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Abstract

A graph G is said to be H-saturated if G is H-free i.e., (G has
no subgraph isomorphic to H) and adding any new edge to G creates
a copy of H in G. In 1986 L. Kászonyi and Zs. Tuza considered the
following problem: for given m and n find the minimum size sat(n;Pm)
of Pm-saturated graph of order n. They gave the number sat(n;Pm)
for n big enough. We deal with similar problem for bipartite graphs.
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1. Preliminaries

We deal with simple graphs without loops and multiple edges. As usual
V (G) and E(G) denote the vertex set and the edge set, respectively, |G|, e(G)
the order and the size of G, and dG(v) the degree of v ∈ V (G). By Pm we
denote the path of order m, and by Km the complete graph on m vertices.
We define Ga,b to be a bipartite graph where a, b are the numbers of vertices
in bipartition sets. Let us consider two graphs G and H. We say that G is
H-free if it contains no copy of H, that is, no subgraph of G is isomorphic
to H. A graph G is H-saturated if G is H-free and adding any new edge e to
G creates a copy of H. In particular complete H-free graphs trivially satisfy
this condition and therefore are H-saturated. We define also:

∗This work was carried out while the second author was visiting University of Orleans.
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ex(n;F ) = max{e(G) : |G| = n, G is F -saturated},
Ex(n; F ) = {G : |G| = n, e(G) = ex(n;F ), G is F -saturated},
sat(n; F ) = min{e(G) : |G| = n,G is F -saturated},
Sat(n; F ) = {G : |G| = n, e(G) = sat(n;F ), G is F -saturated}.

Observe that in the definitions of Ex(n;F ) and ex(n;F ) the word saturated
may be replaced with free. The first results concerning saturated graphs
were given by Turán [6] in 1941 who asked for ex(n;Kp) and Ex(n; Kp).
Later results were given by P. Erdös, A. Hajnal and J.W. Moon [3] (see
also [2]) in 1964 who proved

sat(n; Kp) =

(
p− 2

2

)
+ (p− 2)(n− p + 2) , (n ≥ p ≥ 2)

Sat(n; Kp) = {Kp−2 ∗ K̄n−p+2}.
A corresponding theorem for bipartite graphs was given by N. Alon in 1983
(see [1]). The extremal problem for Pm-saturated bipartite graphs was solved
by A. Gyárfás, C.C. Rousseau and R.H. Schelp [4]. We are interested in
finding Pm-saturated bipartite graphs with minimum size. In Section 2 we
present some results concerning Pm-saturated bipartite graphs. The proofs
are given in Section 3.

In [5] L. Kászonyi and Zs. Tuza, gave the following results on Sat(n;Pm)
and sat(n;Pm).

Theorem 1 ([5]).

sat(n; P3) =
⌊
n

2

⌋
,

Sat(n; P3) =

{
kK2 if n = 2k,

kK2 ∪K1 if n = 2k + 1,

sat(n; P4) =

{
k if n = 2k,

k + 2 if n = 2k + 1,

Sat(n; P4) =

{
kK2 if n = 2k,

(k − 1)K2 ∪K3 if n = 2k + 1,

sat(n; P5) = n−
⌊
n− 2

6

⌋
− 1 for n ≥ 6.
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Let

am =

{
3 · 2k−1 − 2 if m = 2k, k > 2,

2k+1 − 2 if m = 2k + 1, k ≥ 2.

Then sat(n; Pm) = n− b n
am
c for n ≥ am.
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Figure 1

2. Pm-Saturated Bipartite Graphs with Minimum
Size

Let G = (B, W ;E) be a bipartite graph with vertex set V = B ∪ W,
B ∩ W = ∅. For convenience of the reader we call the set B the set of
black vertices and the set W the set of white vertices. For bipartite graphs
G = (B,W ; E) and F = (B′,W ′; E′) such that the sets B, W,B′ and W ′

are mutually disjoint we define: G ∪ F = (B ∪B′,W ∪W ′;E ∪ E′).

Definition 1. Let G = (B,W ; E) be a bipartite graph. Then G is called
F -saturated if

1. G is F -free,
2. (x ∈ B, y ∈ W,xy /∈ E) ⇒ G ∪ xy ⊇ F.

We denote also

satbip(p, q; F ) = min{e(G) : |B| = p, |W | = q,G is F -saturated},

Satbip(p, q;F ) = {G = (B, W ;E) : |B| = p, |W | = q, e(G) = satbip(p, q; F ),
G is F -saturated}.

Proposition 2. satbip(p, q; P3) = p, p ≤ q.
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Proposition 3. satbip(p, q; P4) = p, 2 ≤ p ≤ q.
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Figure 3

Proposition 4. Let p ≥ 2, q ≥ 3, p ≤ q. Then

satbip(p, q; P5) =





2p if 2p ≤ q, p is even or q = 2p− 2,

q if 2p ≤ q, p is odd,

p +
⌈
q

2

⌉
if 3 < q < 2p, q 6= 2p− 2,

5 if p = q = 3,

4 if p = 2.

Proposition 5. Let 3 ≤ p ≤ q. Then

satbip(p, q; P6) =





p + q −
⌊
p

3

⌋
− 1 if

p ≡ 2(mod 3) and 3q ≤ 4p− 2 or
p ≡ 1(mod 3) and 3q ≤ 4p− 1,

p + q −
⌊
p

3

⌋
if

p = q ≡ 1(mod 3) or
p ≡ 0(mod 3) and 3q ≤ 4p− 1,

2p otherwise.
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Definition 2. Let us suppose that m ≥ 7 is an integer. Then Am is the fol-
lowing tree. All penultimate vertices of Am have degree two and all vertices
of Am which are neither penultimate nor pendant have their degree equal to
three. If m = 2k, k ≥ 4 then Am has two centers u ∈ B and w ∈ W and each
component of G− uw has k − 1 levels (see Figure 4). If m = 2k + 1, k ≥ 3
then Am has one center and k levels. The center is black when k is even
(see Figure 5).
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Figure 4

When m = 2k, k ≥ 4 we observe that |B| = |W | = 3 · 2k−3 − 1.
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Figure 5

If m = 2k + 1, k ≥ 3 and the center is white then in Am we have |B| =
4 · 2k−3 − 1 and |W | = 5 · 2k−3 − 1 when k is odd or |W | = 4 · 2k−3 − 1 and
|B| = 5 · 2k−3 − 1 when k is even. Denote by v the center of A2k+1, k ≥ 3.
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Observe that if |B| ≤ |W | then for m = 2k + 1, k ≥ 3 we obtain |B| =
4 · 2k−3 − 1, |W | = 5 · 2k−3 − 1 and v ∈ B if k is even or v ∈ W if k is odd.

Remark 1. Observe that Am is Pm-saturated and Pm−1-saturated for every
m ≥ 7.

Remark 2. lA2k is P2k-saturated for k ≥ 4, l = 1, 2, . . . , n.

Remark 3. The union of two copies of A2k+1 is P2k+1-saturated, k ≥ 3, if
and only if their centers have the same colour (see Figure 6).

Theorem 6. Let k ≥ 4 and let G = (B, W ;E) be a P2k-saturated bipartite
graph without isolated vertices and with the minimum size, |B| = p, |W | =
q, 3 · 2k−3 − 1 ≤ p ≤ q. Then

e(G) = p + q −
⌊

p
3·2k−3−1

⌋
.

Theorem 7. Let k ≥ 3 and let G = (B, W ; E) be a P2k+1-saturated bipartite
graph without isolated vertices and with the minimum size, |B| = p ≤ |W | =
q, 4 · 2k−3 − 1 ≤ p, 5 · 2k−3 ≤ q. Then

e(G) =





p + q − q
5·2k−3−1

+ 1 if q
5·2k−3−1

=
⌊

q
5·2k−3−1

⌋
< p

4·2k−3−1
,

p + q −min
{⌊

p
4·2k−3−1

⌋
,
⌊

q
5·2k−3−1

⌋}
otherwise.
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Theorem 6 and 7 imply the following corollary.

Corollary 8. If |B| = p, |W | = q, 3 · 2k−3 − 1 ≤ p ≤ q, k ≥ 4 then

satbip(p, q; P2k) ≤ p + q −
⌊ p

3 · 2k−3 − 1

⌋
.

If |B| = p, |W | = q, p ≤ q, 4 · 2k−3 − 1 ≤ p, 5 · 2k−3 ≤ q, then

satbip(p, q;P2k+1)

=





p + q − q
5·2k−3−1

+ 1 if q
5·2k−3−1

=
⌊

q
5·2k−3−1

⌋
< p

4·2k−3−1
,

p + q −min
{⌊

p
4·2k−3−1

⌋
,
⌊

q
5·2k−3−1

⌋}
otherwise.

3. Proofs

We first give some definitions. The graphs K1,n and Kn,1 are called stars
when n ≥ 1 and non-trivial stars if n ≥ 2. Let K1,b and Ka,1 be two vertex
disjoint stars. Then the tree obtained by join of their centers is called
double star S2

a,b (see Figure 7). A double star S2
a,b is said to be non-trivial

if a > 0, b > 0 and a + b ≥ 3. Propositions 2 and 3 are evident. To prove
Proposition 4 we give Lemmas 9–13 and Proposition 14 below.

Lemma 9. Let G = (B, W ;E) be a connected bipartite P5-saturated graph
|B| = p, |W | = q. Then either

1. G is a star or
2. G is non-trivial double star S2

a,b or else
3. G = K2,2.

Lemma 10. Let G = (B,W ; E) be a bipartite P5-saturated graph, |B| =
p, |W | = q, p ≤ q, p ≥ 2, q ≥ 3, such that there is at least one isolated vertex
in W . Then p = 2k, k ≥ 1 and G = kK2,2 ∪K0,q−p. In particular we have

1. p < q and
2. e(G) = 2p.

Lemma 9 is evidently true. Lemma 10 follows from Lemma 9 easily.



204 A. Dudek and A.P. Wojda

Lemma 11. Let G = (B, W ; E) be a bipartite P5-saturated graph without
isolated vertices |B| = p, |W | = q, p ≤ q, p ≥ 2, q ≥ 3. Then G is vertex
disjoint union of

1. complete graphs K2,2,
2. non-trivial double stars,
3. non-trivial stars,
4. at most one trivial star K1,1.

If K1,1 is a component of G then no other star is a component of G.

Lemma 11 follows from Lemma 9.

If G = (B, W ; E) is a bipartite P5-saturated graph with |B| = p, |W | = q
then we have either

G = nK2,2 ∪
k⋃

i=1

S2
ai,bi

∪
l⋃

j=1

K1,cj ∪ δK1,1(1)

G = nK2,2 ∪
k⋃

i=1

S2
ai,bi

∪
l⋃

j=1

Kdj ,1 ∪ δK1,1(2)

where S2
ai,bi

are non-trivial double stars, K1,cj and Kdj ,1 are non-trivial stars,

and δ ∈ {0, 1}. We have p = 2n +
(∑k

i=1 ai + k
)

+ l + δ,

q = 2n +
(∑k

i=1 bi + k
)

+
∑l

j=1 cj + δ if G is given by (1), and

p = 2n +
(∑k

i=1 ai + k
)

+
∑l

j=1 dj + δ, q = 2n +
(∑k

i=1 bi + k
)

+ l + δ if G

is given by (2), and δ = 0 if l > 0.

Lemma 12. Let G = (B, W ;E) be a union of non-trivial double stars, such
that |B| = p, |W | = q, p ≤ q, p ≥ 2, q ≥ 3. Then G has the minimum size if

e(G) =





p + q −
⌊

p
2

⌋
if 3p ≤ 2q,

p + q −
⌊

1
2

(
p−

⌈
3p−2q

5

⌉)⌋
if 2q ≤ 3p.
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Proof. Let G be a union of non-trivial double stars, G =
⋃l

i=1 S2
ai,bi

where

S2
ai,bi

= (Bi,Wi; Ei), |Bi| = ai + 1, |Wi| = bi + 1, i = 1, . . . , l,

l⋃

i=1

Bi = B,
l⋃

i=1

Wi = W,

such that for fixed p and q, G has the minimum size e(G). We observe that
e(G) = p+q−c where c = c(G) is the number of components of G. So, e(G)
is the minimum whenever c(G) is the maximum. Since every component of
G has at least two vertices in B then c(G) ≤ bp

2c. If 3p ≤ 2q, then c = bp
2c

and c components of G are S2
1,bi

stars with bi ≥ 2, i = 1, 2, . . . , c − 1 and
ac = 1, bc ≥ 2 if p is even, and ac = 2, bc ≥ 1 when p is odd.

Therefore e(G) = p + q − bp
2c when 3p ≤ 2q. So we may assume from

now that 3p > 2q. Since the lemma is easy to verify for p ≤ 4 we shall
assume p ≥ 5. Observe that there are two different components C1 and C2

of G such that C1 = S2
a1,b1

, C2 = S2
a2,b2

, b1 ≥ 2 and a2 ≥ 2.
If p ≤ 6 or q ≤ 7 then c(G) = 2 and the proof is finished. So we suppose

p ≥ 7 and q ≥ 8. Then there is at least one component C, C 6= C1, C 6= C2.
Let x, y be the centers of C, x1, y1 be the centers of C1, x2, y2 be the centers
of C2, such that x, x1, x2 ∈ B, y, y1, y2 ∈ W. It is clear that the number of
components of G will not change if we proceed the following operation:

– delete from C1 all but one black pendant vertices and all but two white
pendant vertices (we denote then by C ′

1 the obtained component),
– delete from C2 all but two black pendant vertices and all but one white

pendant vertices (we denote then by C ′
2 the obtained component),

– join x with all white vertices deleted from C1 and C2 and join y with
all black vertices deleted from C1 and C2 (we denote then by C ′ the
obtained component).

The new graph G′ has exactly the same number of components as G and all
the components of G′ are non-trivial double stars. The number of compo-
nents of G is equal to c = 2t + b(p−5t

2 )c = b(p−t
2 )c where t is the minimum

integer verifying 3(p − 5t) ≤ 2(q − 5t), 3p − 2q ≤ 5t and by consequence
t = d(3p−2q

5 )e and Lemma 12 is proved.

Lemma 13. Let p ≥ 4 and let G = (B, W ; E) be a bipartite P5-saturated
graph such that |B| = p ≤ q = |W |,K1,1 is a component of G and G has the
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minimum size. Then

e(G) =





p + q −
⌊

p−1
2

⌋
− 2 if 3p− 1 ≤ 2q,

p + q −
⌊

1
2

(
p− 1−

⌈
3p−2q−1

5

⌉)⌋
− 2 if 2q ≤ 3p− 1.

Proof. By Lemma 11 each component of G is either complete graph K2,2 or
non-trivial double star S2

a,b and exactly one component is isomorphic to K1,1.
The size of G is equal to e(G) = p+q−c−1 where c is the number of double
stars. We have e(2K2,2) = 8 > e(S2

3,3) = 7 and e(K2,2 ∪ S2
a,b) = e(S2

a+2,b+2).
So we may suppose that G has no components isomorphic to K2,2. The
lemma follows from Lemma 12.

Proposition 14. Let G = (B,W ; E) be a bipartite P5-saturated graph such
that |B| = p ≤ q = |W |, 3 ≤ p ≤ q without isolated vertices and with the
minimum size. Then

e(G) =





q if 2p ≤ q,

p +
⌈

q
2

⌉
if q < 2p, 2p− q 6= 2,

p +
⌈

q
2

⌉
+ 1 if 2p− q = 2.

Proof. The proof starts with the observation that by Lemma 11 G is
a union of nK2,2 and S2

ai,bi
, i = 1, . . . , k and some stars such that there

is at most one K1,1 and the remaining stars have their centers in exactly
one set of bipartition B or W. Now observe that if n ≥ 2 then S2

2n−1,2n−1

is non-trivial double star which has less edges than nK2,2 and the same
number of vertices. Thus there is at most one K2,2. But then there is at
least one component C which is a star, or non-trivial double star. Then
K2,2 ∪ C may be replaced with a double star S2

a,b with the same vertex
set and with the size e(S2

a,b) = e(K2,2 ∪ C). So we may suppose that no
component of G is isomorphic to K2,2. So G is a union of stars and double
stars. We may check easily that if G has more then one double star then
it is always possible to find a union of non-trivial stars and at most one
double non-trivial star with the same size. Moreover all the stars may have
their centers in a given set of bipartition. Hence we may suppose that
either G =

⋃k
i=1 K1,qi ∪ S2

a,b, k + a + 1 = p,
∑k

i=1 qi + b + 1 = q or G =⋃l
i=1 Kpi,1 ∪ S2

a,b, l + b + 1 = q,
∑l

i=1 pi + a + 1 = p. Similarly we may
suppose that all non-trivial stars are isomorphic to K1,2 or K2,1 and we
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have 2k + b + 1 = q, k + a + 1 = p and 2l + a + 1 = p, l + b + 1 = q. Now
the proof follows easily.

Clearly, Lemma 10 and Proposition 14 imply Proposition 4.

Proposition 5 follows from Lemma 18 and Corollary 17 given below. Let
Ti, i ∈ {1, 2} be the tree defined in Figure 7.

Lemma 15. Let G = (B, W ;E) be a connected bipartite P6-saturated graph.
Then either G contains one of graphs S2

2,2, Ti, i ∈ {1, 2} or G = Kr,s with
min{r, s} ≤ 2.

Proof. Let us denote |B| = p, |W | = q and let p ≤ q. For min{p, q} ≤ 2
the lemma is evident. So let us suppose that p, q ≥ 3. It is easily seen
that there exists at least one vertex x ∈ V (G) such that dG(x) ≥ 3. Let us
suppose that x ∈ B. Denote by yi, i = 1, 2, . . . , n the neighbours of x. If
there is a neighbour yi, i = 1, 2, . . . , n such that dG(yi) ≥ 3 then G contains
S2

2,2. So we may suppose that dG(yi) ≤ 2, i = 1, 2, . . . , n. Since p ≥ 3 at
least two of yi, i = 1, 2, . . . , n have their degrees equal to 2 and therefore G
contains T1.

T1 T2
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Lemma 16. Let G = (B, W ; E) be a bipartite P6-saturated graph such that
3 ≤ |B| = p ≤ q = |W |, p ≥ 3 and there is a vertex w ∈ W which is isolated
in G. Then all the isolated vertices of G are in W and G =

⋃k
i=1 Kai,2 ∪⋃l

j=1 Kj
0,1 where ai ≥ 3, i = 1, 2, . . . , k,

∑k
i=1 ai = p and q = 2k + l.

Proof. The fact that all isolated vertices are in W is evident. Let B =
{b1, b2, . . . , bp}, W = {w1, w2, . . . , wq}. Denote by NG(x) the set of the
neighbours of the vertex x ∈ V (G). It is clear that for every b ∈ B there is
a path P5 starting from b. It is easy to check that every w ∈ NG(b) belongs
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to any path P5 starting from b. Thus dG(b) ≤ 2. Denote by b1w1b2w2b3

a path starting from b1. It follows easily that for every x ∈ B such that
wi ∈ NG(x), i ∈ {1, 2} we have NG(x) ⊆ {w1, w2}. Therefore the component
of G containing w1 and w2 is isomorphic to Ka,2, a ≥ 3.

Corollary 17 follows immediately from Lemma 16.

Corollary 17. Let G = (B, W ; E) be a bipartite P6-saturated graph such
that |B| = p and there is an isolated vertex in W . Then e(G) = 2p.

Lemma 18. If G = (B, W ;E) is a bipartite P6-saturated graph without
isolated vertices and with the minimum size and 3 ≤ |B| = p ≤ q = |W |,
then

e(G) =





p + q −
⌊

p
3

⌋
if p ≡ 0(mod 3) or p = q ≡ 1(mod 3),

p + q −
⌊

p
3

⌋
− 1 if p ≡ 1(mod 3) and p < q or

p ≡ 2(mod 3).

Proof. For every graph G we have e(G) ≥ |V (G)| − c where c is a number
of components of G and equality holds if and only if G is a forest. The proof
follows by Lemma 15.

Now, we turn to the case of m ≥ 7.

Lemma 19. Let T = (B, W ;E) be a Pm-saturated tree, m ≥ 7, x ∈ B ∪W ,
with dT (x) > 1 and let x1, x2, . . . , xk be the neighbors of x. For i = 1, 2, . . . , k
denote by li the maximum number of vertices in a path starting from x and
containing xi, i = 1, 2, . . . , k, l1 ≥ l2 ≥ . . . ≥ lk. The following holds:

(i) m− 1 ≤ l1 + li ≤ m, i = 2, 3,

(ii) if dT (v) = 2 then v is the neighbour of a pendant vertex (v is penultimate).

Proof. The inequality l1 + li ≤ m for i > 1 is evident. Let xi
1, x

i
2, . . . , x

i
li

be
a path of order li starting from x = xi

1 and containing xi = xi
2, i = 1, 2, . . . , k

(see Figure 8).
Suppose first that k ≥ 3 and x is not a penultimate. Then adding to T

the edge x1
2x

2
3 we create a path with m vertices. Thus l1 − 1 + 2 + l3 ≥ m

and therefore l1 + l3 ≥ m− 1. So l1 + l2 ≥ m− 1 and (i) is proved.
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Suppose that v ∈ B ∪ W and dT (v) = 2 and v is not penultimate vertex.
Denote by u1, v1 the neighbours of v, P = v, u1, . . . , us and P ′ = v, v1, . . . , vr

the longest paths starting from v and passing by u1, v1, respectively. Then
r, s ≥ 2. The edge u2v1 create a Pm contradicting the maximality of P =
v, u1, . . . , us.
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Figure 9

The P7-saturated bipartite graphs with p = q = 5.
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The next lemma follows from Lemma 19.
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Lemma 20. Let a tree T = (B, W ; E) be a Pm-saturated bipartite graph
m ≥ 7. Then T contains Am.

Proofs of Theorem 6 and 7. Like in the proof of Lemma 18 we use the
fact that for every graph G we have e(G) ≥ |V (G)| − c and equality holds if
and only if G is a forest with exacly c components. Hence for given p, q and
m, if there is a Pm-saturated forest F = (B, W ; E) with |B| = p, |W | = q
and the maximum number of components then F is a Pm-saturated bipar-
tite graph with the minimum size. On the other hand it is clear that if
the assumptions of Theorem 6 or 7 are verified then there exists such a
forest F that each component of F contains Am,m ≥ 7 (see Figure 9 and
Figure 10).

Figure 10

The P7-saturated graphs with p = 3, q = 6.
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Observe now that

– if m = 2k, k ≥ 4 and p = q = l(3 · 2k−3 − 1), or
– if m = 2k + 1, k ≥ 3 and p = l(4 · 2k−3 − 1), q = l(5 · 2k−3 − 1),

then the Pm-saturated bipartite graph F = (B,W ; E) without isolated ver-
tices and with the minimum size and with |W | = q, |B| = p is the forest
containing l trees Am.
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