P_m -SATURATED BIPARTITE GRAPHS WITH MINIMUM SIZE

Aneta Dudek and A. Paweł Wojda*

Faculty of Applied Mathematics

AGH University of Science and Technology

Kraków, Poland

Abstract

A graph G is said to be H-saturated if G is H-free i.e., (G has no subgraph isomorphic to H) and adding any new edge to G creates a copy of H in G. In 1986 L. Kászonyi and Zs. Tuza considered the following problem: for given m and n find the minimum size $sat(n; P_m)$ of P_m -saturated graph of order n. They gave the number $sat(n; P_m)$ for n big enough. We deal with similar problem for bipartite graphs.

Keywords: graph, saturated graph, extremal graph, bipartite graph. **2000 Mathematics Subject Classification:** 05C35.

1. Preliminaries

We deal with simple graphs without loops and multiple edges. As usual V(G) and E(G) denote the vertex set and the edge set, respectively, |G|, e(G) the order and the size of G, and $d_G(v)$ the degree of $v \in V(G)$. By P_m we denote the path of order m, and by K_m the complete graph on m vertices. We define $G_{a,b}$ to be a bipartite graph where a,b are the numbers of vertices in bipartition sets. Let us consider two graphs G and G. We say that G is G if it contains no copy of G, that is, no subgraph of G is isomorphic to G degree and adding any new edge G creates a copy of G. In particular complete G define also:

^{*}This work was carried out while the second author was visiting University of Orleans.

$$ex(n;F) = \max\{e(G) : |G| = n, G \text{ is } F\text{-saturated}\},$$

$$Ex(n;F) = \{G : |G| = n, e(G) = ex(n;F), G \text{ is } F\text{-saturated}\},$$

$$sat(n;F) = \min\{e(G) : |G| = n, G \text{ is } F\text{-saturated}\},$$

$$Sat(n;F) = \{G : |G| = n, e(G) = sat(n;F), G \text{ is } F\text{-saturated}\}.$$

Observe that in the definitions of Ex(n; F) and ex(n; F) the word saturated may be replaced with free. The first results concerning saturated graphs were given by Turán [6] in 1941 who asked for $ex(n; K_p)$ and $Ex(n; K_p)$. Later results were given by P. Erdös, A. Hajnal and J.W. Moon [3] (see also [2]) in 1964 who proved

$$sat(n; K_p) = {p-2 \choose 2} + (p-2)(n-p+2), \quad (n \ge p \ge 2)$$

$$Sat(n; K_p) = \{K_{p-2} * \bar{K}_{n-p+2}\}.$$

A corresponding theorem for bipartite graphs was given by N. Alon in 1983 (see [1]). The extremal problem for P_m -saturated bipartite graphs was solved by A. Gyárfás, C.C. Rousseau and R.H. Schelp [4]. We are interested in finding P_m -saturated bipartite graphs with minimum size. In Section 2 we present some results concerning P_m -saturated bipartite graphs. The proofs are given in Section 3.

In [5] L. Kászonyi and Zs. Tuza, gave the following results on $Sat(n; P_m)$ and $sat(n; P_m)$.

Theorem 1 ([5]).

$$sat(n; P_3) = \left\lfloor \frac{n}{2} \right\rfloor,$$

$$Sat(n; P_3) = \left\{ \begin{array}{ll} kK_2 & \text{if} & n = 2k, \\ kK_2 \cup K_1 & \text{if} & n = 2k + 1, \end{array} \right.$$

$$sat(n; P_4) = \left\{ \begin{array}{ll} k & \text{if} & n = 2k, \\ k + 2 & \text{if} & n = 2k + 1, \end{array} \right.$$

$$Sat(n; P_4) = \left\{ \begin{array}{ll} kK_2 & \text{if} & n = 2k, \\ (k - 1)K_2 \cup K_3 & \text{if} & n = 2k + 1, \end{array} \right.$$

$$sat(n; P_5) = n - \left\lfloor \frac{n - 2}{6} \right\rfloor - 1 \quad \text{for } n \ge 6.$$

Let

$$a_m = \begin{cases} 3 \cdot 2^{k-1} - 2 & if \quad m = 2k, k > 2, \\ 2^{k+1} - 2 & if \quad m = 2k+1, k \ge 2. \end{cases}$$

Then $sat(n; P_m) = n - \lfloor \frac{n}{a_m} \rfloor$ for $n \geq a_m$.

Figure 1

2. P_m -Saturated Bipartite Graphs with Minimum Size

Let G = (B, W; E) be a bipartite graph with vertex set $V = B \cup W$, $B \cap W = \emptyset$. For convenience of the reader we call the set B the set of black vertices and the set W the set of white vertices. For bipartite graphs G = (B, W; E) and F = (B', W'; E') such that the sets B, W, B' and W' are mutually disjoint we define: $G \cup F = (B \cup B', W \cup W'; E \cup E')$.

Definition 1. Let G = (B, W; E) be a bipartite graph. Then G is called F-saturated if

- 1. G is F-free,
- 2. $(x \in B, y \in W, xy \notin E) \Rightarrow G \cup xy \supseteq F$.

We denote also

$$sat_{bip}(p, q; F) = min\{e(G) : |B| = p, |W| = q, G \text{ is } F\text{-saturated}\},$$

$$Sat_{bip}(p,q;F) = \{G = (B,W;E) : |B| = p, |W| = q, e(G) = sat_{bip}(p,q;F), G \text{ is } F\text{-saturated}\}.$$

Proposition 2. $sat_{bip}(p, q; P_3) = p, p \leq q$.

 $Sat_{bip}(p, q; P_3)$.

Figure 2

Proposition 3. $sat_{bip}(p,q;P_4) = p, 2 \le p \le q.$

 $Sat_{bip}(p,q;P_4)$.

Figure 3

Proposition 4. Let $p \geq 2, q \geq 3, p \leq q$. Then

$$sat_{bip}(p,q;P_5) = \begin{cases} 2p & \text{if } 2p \leq q, \ p \ is \ even \ or \ q = 2p - 2, \\ q & \text{if } 2p \leq q, \ p \ is \ odd, \\ p + \left\lceil \frac{q}{2} \right\rceil & \text{if } 3 < q < 2p, \ q \neq 2p - 2, \\ 5 & \text{if } p = q = 3, \\ 4 & \text{if } p = 2. \end{cases}$$

Proposition 5. Let $3 \le p \le q$. Then

$$sat_{bip}(p,q;P_{6}) = \begin{cases} p+q-\left\lfloor \frac{p}{3} \right\rfloor -1 & if & p \equiv 2 \pmod{3} \ and \ 3q \leq 4p-2 \ or \\ p \equiv 1 \pmod{3} \ and \ 3q \leq 4p-1, \end{cases}$$

$$p+q-\left\lfloor \frac{p}{3} \right\rfloor \qquad if \quad p \equiv q \equiv 1 \pmod{3} \ or$$

$$p \equiv 0 \pmod{3} \ and \ 3q \leq 4p-1,$$

$$otherwise.$$

Definition 2. Let us suppose that $m \geq 7$ is an integer. Then A_m is the following tree. All penultimate vertices of A_m have degree two and all vertices of A_m which are neither penultimate nor pendant have their degree equal to three. If $m = 2k, k \geq 4$ then A_m has two centers $u \in B$ and $w \in W$ and each component of G - uw has k - 1 levels (see Figure 4). If $m = 2k + 1, k \geq 3$ then A_m has one center and k levels. The center is black when k is even (see Figure 5).

Figure 4

When $m = 2k, k \ge 4$ we observe that $|B| = |W| = 3 \cdot 2^{k-3} - 1$.

Figure 5

If $m=2k+1, k\geq 3$ and the center is white then in A_m we have $|B|=4\cdot 2^{k-3}-1$ and $|W|=5\cdot 2^{k-3}-1$ when k is odd or $|W|=4\cdot 2^{k-3}-1$ and $|B|=5\cdot 2^{k-3}-1$ when k is even. Denote by v the center of $A_{2k+1}, k\geq 3$.

Observe that if $|B| \le |W|$ then for $m = 2k + 1, k \ge 3$ we obtain $|B| = 4 \cdot 2^{k-3} - 1$, $|W| = 5 \cdot 2^{k-3} - 1$ and $v \in B$ if k is even or $v \in W$ if k is odd.

Remark 1. Observe that A_m is P_m -saturated and P_{m-1} -saturated for every $m \geq 7$.

Remark 2. lA_{2k} is P_{2k} -saturated for $k \geq 4, l = 1, 2, \dots, n$.

Remark 3. The union of two copies of A_{2k+1} is P_{2k+1} -saturated, $k \geq 3$, if and only if their centers have the same colour (see Figure 6).

Theorem 6. Let $k \ge 4$ and let G = (B, W; E) be a P_{2k} -saturated bipartite graph without isolated vertices and with the minimum size, |B| = p, $|W| = q, 3 \cdot 2^{k-3} - 1 \le p \le q$. Then

$$e(G) = p + q - \left| \frac{p}{3 \cdot 2^{k-3} - 1} \right|.$$

Theorem 7. Let $k \ge 3$ and let G = (B, W; E) be a P_{2k+1} -saturated bipartite graph without isolated vertices and with the minimum size, $|B| = p \le |W| = q, 4 \cdot 2^{k-3} - 1 \le p, 5 \cdot 2^{k-3} \le q$. Then

$$e(G) = \left\{ \begin{array}{ll} p+q-\frac{q}{5\cdot 2^{k-3}-1}+1 & if & \frac{q}{5\cdot 2^{k-3}-1} = \left\lfloor \frac{q}{5\cdot 2^{k-3}-1} \right\rfloor < \frac{p}{4\cdot 2^{k-3}-1} \; , \\ p+q-\min\Bigl\{ \left\lfloor \frac{p}{4\cdot 2^{k-3}-1} \right\rfloor, \left\lfloor \frac{q}{5\cdot 2^{k-3}-1} \right\rfloor \Bigr\} & otherwise. \end{array} \right.$$

Figure 6

Theorem 6 and 7 imply the following corollary.

Corollary 8. If |B| = p, |W| = q, $3 \cdot 2^{k-3} - 1 \le p \le q$, $k \ge 4$ then

$$sat_{bip}(p,q;P_{2k}) \le p + q - \left\lfloor \frac{p}{3 \cdot 2^{k-3} - 1} \right\rfloor.$$

If
$$|B| = p$$
, $|W| = q$, $p \le q$, $4 \cdot 2^{k-3} - 1 \le p$, $5 \cdot 2^{k-3} \le q$, then

$$sat_{bip}(p, q; P_{2k+1})$$

$$= \left\{ \begin{array}{ll} p+q-\frac{q}{5\cdot 2^{k-3}-1}+1 & if & \frac{q}{5\cdot 2^{k-3}-1}=\left\lfloor\frac{q}{5\cdot 2^{k-3}-1}\right\rfloor < \frac{p}{4\cdot 2^{k-3}-1} \;, \\ p+q-\min\Bigl\{\left\lfloor\frac{p}{4\cdot 2^{k-3}-1}\right\rfloor, \left\lfloor\frac{q}{5\cdot 2^{k-3}-1}\right\rfloor\Bigr\} & otherwise. \end{array} \right.$$

3. Proofs

We first give some definitions. The graphs $K_{1,n}$ and $K_{n,1}$ are called stars when $n \geq 1$ and non-trivial stars if $n \geq 2$. Let $K_{1,b}$ and $K_{a,1}$ be two vertex disjoint stars. Then the tree obtained by join of their centers is called double star $S_{a,b}^2$ (see Figure 7). A double star $S_{a,b}^2$ is said to be non-trivial if a > 0, b > 0 and $a + b \geq 3$. Propositions 2 and 3 are evident. To prove Proposition 4 we give Lemmas 9–13 and Proposition 14 below.

Lemma 9. Let G = (B, W; E) be a connected bipartite P_5 -saturated graph |B| = p, |W| = q. Then either

- 1. G is a star or
- 2. G is non-trivial double star $S_{a,b}^2$ or else
- 3. $G = K_{2,2}$.

Lemma 10. Let G = (B, W; E) be a bipartite P_5 -saturated graph, $|B| = p, |W| = q, p \le q, p \ge 2, q \ge 3$, such that there is at least one isolated vertex in W. Then $p = 2k, k \ge 1$ and $G = kK_{2,2} \cup K_{0,q-p}$. In particular we have

- 1. p < q and
- 2. e(G) = 2p.

Lemma 9 is evidently true. Lemma 10 follows from Lemma 9 easily.

Lemma 11. Let G = (B, W; E) be a bipartite P_5 -saturated graph without isolated vertices $|B| = p, |W| = q, p \leq q, p \geq 2, q \geq 3$. Then G is vertex disjoint union of

- 1. complete graphs $K_{2,2}$,
- 2. non-trivial double stars,
- 3. non-trivial stars,
- 4. at most one trivial star $K_{1,1}$.

If $K_{1,1}$ is a component of G then no other star is a component of G.

Lemma 11 follows from Lemma 9.

If G = (B, W; E) is a bipartite P_5 -saturated graph with |B| = p, |W| = q then we have either

(1)
$$G = nK_{2,2} \cup \bigcup_{i=1}^{k} S_{a_i,b_i}^2 \cup \bigcup_{i=1}^{l} K_{1,c_i} \cup \delta K_{1,1}$$

(2)
$$G = nK_{2,2} \cup \bigcup_{i=1}^{k} S_{a_i,b_i}^2 \cup \bigcup_{j=1}^{l} K_{d_j,1} \cup \delta K_{1,1}$$

where S_{a_i,b_i}^2 are non-trivial double stars, K_{1,c_j} and $K_{d_j,1}$ are non-trivial stars, and $\delta \in \{0,1\}$. We have $p=2n+\left(\sum_{i=1}^k a_i+k\right)+l+\delta$, $q=2n+\left(\sum_{i=1}^k b_i+k\right)+\sum_{j=1}^l c_j+\delta$ if G is given by (1), and $p=2n+\left(\sum_{i=1}^k a_i+k\right)+\sum_{j=1}^l d_j+\delta$, $q=2n+\left(\sum_{i=1}^k b_i+k\right)+l+\delta$ if G is given by (2), and $\delta=0$ if l>0.

Lemma 12. Let G = (B, W; E) be a union of non-trivial double stars, such that $|B| = p, |W| = q, p \le q, p \ge 2, q \ge 3$. Then G has the minimum size if

$$e(G) = \begin{cases} p + q - \left\lfloor \frac{p}{2} \right\rfloor & \text{if } 3p \le 2q, \\ p + q - \left\lfloor \frac{1}{2} \left(p - \left\lceil \frac{3p - 2q}{5} \right\rceil \right) \right\rfloor & \text{if } 2q \le 3p. \end{cases}$$

Proof. Let G be a union of non-trivial double stars, $G = \bigcup_{i=1}^l S_{a_i,b_i}^2$ where

$$S_{a_i,b_i}^2 = (B_i, W_i; E_i), |B_i| = a_i + 1, |W_i| = b_i + 1, i = 1, \dots, l,$$

$$\bigcup_{i=1}^{l} B_i = B, \bigcup_{i=1}^{l} W_i = W,$$

such that for fixed p and q, G has the minimum size e(G). We observe that e(G) = p + q - c where c = c(G) is the number of components of G. So, e(G) is the minimum whenever c(G) is the maximum. Since every component of G has at least two vertices in G then $c(G) \leq \lfloor \frac{p}{2} \rfloor$. If $3p \leq 2q$, then $c = \lfloor \frac{p}{2} \rfloor$ and G components of G are G are G are G at G at G are G at G and G are G are G at G and G are G are G at G and G are G are G are G and G are G are G are G are G are G and G are G are G are G and G are G are G are G are G are G at G are G are G are G are G and G are G and G are G are G and G are G and G are G and G are G and G are G

Therefore $e(G) = p + q - \lfloor \frac{p}{2} \rfloor$ when $3p \leq 2q$. So we may assume from now that 3p > 2q. Since the lemma is easy to verify for $p \leq 4$ we shall assume $p \geq 5$. Observe that there are two different components C_1 and C_2 of G such that $C_1 = S_{a_1,b_1}^2$, $C_2 = S_{a_2,b_2}^2$, $b_1 \geq 2$ and $a_2 \geq 2$.

If $p \leq 6$ or $q \leq 7$ then c(G) = 2 and the proof is finished. So we suppose $p \geq 7$ and $q \geq 8$. Then there is at least one component $C, C \neq C_1, C \neq C_2$. Let x, y be the centers of C, x_1, y_1 be the centers of C_1, x_2, y_2 be the centers of C_2 , such that $x, x_1, x_2 \in B, y, y_1, y_2 \in W$. It is clear that the number of components of G will not change if we proceed the following operation:

- delete from C_1 all but one black pendant vertices and all but two white pendant vertices (we denote then by C'_1 the obtained component),
- delete from C_2 all but two black pendant vertices and all but one white pendant vertices (we denote then by C'_2 the obtained component),
- join x with all white vertices deleted from C_1 and C_2 and join y with all black vertices deleted from C_1 and C_2 (we denote then by C' the obtained component).

The new graph G' has exactly the same number of components as G and all the components of G' are non-trivial double stars. The number of components of G is equal to $c=2t+\lfloor(\frac{p-5t}{2})\rfloor=\lfloor(\frac{p-t}{2})\rfloor$ where t is the minimum integer verifying $3(p-5t)\leq 2(q-5t), 3p-2q\leq 5t$ and by consequence $t=\lceil(\frac{3p-2q}{5})\rceil$ and Lemma 12 is proved.

Lemma 13. Let $p \ge 4$ and let G = (B, W; E) be a bipartite P_5 -saturated graph such that $|B| = p \le q = |W|, K_{1,1}$ is a component of G and G has the

minimum size. Then

$$e(G) = \begin{cases} p+q - \left\lfloor \frac{p-1}{2} \right\rfloor - 2 & \text{if } 3p-1 \le 2q, \\ p+q - \left\lfloor \frac{1}{2} \left(p-1 - \left\lceil \frac{3p-2q-1}{5} \right\rceil \right) \right\rfloor - 2 & \text{if } 2q \le 3p-1. \end{cases}$$

Proof. By Lemma 11 each component of G is either complete graph $K_{2,2}$ or non-trivial double star $S_{a,b}^2$ and exactly one component is isomorphic to $K_{1,1}$. The size of G is equal to e(G) = p + q - c - 1 where c is the number of double stars. We have $e(2K_{2,2}) = 8 > e(S_{3,3}^2) = 7$ and $e(K_{2,2} \cup S_{a,b}^2) = e(S_{a+2,b+2}^2)$. So we may suppose that G has no components isomorphic to $K_{2,2}$. The lemma follows from Lemma 12.

Proposition 14. Let G = (B, W; E) be a bipartite P_5 -saturated graph such that $|B| = p \le q = |W|, 3 \le p \le q$ without isolated vertices and with the minimum size. Then

$$e(G) = \begin{cases} q & \text{if } 2p \le q, \\ p + \left\lceil \frac{q}{2} \right\rceil & \text{if } q < 2p, 2p - q \ne 2, \\ p + \left\lceil \frac{q}{2} \right\rceil + 1 & \text{if } 2p - q = 2. \end{cases}$$

Proof. The proof starts with the observation that by Lemma 11 G is a union of $nK_{2,2}$ and $S^2_{a_i,b_i}$, $i=1,\ldots,k$ and some stars such that there is at most one $K_{1,1}$ and the remaining stars have their centers in exactly one set of bipartition B or W. Now observe that if $n \geq 2$ then $S^2_{2n-1,2n-1}$ is non-trivial double star which has less edges than $nK_{2,2}$ and the same number of vertices. Thus there is at most one $K_{2,2}$. But then there is at least one component C which is a star, or non-trivial double star. Then $K_{2,2} \cup C$ may be replaced with a double star $S^2_{a,b}$ with the same vertex set and with the size $e(S^2_{a,b}) = e(K_{2,2} \cup C)$. So we may suppose that no component of G is isomorphic to $K_{2,2}$. So G is a union of stars and double stars. We may check easily that if G has more then one double star then it is always possible to find a union of non-trivial stars and at most one double non-trivial star with the same size. Moreover all the stars may have their centers in a given set of bipartition. Hence we may suppose that either $G = \bigcup_{i=1}^k K_{1,q_i} \cup S^2_{a,b}$, k+a+1=p, $\sum_{i=1}^k q_i+b+1=q$ or $G = \bigcup_{i=1}^l K_{p_i,1} \cup S^2_{a,b}$, l+b+1=q, $\sum_{i=1}^l p_i+a+1=p$. Similarly we may suppose that all non-trivial stars are isomorphic to $K_{1,2}$ or $K_{2,1}$ and we

have 2k+b+1=q, k+a+1=p and 2l+a+1=p, l+b+1=q. Now the proof follows easily.

Clearly, Lemma 10 and Proposition 14 imply Proposition 4.

Proposition 5 follows from Lemma 18 and Corollary 17 given below. Let $T_i, i \in \{1, 2\}$ be the tree defined in Figure 7.

Lemma 15. Let G = (B, W; E) be a connected bipartite P_6 -saturated graph. Then either G contains one of graphs $S_{2,2}^2$, $T_i, i \in \{1, 2\}$ or $G = K_{r,s}$ with $\min\{r, s\} \leq 2$.

Proof. Let us denote |B| = p, |W| = q and let $p \le q$. For $\min\{p, q\} \le 2$ the lemma is evident. So let us suppose that $p, q \ge 3$. It is easily seen that there exists at least one vertex $x \in V(G)$ such that $d_G(x) \ge 3$. Let us suppose that $x \in B$. Denote by $y_i, i = 1, 2, ..., n$ the neighbours of x. If there is a neighbour $y_i, i = 1, 2, ..., n$ such that $d_G(y_i) \ge 3$ then G contains $S_{2,2}^2$. So we may suppose that $d_G(y_i) \le 2, i = 1, 2, ..., n$. Since $p \ge 3$ at least two of $y_i, i = 1, 2, ..., n$ have their degrees equal to 2 and therefore G contains T_1 .

Figure 7

Lemma 16. Let G = (B, W; E) be a bipartite P_6 -saturated graph such that $3 \leq |B| = p \leq q = |W|, \ p \geq 3$ and there is a vertex $w \in W$ which is isolated in G. Then all the isolated vertices of G are in W and $G = \bigcup_{i=1}^k K_{a_i,2} \cup \bigcup_{j=1}^l K_{0,1}^j$ where $a_i \geq 3, i = 1, 2, \ldots, k, \sum_{i=1}^k a_i = p$ and q = 2k + l.

Proof. The fact that all isolated vertices are in W is evident. Let $B = \{b_1, b_2, \ldots, b_p\}$, $W = \{w_1, w_2, \ldots, w_q\}$. Denote by $N_G(x)$ the set of the neighbours of the vertex $x \in V(G)$. It is clear that for every $b \in B$ there is a path P_5 starting from b. It is easy to check that every $w \in N_G(b)$ belongs

to any path P_5 starting from b. Thus $d_G(b) \leq 2$. Denote by $b_1w_1b_2w_2b_3$ a path starting from b_1 . It follows easily that for every $x \in B$ such that $w_i \in N_G(x), i \in \{1,2\}$ we have $N_G(x) \subseteq \{w_1, w_2\}$. Therefore the component of G containing w_1 and w_2 is isomorphic to $K_{a,2}, a \geq 3$.

Corollary 17 follows immediately from Lemma 16.

Corollary 17. Let G = (B, W; E) be a bipartite P_6 -saturated graph such that |B| = p and there is an isolated vertex in W. Then e(G) = 2p.

Lemma 18. If G = (B, W; E) is a bipartite P_6 -saturated graph without isolated vertices and with the minimum size and $3 \le |B| = p \le q = |W|$, then

$$e(G) = \begin{cases} p+q-\left\lfloor\frac{p}{3}\right\rfloor & \text{if} \quad p \equiv 0 (\text{mod } 3) \text{ or } \quad p=q \equiv 1 (\text{mod } 3), \\ p+q-\left\lfloor\frac{p}{3}\right\rfloor-1 & \text{if} \quad p \equiv 1 (\text{mod } 3) \text{ and } \quad p < q \text{ or } \\ p \equiv 2 (\text{mod } 3). \end{cases}$$

Proof. For every graph G we have $e(G) \ge |V(G)| - c$ where c is a number of components of G and equality holds if and only if G is a forest. The proof follows by Lemma 15.

Now, we turn to the case of $m \geq 7$.

Lemma 19. Let T = (B, W; E) be a P_m -saturated tree, $m \ge 7$, $x \in B \cup W$, with $d_T(x) > 1$ and let x_1, x_2, \ldots, x_k be the neighbors of x. For $i = 1, 2, \ldots, k$ denote by l_i the maximum number of vertices in a path starting from x and containing $x_i, i = 1, 2, \ldots, k, l_1 \ge l_2 \ge \ldots \ge l_k$. The following holds:

- (i) $m-1 \le l_1 + l_i \le m$, i = 2, 3,
- (ii) if $d_T(v) = 2$ then v is the neighbour of a pendant vertex (v is penultimate).

Proof. The inequality $l_1 + l_i \leq m$ for i > 1 is evident. Let $x_1^i, x_2^i, \ldots, x_{l_i}^i$ be a path of order l_i starting from $x = x_1^i$ and containing $x_i = x_2^i, i = 1, 2, \ldots, k$ (see Figure 8).

Suppose first that $k \geq 3$ and x is not a penultimate. Then adding to T the edge $x_2^1x_3^2$ we create a path with m vertices. Thus $l_1 - 1 + 2 + l_3 \geq m$ and therefore $l_1 + l_3 \geq m - 1$. So $l_1 + l_2 \geq m - 1$ and (i) is proved.

Figure 8

Suppose that $v \in B \cup W$ and $d_T(v) = 2$ and v is not penultimate vertex. Denote by u_1, v_1 the neighbours of $v, P = v, u_1, \ldots, u_s$ and $P' = v, v_1, \ldots, v_r$ the longest paths starting from v and passing by u_1, v_1 , respectively. Then $r, s \geq 2$. The edge u_2v_1 create a P_m contradicting the maximality of $P = v, u_1, \ldots, u_s$.

The P_7 -saturated bipartite graphs with p = q = 5.

Figure 9

The next lemma follows from Lemma 19.

Lemma 20. Let a tree T = (B, W; E) be a P_m -saturated bipartite graph $m \geq 7$. Then T contains A_m .

Proofs of Theorem 6 and 7. Like in the proof of Lemma 18 we use the fact that for every graph G we have $e(G) \geq |V(G)| - c$ and equality holds if and only if G is a forest with exacly c components. Hence for given p, q and m, if there is a P_m -saturated forest F = (B, W; E) with |B| = p, |W| = q and the maximum number of components then F is a P_m -saturated bipartite graph with the minimum size. On the other hand it is clear that if the assumptions of Theorem 6 or 7 are verified then there exists such a forest F that each component of F contains $A_m, m \geq 7$ (see Figure 9 and Figure 10).

The P_7 -saturated graphs with p = 3, q = 6.

Figure 10

Observe now that

- if m = 2k, $k \ge 4$ and $p = q = l(3 \cdot 2^{k-3} 1)$, or
- if m = 2k + 1, $k \ge 3$ and $p = l(4 \cdot 2^{k-3} 1)$, $q = l(5 \cdot 2^{k-3} 1)$,

then the P_m -saturated bipartite graph F = (B, W; E) without isolated vertices and with the minimum size and with |W| = q, |B| = p is the forest containing l trees A_m .

Acknowledgement

The research was partially supported by the University Science and Technology grant No 11 420 04.

References

- [1] N. Alon, An extremal problem for sets with application to graph theory, J. Combin. Theory Ser. A 40 (1985) 82–89.
- [2] B. Bollobás, Extremal Graph Theory (Academic Press, New York, 1978).
- [3] P. Erdös, A. Hajnal, and J.W. Moon, A problem in graph theory, Amer. Math. Monthly **71** (1964) 1107–1110.
- [4] A. Gyárfás, C.C. Rousseau, and R.H. Schelp, An extremal problem for path in bipartite graphs, J. Graph Theory 8 (1984) 83–95.
- [5] L. Kászonyi and Zs. Tuza, Saturated graphs with minimal number of edges,
 J. Graph Theory 10 (1986) 203–210.
- [6] P. Turán, Eine Extremalaufgabe aus der Graphentheorie, Math. Fiz. Lapok 48 (1941) 436–452.

Received 20 June 2002 Revised 9 December 2002