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1. Introduction

The graph weighted coloring problem generalizes the well known graph col-
oring problem which is NP -hard [5, 6], and for which a number of exact but
possibly exponential-time algorithms have been presented in the literature
(e.g., see [1, 2, 6, 7, 8, 9, 10]).

The weighted coloring problem asks for an assignment of sets of colors
to the vertices of the given graph such that each vertex receives as many
colors as is prescribed by its weight. Moreover two adjacent vertices are not
allowed to share colors in the assigned sets. The objective is to find a solution
with the minimum number of different colors. For the minimum weighted
coloring problem, recently an exact algorithm appeared in the literature [3].

Coloring has received much attention in the literature as it can be used
for modeling many real problems, such as scheduling, register allocation,
garbage collection, frequency assignment and many others.

In the papers dealing with similar problems (especially in those related
to exact algorithms), one common difficulty has emerged: the computing of a
good lower bound. A good lower bound is needed to render the enumeration
process more effective. On the other hand, it is also desired to reduce the
gap between the lower and upper bounds to capture the distance of a given
solution from the optimal one.

In particular, this necessity comes out also from the fact that the most
common lower bound used for graph coloring is the size of a maximum clique.
Unfortunately, this bound is associated with a negative result: Descartes [4]
proved that the lower bound in terms of size of the maximum clique can be
arbitrarily far from the minimum coloring.

Observe also, that for a perfect graph G, the weighted chromatic number
of G, is equal to the weight of a maximum weighted clique. It means that
there exists a large class of graphs that attain this lower bound.

Joining these two results, it seems that the maximum clique is a useful
tool, but can be inadequate. In this paper we pose the question on a possible
improvement of this lower bound. The approach used in the paper is similar
to those of list coloring. We perform computation on lists of feasible colors
given by a fixed coloring of the maximum weighted clique. We take into
account cliques in the neighborhood of the maximum weighted one, and
also all stars outside the maximum weighted clique.

In particular, we design several algorithms that are able to provide bet-
ter lower bounds exploring cliques of different sizes in the neighborhood of
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a maximum weighted clique. With respect to the latter case, we first give an
NP -completeness results for the so called star coloring extension problem.
We prove that the list coloring problem on stars is NP -complete. Then we
show a polynomial time algorithm for the stars made up of two rays, i.e.,
paths of length two. We experiment with the algorithms devised and provide
results on generic random graphs and on triangle free random graphs.

The paper is organized as follows: In Section 2 there are basic notations;
in Section 3 there is the analysis of the lower bound divided into two subsec-
tions: Subsection 3.1, where we consider cliques to extend the lower bound
offered by a maximum weighted clique, and Subsection 3.2 which describes
the same approach on stars.

In Section 4 we report computational results associated with the algo-
rithms presented in the paper.

2. Preliminaries

Let G be a simple loopless graph, with vertex (node) set V and edge set E.
For a set of vertices W ⊆ V , we define a neighborhood N(W ) as those

vertices at distance one from W , i.e., N(W ) = {u ∈ V \W |∃v ∈ W : (u, v) ∈
E}. For simplicity we omit braces on one-element sets, i.e., N(u) = N({u}).

A clique K is a set of nodes that are mutually adjacent. We also asso-
ciate the word clique with the complete subgraph of G induced by vertices
of K.

For a vertex u ∈ V we define the star Su as the subgraph of G induced
by edges incident with u. The neighbors of u in Su are called rays.

A proper k-coloring is a function c : V → {1, 2, . . . , k} such that c(u) 6=
c(v) for each (u, v) ∈ E, i.e., no two adjacent nodes are assigned the same
color.

The smallest number k for which a proper k-coloring of G exists is called
the chromatic number of G and is denoted by χ(G).

Assume that in a graph G to each node u ∈ V is assigned a positive
integer weight wu. Then we call G a weighted graph. For any set of nodes
W ⊆ V we define the weight of W as the sum of weights of its elements,
i.e., wW =

∑
u∈W wu.

A clique K of weight wK is the maximum weighted clique of G if no
clique of larger weight exists in G.

A proper weighted k-coloring of a weighted graph G is a coloring of
the vertices by sets of colors, such that each set has as many elements as
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specified by the weight of the vertex. More formally it is a mapping C :
V → P({1, 2, . . . , k}), satisfying

• ∀u ∈ V : |C(u)| = wu, and

• ∀(u, v) ∈ E : C(u) ∩ C(v) = ∅.

The minimum number of colors for which there exists a proper weighted k-
coloring is called weighted chromatic number of G and is denoted by χw(G).

The classical coloring problem is equivalent to the weighted variant in
the case of all weights being one.

3. The Analysis of the Lower Bound

Let G be the given graph and assume that K is its maximum weighted
clique of weight wK . Without loss of generality we may assume that the
colors used on K form an integer interval {1, 2, . . . , wK}. Fix a weighted
wK coloring C of K arbitrarily.

Our method is based on the exploration of which colors are available
on the neighborhood of K. For each vertex u ∈ V \ K we define a list of
feasible colors as Lu = {1, 2, . . . , wK} \

⋃
v∈N(u)∩K C(v).

Observe that for every vertex |Lu| ≥ wu, otherwise {u}∪(N(u)∩K) is a
clique of weight greater then wK . It is also straightforward that the mapping
C could be extended to the entire graph G if on vertices of V \K it uses either
colors from lists Lu or extra new colors above the interval {1, 2, . . . , wK}.
Our method to estimate the lower bound on the weighted chromatic num-
ber is based on the following principle: In the subgraph of G induced
by V \ K we examine two kinds of graphs, namely cliques (Section 3.1)
and stars (Section 3.2) and estimate the minimum necessary number of
extra colors.

3..1 Cliques in the neighborhood of K

Consider the set K of all cliques of N(K) and any clique K ′ ∈ K. Clearly
χw(K ′) = wK′ , and if the number of colors available by the union of list
of elements of vertices of K ′ is smaller than wK′ , we will need at least
wK′−|⋃u∈K′ Lu| extra colors. This argument holds for every clique K ′ ∈ K,
so our first extended lower bound is expressed as the maximum over K, i.e.,
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Theorem 1. For any graph G, its weighted chromatic number is bounded by

χw(G) ≥ wK + max
{

0, max
K′∈K

(
wK′ −

∣∣∣
⋃

u∈K′
Lu

∣∣∣
)}

.

Observe that if we consider a clique K ′′ ⊆ V \K containing a point outside
N(K), then

⋃
u∈K′′ Lu = {1, 2, . . . , wK} and no extra colors are forced due

to the assumption of K being the maximum clique.
From the computational point of view it is hard to consider all possible

cliques in graph, (there might be exponentially many such sets) so we restrict
our attention to three specific tractable subsets of K:

• K1 is the set of all edges in N(K), providing the bound Λ1.
• K2 contains all triangles in N(K) with bound Λ2.
• K3 is a set of cliques obtained by the the heuristic below and the corre-

sponding bound is Λ3.

Algorithm
Input: A weighted subgraph induced by N(K)
Output: A set of cliques K3 and the corresponding bound Λ3.

Step 1. K3 := ∅;
Λ3 := wK ;
order nodes u ∈ N(K) non decreasingly by the ratio wu

|Lu|
and number them accordingly u1, . . . , u|N(K)|;

Step 2. for i := 1 to |N(K)| do

Step 2.1. K ′ := {ui};
LK′ := Lui ;

Step 2.2. for j := i + 1 to |N(K)| do
if K ′ ∪ {uj} is a clique in N(K) then

K ′ := K ′ ∪ {uj};
put K ′ into K3;
LK′ := LK′ ∪ Luj ;
Λ3 := max{Λ3, wK + wK′ − |LK′ |};

Roughly speaking, the above algorithm orders vertices by ratio between wu

and |Lu| and for every vertex it greedily searches for a clique among its
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successors. The order prefers vertices which might contribute by the largest
portion to the difference wK′ − |LK′ |.

We note here that with a suitable data structure the time complexity
of the algorithm is bounded by O(|V |3) and similarly the bounds Λ1 and Λ2

could be obtained in O(|V |2) and O(|V |3) time, respectively.
Observe also that the value wK +wK′ − |LK′ | does not necessarily form

a monotone sequence as K ′ gains new vertices, and therefore we take into
K3 all stages of growth of the clique K ′.

The computation of a bound Λ4 majorizing all bounds Λ1, Λ2 and Λ3

(i.e., K4 ⊇ K1 ∪ K2 ∪ K3) can be done by a common algorithm running
in time O(|V |3|E|). The new algorithm differs by the beginning of Step 2,
which is modified as follows:

Step 2. for all (v, v′) ∈ E(N(K)) do

Step 2.1. K ′ := {v, v′};
LK′ := Lv ∪ Lv′ ;
Λ4 := max{Λ4, wK + wK′ − |LK′ |};
let k be the higher index of v an v′;
for i := k + 1 to |N(K)| do
if ui, v, v′ induce a triangle then
K ′ := K ′ ∪ {ui};
LK′ := LK′ ∪ Lui ;
Λ4 := max{Λ4, wK + wK′ − |LK′ |};

etc.

Finally notice that in a triangle-free graph, all maximal cliques are edges
(or isolated vertices). In this case for every edge (u, v) ∈ N(K) we have
|Lu ∪ Lv| = {1, 2, . . . , wK}. Hence Λ1 = wK , even if N(K) might have an
interesting structure, in fact it is a bipartite graph.

3..2 Extending the coloring on stars

In this section we consider the set S of all star subgraphs S in V \K. Even
if there is no simple formula for the lower bound as in the case of cliques we
propose this method due to the following arguments:

• Stars in V \K are more easy to enumerate.
• The lower bound obtained by edge-induced subgraph is still valid also

for its vertex-induced subgraph.
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• The arguments for general subgraphs would be combinatorially more
complicated.

As above, consider a weighted star S, where each vertex u is assigned a list
Lu of feasible colors. Our question is:

Star Coloring Extension Problem:“What is the minimum neces-
sary number λ of extra new colors such that after extending each list by these
λ colors the star S will have a feasible weighted coloring?”

Based on a possible answer to the Star Coloring Extension Prob-
lem we obtain the expression for the new lower bound on the weighted
chromatic number.

Theorem 2. The weighted chromatic number of an arbitrary graph G is
bounded by

χw(G) ≥ wK + max
S∈S

λS .

We firstly bring an observation, that the possible solution of the Star Col-
oring Extension Problem might be of a special form. Denote the center
of the star S by u and its rays by R = {a1, a2, . . . , adeg(u)}.

Without loss of generality we may assume that lists assigned to the
vertices of the star satisfy Lu =

⋃
a∈R La. If not, we simplify the instance

given by lists Lu, La, (a ∈ R) and weights wu, wa, (a ∈ R) as follows:

• Define the new list Lu as Lu without all colors not presented in
⋃

a∈R La

and set wu := wu − |Lu \
⋃

a∈R La|. Observe that the removed colors
might be used on u without any restriction on coloring of any a ∈ R.

• Similarly, for each a ∈ R remove from La all colors not presented in
Lu and decrease wa by |La \ Lu|. As above the removed colors do not
influent the coloring of u.

Now we define a partial order on colors of Lu as follows:

c′ ≺ c ⇔ {La : c′ ∈ La, a ∈ R} ⊂ {La : c ∈ La, a ∈ R}.

This partial order means that the color c is more demanded than c′. Since
the newly introduced colors are available for all rays, by definition they
are more demanded than colors of Lu, i.e., each new color c is such that
c′ ¹ c, ∀c′ ∈ Lu.

The following lemma might be interesting by its own.
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Lemma 1. Let Su be a star, and C be an optimal coloring minimizing the
value λS. Then there exists an alternative optimal solution C ′, satisfying:

∀a ∈ R, c ∈ C ′(a), c′ ∈ La \ C ′(a)

is such that c 6≺ c′.

Proof. Assume that in the solution C for a ray a such pair of colors c and
c′ satisfying c ≺ c′ exists. If c′ ∈ C(u) we may set C ′(a) = (C(a)\{c})∪{c′}.
Otherwise we modify C as follows:

• set C ′(aj) = (C(aj) \ {c}) ∪ {c′} for all aj : c ∈ C(aj),
• and set C ′(u) = (C(u) \ {c′}) ∪ {c}.

The new coloring C ′ is a feasible weighted coloring for Su that does not
increase the value λS . We repeat this procedure until the new solution
satisfies the required property.

Unfortunately, even the standalone Star Coloring Extension Problem
is computationally hard.

Lemma 2. The decision version of the Star Coloring Extension Prob-
lem is NP-complete for λ = 0.

Proof. We reduce Satisfiability. Let Φ be a formula with m clauses
and n variables. We define a weighted star S with m + n rays, where each
vertex is assigned a list of colors, s.t. the star allows a list-weighted coloring
if and only if Φ has a satisfying assignment. The set of colors used in this
construction correspond to all possible literals, i.e., for each variable xi,
there are colors 2i− 1 and 2i representing literals xi and ¬xi, respectively.

The lists are assigned as follows:

• The central vertex u of the star is assigned the list of all colors Lu =
{1, 2, . . . , 2n} and wu = n.

• For each variable xi there is a unique ray ui assigned Lui = {2i− 1, 2i}
and wui = 1.

• For each clause cj there is a unique ray vj assigned list of colors repre-
senting the literals of cj and with weight wvj = 1.

If a feasible weighted coloring exists, then the colors of the variable rays
determine the truth valued literals. The central vertex is then colored by
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all negative valued literals and on clause rays it is possible to use only
true valued literals. The opposite transformation of a truth assignment to
coloring is then straightforward.

Observe, that the Star Coloring Extension Problem could be solved
by integer linear programming approach, where the number of variables is
proportional to the number of distinct inclusions of lists in the star graph
S. On account of Lemma 2 we relax to provide the optimum solution of
the Star Coloring Extension Problem for the general case, but we
restrict ourselves on tractable instances. If the number of rays is bounded,
we may provide an exact solution, and we would like to explain it on the
simplest case of the star with two rays. Consider a star S with two rays,
i.e., isomorphic to a path of length two. Denote by u the central vertex and
by a and b the two rays. As discussed above we may assume without loss of
generality that Lu = La ∪ Lb.

Denote by xa, xb and xc the sizes of sets La \ Lb, Lb \ La and La ∩
Lb, respectively. We proceed the computation of λs as follows: Assign
min{xc, wa, wb} colors from La ∩ Lb to both a and b. We distinguish two
cases:

• Without loss of generality let wa = min{xc, wa, wb}. Then u could be
assigned xa colors from La \ Lb, and b will need wb − wa more colors
where only |Lb| − wa colors are available for both u and b.
In total the number of extra new colors is:

λS = max{0, wu − xa + wb − wa − (|Lb| − wa)}
= max{0, wu + wb − xa − xb − xc}.

• If xc = min{xc, wa, wb}, then we have xa + xb colors at disposal and
we have to saturate wa + wb + wc − 2xc requests. We may use at most
min{wa − xc, wb − xc} new colors simultaneously at a and b, hence:

λS = max
{

0, xa + xb + 2xc − wa − wb − wc −

− min
{xa + xb + 2xc − wa − wb − wc

2
, wa − xc, wb − xc

}}
.

In spirit of Theorem 2 we may apply the above procedure and compute the
lower bound Λ5 = wK + maxS∈S5 λS over the set S5 of all stars with two
rays in V \K.
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Observe that the computation of λS for a given S could be done in time
dependent only on computing of the sizes xa, xb and xc. Under the assump-
tion that these times could be handled in time tw, then the bound Λ5 could
be computed in O(tw|V |3) time.

4. Experimental Results

In order to deeply analyze our algorithms, we have used two kinds of test
problems in our data set: the first one is given by generic random graphs,
the second one is given by triangle free random graphs. A weight function
assigns uniformly at random to each node in a graph an integer drawn from
the set {1, . . . , mw}, where mw is the maximum weight allowable for a node.

Table 1. Λ4 values on random graphs

Type wK Λ4 wK Λ4 wK Λ4

mw = 5 mw = 5 mw = 10 mw = 10 mw = 20 mw = 20
30.01 10.2 10.8 19.8 20.0 40.4 41.2
30.03 15.4 16.0 31.0 32.2 62.8 65.6
30.05 24.6 25.6 45.0 47.0 90.8 95.2
30.07 30.2 31.2 58.0 60.4 116.8 122.2
30.09 38.6 40.2 74.0 77.6 148.8 156.4
50.01 11.2 11.4 20.8 21.0 42.4 43.2
50.03 18.4 19.4 35.4 37.2 71.6 75.6
50.05 25.8 28.2 48.2 51.2 97.2 103.6
50.07 34.8 37.2 64.8 67.4 130.4 136.4
50.09 44.6 46.8 82.6 85.6 166.0 172.4
70.01 12.4 12.8 22.8 23.2 46.4 47.6
70.03 21.2 22.8 40.6 42.2 82.0 85.6
70.05 29.6 31.6 54.8 57.6 110.4 116.4
70.07 38.8 40.0 75.4 78.2 151.6 157.6
70.09 47.0 49.2 92.4 95.2 185.6 191.6
80.01 13.2 13.8 24.4 25.2 49.6 51.6
80.03 23.4 26.4 44.0 47.4 88.8 96.0
80.05 35.6 37.8 67.2 70.2 135.2 141.6
80.07 46.8 50.2 89.2 93.6 179.2 188.4
80.09 52.0 56.2 102.8 107.0 206.4 215.2
90.01 14.6 15.4 26.2 27.2 53.2 55.6
90.03 24.8 27.0 45.2 48.2 91.2 97.6
90.05 36.0 39.4 70.8 74.4 142.4 150.0
90.07 50.2 53.8 96.4 100.4 193.6 202.0
90.09 59.2 63.4 115.8 120.0 232.4 241.2

All statistics are averages of 5 test problems.
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All algorithms have been coded in the C language and run on a Pentium III
PC with a 700 MHz processor and 128 MB RAM. In the columns are listed
the following parameters:

– wK : the weight of the maximum clique;
– Λ4, Λ5: the lower bound values presented in the paper.

It should be observed that the new lower bound values are always greater
than the values of the corresponding maximum weighted clique. In partic-
ular, referring to Λ4 we have an improvement ranging from 2% to 6%, and
referring to Λ5 an improvement ranging from 4% to 12%.

Table 2. Λ5 values on random graphs

Type wK Λ5 wK Λ5 wK Λ5

mw = 5 mw = 5 mw = 10 mw = 10 mw = 20 mw = 20
30.01 10.2 11.4 19.8 20.4 40.4 42.2
30.03 15.4 17.0 31.0 32.6 62.8 66.8
30.05 24.6 26.2 45.0 47.6 90.8 98.0
30.07 30.2 32.0 58.0 60.8 116.8 124.2
30.09 38.6 40.6 74.0 78.2 148.8 158.6
50.01 11.2 12.4 20.8 22.2 42.4 45.4
50.03 18.4 20.2 35.4 38.6 71.6 77.4
50.05 25.8 29.0 48.2 52.8 97.2 105.8
50.07 34.8 39.4 64.8 69.2 130.4 139.4
50.09 44.6 48.6 82.6 90.8 166.0 175.6
70.01 12.4 14.0 22.8 25.4 46.4 49.6
70.03 21.2 24.8 40.6 44.6 82.0 82.8
70.05 29.6 34.8 54.8 59.8 110.4 118.8
70.07 38.8 44.6 75.4 80.6 151.6 159.0
70.09 47.0 52.0 92.4 99.8 185.6 194.8
80.01 13.2 15.8 24.4 27.2 49.6 53.8
80.03 23.4 29.4 44.0 50.0 88.8 99.2
80.05 35.6 41.0 67.2 73.2 135.2 144.8
80.07 46.8 54.8 89.2 96.8 179.2 192.4
80.09 52.0 60.4 102.8 110.2 206.4 220.4
90.01 14.6 17.2 26.2 28.2 53.2 58.4
90.03 24.8 29.4 45.2 51.0 91.2 102.8
90.05 36.0 42.6 70.8 74.8 142.4 154.8
90.07 50.2 56.0 96.4 102.8 193.6 208.2
90.09 59.2 66.8 115.8 125.0 232.4 246.4

All statistics are averages of 5 test problems.

We have generated triangle free graphs by modifying the previous random
graphs by means of a procedure which takes in input a graph with edge
density equal to 0.5 and eliminates those edges inducing a triangle in the
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graph. In Tables 3 we report results obtained only for Λ5 since each clique
and its neighborhood in a triangle free graph induces a bipartite graph and
Λ4 cannot obtain any lower bound improvement with respect to wK .

Table 3. Λ5 values on triangle free random graphs

Type wK Λ5 wK Λ5 wK Λ5

mw = 5 mw = 5 mw = 10 mw = 10 mw = 20 mw = 20
tr30 10.0 11.8 20.0 23.8 40.0 46.8
tr50 10.0 12.0 20.0 24.2 40.0 48.0
tr70 10.0 12.4 20.0 24.2 40.0 48.6
tr80 10.0 12.4 20.0 25.2 40.0 50.2
tr90 10.0 12.8 20.0 25.4 40.0 52.2

All statistics are averages of 5 test problems.

As for the previous tables it can be observed that Λ5 improves on the max-
imum weighted clique, where this improvement ranges from 12% to 30%.

Note that from a computational point of view, we select stars with two
rays, paying attention to not to choose triangles to avoid the overlapping
of the contributions given by Λ5 and Λ4. In all our experiments the time
needed to compute the proposed lower bounds, once a maximum weighted
clique is obtained, is negligible (we observed at most 5 seconds of CPU time).

5. Conclusion

In this paper we have presented new theoretical and algorithmic results
to compute lower bounds on the chromatic number of weighted graphs.
The effectiveness of such algorithms have been evaluated by experiments on
random instances, showing that in all the instances tested the algorithms
were able to improve the clique bound.
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