{1,1}$. The size of G is equal to $e(G)=p+q-c-1$ where c is the number of double stars. We have $e\left(2 K_{2,2}\right)=8>e\left(S_{3,3}^{2}\right)=7$ and $e\left(K_{2,2} \cup S_{a, b}^{2}\right)=e\left(S_{a+2, b+2}^{2}\right)$. So we may suppose that G has no components isomorphic to $K_{2,2}$. The lemma follows from Lemma 12.

Proposition 14. Let $G=(B, W ; E)$ be a bipartite P_{5}-saturated graph such that $|B|=p \leq q=|W|, 3 \leq p \leq q$ without isolated vertices and with the minimum size. Then

$$
e(G)=\left\{\begin{array}{lll}
q & \text { if } 2 p \leq q \\
p+\left\lceil\frac{q}{2}\right\rceil & \text { if } \quad q<2 p, 2 p-q \neq 2 \\
p+\left\lceil\frac{q}{2}\right\rceil+1 & \text { if } & 2 p-q=2
\end{array}\right.
$$

Proof. The proof starts with the observation that by Lemma $11 G$ is a union of $n K_{2,2}$ and $S_{a_{i}, b_{i}}^{2}, i=1, \ldots, k$ and some stars such that there is at most one $K_{1,1}$ and the remaining stars have their centers in exactly one set of bipartition B or W. Now observe that if $n \geq 2$ then $S_{2 n-1,2 n-1}^{2}$ is non-trivial double star which has less edges than $n K_{2,2}$ and the same number of vertices. Thus there is at most one $K_{2,2}$. But then there is at least one component C which is a star, or non-trivial double star. Then $K_{2,2} \cup C$ may be replaced with a double star $S_{a, b}^{2}$ with the same vertex set and with the size $e\left(S_{a, b}^{2}\right)=e\left(K_{2,2} \cup C\right)$. So we may suppose that no component of G is isomorphic to $K_{2,2}$. So G is a union of stars and double stars. We may check easily that if G has more then one double star then it is always possible to find a union of non-trivial stars and at most one double non-trivial star with the same size. Moreover all the stars may have their centers in a given set of bipartition. Hence we may suppose that either $G=\bigcup_{i=1}^{k} K_{1, q_{i}} \cup S_{a, b}^{2}, k+a+1=p, \sum_{i=1}^{k} q_{i}+b+1=q$ or $G=$ $\bigcup_{i=1}^{l} K_{p_{i}, 1} \cup S_{a, b}^{2}, l+b+1=q, \sum_{i=1}^{l} p_{i}+a+1=p$. Similarly we may suppose that all non-trivial stars are isomorphic to $K_{1,2}$ or $K_{2,1}$ and we
have $2 k+b+1=q, k+a+1=p$ and $2 l+a+1=p, l+b+1=q$. Now the proof follows easily.

Clearly, Lemma 10 and Proposition 14 imply Proposition 4.
Proposition 5 follows from Lemma 18 and Corollary 17 given below. Let $T_{i}, i \in\{1,2\}$ be the tree defined in Figure 7 .

Lemma 15. Let $G=(B, W ; E)$ be a connected bipartite P_{6}-saturated graph. Then either G contains one of graphs $S_{2,2}^{2}, T_{i}, i \in\{1,2\}$ or $G=K_{r, s}$ with $\min \{r, s\} \leq 2$.

Proof. Let us denote $|B|=p,|W|=q$ and let $p \leq q$. For $\min \{p, q\} \leq 2$ the lemma is evident. So let us suppose that $p, q \geq 3$. It is easily seen that there exists at least one vertex $x \in V(G)$ such that $d_{G}(x) \geq 3$. Let us suppose that $x \in B$. Denote by $y_{i}, i=1,2, \ldots, n$ the neighbours of x. If there is a neighbour $y_{i}, i=1,2, \ldots, n$ such that $d_{G}\left(y_{i}\right) \geq 3$ then G contains $S_{2,2}^{2}$. So we may suppose that $d_{G}\left(y_{i}\right) \leq 2, i=1,2, \ldots, n$. Since $p \geq 3$ at least two of $y_{i}, i=1,2, \ldots, n$ have their degrees equal to 2 and therefore G contains T_{1}.

$S_{a, b}^{2}$

T_{1}

T_{2}

Figure 7

Lemma 16. Let $G=(B, W ; E)$ be a bipartite P_{6}-saturated graph such that $3 \leq|B|=p \leq q=|W|, p \geq 3$ and there is a vertex $w \in W$ which is isolated in G. Then all the isolated vertices of G are in W and $G=\bigcup_{i=1}^{k} K_{a_{i}, 2} \cup$ $\bigcup_{j=1}^{l} K_{0,1}^{j}$ where $a_{i} \geq 3, i=1,2, \ldots, k, \sum_{i=1}^{k} a_{i}=p$ and $q=2 k+l$.

Proof. The fact that all isolated vertices are in W is evident. Let $B=$ $\left\{b_{1}, b_{2}, \ldots, b_{p}\right\}, W=\left\{w_{1}, w_{2}, \ldots, w_{q}\right\}$. Denote by $N_{G}(x)$ the set of the neighbours of the vertex $x \in V(G)$. It is clear that for every $b \in B$ there is a path P_{5} starting from b. It is easy to check that every $w \in N_{G}(b)$ belongs
to any path P_{5} starting from b. Thus $d_{G}(b) \leq 2$. Denote by $b_{1} w_{1} b_{2} w_{2} b_{3}$ a path starting from b_{1}. It follows easily that for every $x \in B$ such that $w_{i} \in N_{G}(x), i \in\{1,2\}$ we have $N_{G}(x) \subseteq\left\{w_{1}, w_{2}\right\}$. Therefore the component of G containing w_{1} and w_{2} is isomorphic to $K_{a, 2}, a \geq 3$.
Corollary 17 follows immediately from Lemma 16.
Corollary 17. Let $G=(B, W ; E)$ be a bipartite P_{6}-saturated graph such that $|B|=p$ and there is an isolated vertex in W. Then $e(G)=2 p$.

Lemma 18. If $G=(B, W ; E)$ is a bipartite P_{6}-saturated graph without isolated vertices and with the minimum size and $3 \leq|B|=p \leq q=|W|$, then

$$
e(G)=\left\{\begin{array}{lll}
p+q-\left\lfloor\frac{p}{3}\right\rfloor & \text { if } \quad p \equiv 0(\bmod 3) \text { or } & p=q \equiv 1(\bmod 3) \\
p+q-\left\lfloor\frac{p}{3}\right\rfloor-1 & \text { if } \quad p \equiv 1(\bmod 3) \text { and } \quad p<q \text { or } \\
& p \equiv 2(\bmod 3)
\end{array}\right.
$$

Proof. For every graph G we have $e(G) \geq|V(G)|-c$ where c is a number of components of G and equality holds if and only if G is a forest. The proof follows by Lemma 15 .

Now, we turn to the case of $m \geq 7$.
Lemma 19. Let $T=(B, W ; E)$ be a P_{m}-saturated tree, $m \geq 7, x \in B \cup W$, with $d_{T}(x)>1$ and let $x_{1}, x_{2}, \ldots, x_{k}$ be the neighbors of x. For $i=1,2, \ldots, k$ denote by l_{i} the maximum number of vertices in a path starting from x and containing $x_{i}, i=1,2, \ldots, k, l_{1} \geq l_{2} \geq \ldots \geq l_{k}$. The following holds:
(i) $m-1 \leq l_{1}+l_{i} \leq m, i=2,3$,
(ii) if $d_{T}(v)=2$ then v is the neighbour of a pendant vertex (v is penultimate).
Proof. The inequality $l_{1}+l_{i} \leq m$ for $i>1$ is evident. Let $x_{1}^{i}, x_{2}^{i}, \ldots, x_{l_{i}}^{i}$ be a path of order l_{i} starting from $x=x_{1}^{i}$ and containing $x_{i}=x_{2}^{i}, i=1,2, \ldots, k$ (see Figure 8).

Suppose first that $k \geq 3$ and x is not a penultimate. Then adding to T the edge $x_{2}^{1} x_{3}^{2}$ we create a path with m vertices. Thus $l_{1}-1+2+l_{3} \geq m$ and therefore $l_{1}+l_{3} \geq m-1$. So $l_{1}+l_{2} \geq m-1$ and (i) is proved.

Figure 8
Suppose that $v \in B \cup W$ and $d_{T}(v)=2$ and v is not penultimate vertex. Denote by u_{1}, v_{1} the neighbours of $v, P=v, u_{1}, \ldots, u_{s}$ and $P^{\prime}=v, v_{1}, \ldots, v_{r}$ the longest paths starting from v and passing by u_{1}, v_{1}, respectively. Then $r, s \geq 2$. The edge $u_{2} v_{1}$ create a P_{m} contradicting the maximality of $P=$ v, u_{1}, \ldots, u_{s}.

The P_{7}-saturated bipartite graphs with $p=q=5$.
Figure 9
The next lemma follows from Lemma 19.

Lemma 20. Let a tree $T=(B, W ; E)$ be a P_{m}-saturated bipartite graph $m \geq 7$. Then T contains A_{m}.

Proofs of Theorem 6 and 7. Like in the proof of Lemma 18 we use the fact that for every graph G we have $e(G) \geq|V(G)|-c$ and equality holds if and only if G is a forest with exacly c components. Hence for given p, q and m, if there is a P_{m}-saturated forest $F=(B, W ; E)$ with $|B|=p,|W|=q$ and the maximum number of components then F is a P_{m}-saturated bipartite graph with the minimum size. On the other hand it is clear that if the assumptions of Theorem 6 or 7 are verified then there exists such a forest F that each component of F contains $A_{m}, m \geq 7$ (see Figure 9 and Figure 10).

The P_{7}-saturated graphs with $p=3, q=6$.

Figure 10

Observe now that

- if $m=2 k, k \geq 4$ and $p=q=l\left(3 \cdot 2^{k-3}-1\right)$, or
- if $m=2 k+1, k \geq 3$ and $p=l\left(4 \cdot 2^{k-3}-1\right), q=l\left(5 \cdot 2^{k-3}-1\right)$,
then the P_{m}-saturated bipartite graph $F=(B, W ; E)$ without isolated vertices and with the minimum size and with $|W|=q,|B|=p$ is the forest containing l trees A_{m}.

Acknowledgement

The research was partially supported by the University Science and Technology grant No 1142004.

References

[1] N. Alon, An extremal problem for sets with application to graph theory, J. Combin. Theory Ser. A 40 (1985) 82-89.
[2] B. Bollobás, Extremal Graph Theory (Academic Press, New York, 1978).
[3] P. Erdös, A. Hajnal, and J.W. Moon, A problem in graph theory, Amer. Math. Monthly 71 (1964) 1107-1110.
[4] A. Gyárfás, C.C. Rousseau, and R.H. Schelp, An extremal problem for path in bipartite graphs, J. Graph Theory 8 (1984) 83-95.
[5] L. Kászonyi and Zs. Tuza, Saturated graphs with minimal number of edges, J. Graph Theory 10 (1986) 203-210.
[6] P. Turán, Eine Extremalaufgabe aus der Graphentheorie, Math. Fiz. Lapok 48 (1941) 436-452.

Received 20 June 2002
Revised 9 December 2002

