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Abstract

A kernel N of a digraph D is an independent set of vertices of D
such that for every w ∈ V (D)−N there exists an arc from w to N . If
every induced subdigraph of D has a kernel, D is said to be a kernel-
perfect digraph. In this paper I investigate some sufficient conditions
for a digraph to have a kernel by asking for the existence of certain
diagonals or symmetrical arcs in each odd directed cycle whose length
is at most 2α(D) + 1, where α(D) is the maximum cardinality of an
independent vertex set of D. Previous results are generalized.
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1. Introduction

For general concepts we refer the reader to [2]. Let D be a digraph, V (D)
and A(D) will denote the sets of vertices and arcs of D, respectively. A
kernel of a digraph D is a subset K ⊆ V (D) such that K is independent
(K ∩ Γ−1

D (K) = ∅) and absorbing (K ∪ Γ−1
D (K) = V (D)). When every

induced subdigraph of D has a kernel, D is said to be kernel-perfect or a
KP -digraph. We say that D is a critical kernel-imperfect digraph or a CKI-
digraph if D does not have a kernel but every proper induced subdigraph of
D does have at least one.
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The concept of kernel was introduced by von Neumann and Morgenstern
[12] in the context of Game Theory. They also proved that any finite acyclic
digraph has a (unique) kernel. The problem of the existence of a kernel
in a given digraph has been studied by several authors, in particular by
Richardson [13, 14], Duchet and Meyniel [6], Duchet [4, 5], Galeana-Sánchez
and Neumann-Lara [8]. This concept has found applications, for instance in
cooperative n-person games, in Nim-type games [2], in logic [3], etc. . Since
not all digraphs has a kernel, the natural problem is: which structural
properties of a graph imply the existence of a kernel?

In this paper I investigate some sufficient conditions for a digraph to
have a kernel by asking for the existence of certain diagonals or symmetrical
arcs in each odd directed cycle whose length is at most 2α(D)+1, where α(D)
is the maximum cardinality of an independent vertex set of D. Previous
results are generalized.

Sometimes a digraph D will be viewed as an orientation of its underlying
undirected graph that we denote by GD. The edges of G will be denoted by
E(GD) and we write u1u2 for an edge and (u1, u2) for an arc.

If D0 is a subdigraph (resp. induced subdigraph) of D we write D0 ⊂ D
(resp. D0 ⊆∗ D). Let S1, S2 be two subsets of V (D), the arc (u1, u2) of
D will be called an S1S2-arc whenever u1 ∈ S1 and u2 ∈ S2; D[S1] will
denote the subdigraph of D induced by S1. An arc (u1, u2) ∈ A(D) is
called asymmetrical (resp. symmetrical) if (u2, u1) 6∈ A(D) (resp. (u2, u1) ∈
A(D)). The asymmetrical part of D (resp. the symmetrical part of D)
which is denoted by Asym (D) (resp. Sym (D)) is the spanning subdigraph
of D whose arcs are the asymmetrical (resp. symmetrical) arcs of D.

Let C = (0, 1, . . . ,m− 1, 0) be a directed cycle of D, we denote by `(C)
its length. For i 6= j, i, j ∈ V (C) we denote by (i, C, j) the ij-directed
path contained in C and by `(i, C, j) its length; f = (i, j) ∈ (A(D)−A(C))
is a diagonal of C iff i 6= j, i, j ∈ V (C) and `(i, C, j) < `(C) − 1, f =
(i, j) ∈ (A(D) − A(C)) is a pseudodiagonal of C iff, i 6= j, i, j ∈ V (C) and
`(i, C, j) ≤ `(C) − 1. A short chord of C is a diagonal of C with length
two (`(i, C, j) = 2). We will denote by t(C) = {z ∈ V (C) | there exists a
pseudodiagonal (w, z) of C} the set of terminal endpoints of pseudodiagonals
of C, also they will be named the poles of C. Two consecutive poles of C
are two poles which are consecutive in C.

We will denote: C1
0 = {i ∈ C | i ≡ 1(mod 2)}. For instance if C =

(0, 1, 2, 0), C1
0 = {1}.
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Theorem 1.1 [8]. Let D be a CKI-digraph, u ∈ V (D). Then there exists a
directed cycle C of odd length passing by u and having no V (C)(C1

u ∪ {u})-
pseudodiagonals (We are considering C = (u = 0, 1, 2, . . . , 2n, 0), C1

u =
{i ∈ V (C) | i ≡ 1(mod 2)}. In particular C1

u is an independent set.

Theorem 1.2 [8]. Let D be a digraph. If for each odd directed cycle C
contained in D and u ∈ V (C), there exists a V (C)(C1

u∪{u})-pseudodiagonal,
then D is a KP -digraph.

Theorem 1.3 [8]. Let D be a digraph. If each odd directed cycle C of D
has two consecutive poles in C then D is a kernel-perfect digraph.

Theorem 1.4 [5]. Let D be a digraph in which each 3-circuit is symmet-
rical. If every odd directed cycle possesses two short chords, then every odd
directed cycle has at least two consecutive poles.

Theorem 1.5 [4]. Let D be a digraph such that each odd directed cycle has
at least two symmetrical arcs, then D is a kernel-perfect digraph.

A digraph D is called a fraternal orientation of GD if (u,w) ∈ A(D) and
(v, w) ∈ A(D) implies (u, v) ∈ A(D) or (v, u) ∈ A(D). If D is a fraternal
orientation of GD we will say that D is a fraternally oriented digraph, G
is fraternally orientable if it admits a fraternal orientation. The concept of
fraternal orientation was introduced by D.J. Skrien [16] and a characteriza-
tion in case that D has no symmetrical arcs has been obtained by F. Gavril
and J. Urrutia [11], they also proved that triangulated graphs and circular
arc graphs are all fraternally orientable graphs. Many properties of frater-
nally orientable graphs have been obtained by J. Bang-Jensen, J. Huang and
E. Prisner in [1]. A class of normal fraternally orientable graphs has been
studied by F. Gavril, V. Toledano Laredo and D. de Werra in [10]. They
described a polynomial time algorithm to find a kernel in such a class of
normal fraternally orientable graphs.

We recall that every triangulated graph has an acyclical fraternal-ori-
entation (D.J. Rose [15]).

Normal-fraternally orientable graphs are an interesting class of graphs
as we can conclude from the following result:

Theorem 1.6 [7]. The Strong Perfect Graph Conjecture is true if and only
if every critically imperfect graph not isomorphic to C2n+1 n ≥ 4 is a
normal fraternally orientable graph.
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Theorem 1.7 [9]. Let D be a digraph, and suppose that every odd directed
cycle C of D satisfies the following properties:

(i) D[V (C)] is a fraternally oriented digraph and
(ii) C has at least two pseudodiagonals.

Then each odd directed cycle of D has at least two consecutive poles.

2. Some Sufficient Conditions on odd Directed
Cycles of Bounded Length for the Existence of

a Kernel

In this section I show some sufficient conditions for a digraph to have a
kernel by asking for the existence of certain diagonals or symmetrical arcs
in each odd directed cycle whose length is at most 2α(D) + 1, generalyzing
some previous results.

Theorem 2.1. Let D be a digraph. If for each odd directed cycle C whose
length is at most 2α(D) + 1, contained in D and for each vertex u ∈
V (C), there exists V (C)(C1

u ∪{u})-pseudodiagonal. (Considering C = (u =
0, 1, . . ., 2n, 0)), then D is a kernel-perfect digraph.

Proof. By contradiction, suppose that D is not a KP -digraph. Then
there exists a CKI-digraph H, H ⊆∗ D. It follows from Theorem 1.1 that
for u ∈ V (H) there exists a directed cycle C of odd length passing by
u, contained in H and having no V (C)(C1

u ∪ {u})-pseudodiagonals. The
hypothesis implies `(C) > 2α(D) + 1, hence |C1

u| > α(D) and therefore
there exists an arc of D with both terminal endpoints in C1

u which clearly
is a V (C)(C1

u ∪ {u})-pseudodiagonal. This contradicts the choice of C.

Clearly Theorem 2.1 is an equivalent version of Theorem 1.1 and as we
will see it will be useful in order to obtain some generalizations of previous
results.

Theorem 2.2. Let D be a digraph. If each odd directed cycle C contained
in D whose length is at most 2α(D) + 1, has at least two consecutive poles
in C, then D is a kernel-perfect digraph.
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Proof. Let C be any odd directed cycle contained in D whose length is
at most 2α(D) + 1 and u ∈ V (C). Since C has two consecutive poles it
follows that C has a pole in C1

u ∪ {u} and then C has a V (C)(C1
u ∪ {u})-

pseudodiagonal. It follows from Theorem 2.1 that D is a kernel-perfect
digraph.

Theorem 2.3. Let D be a digraph such that each 3-circuit is symmetrical.
If each odd directed cycle contained in D whose length is at most 2α(D) + 1
has two short chords, then D is a kernel-perfect digraph.

Proof. Let C be an odd directed cycle whose length is at most 2α(D) +
1, and denote H = D[V (C)]; the hypothesis implies that every 3-circuit
contained in H is symmetrical and each odd directed cycle contained in
H has two short chords; so it follows from Theorem 1.4 that C has two
consecutive poles. We conclude that each odd directed cycle contained in D
whose length is at most 2α(D)+1 has at least two consecutive poles. Hence
Theorem 2.2 implies that D is a kernel-perfect digraph.

Theorem 2.4. Let D be a digraph such that every 3-circuit has two sym-
metrical arcs. If for every odd directed cycle C = (u = 0, 1, 2, . . . , 2n, 0) such
that (1, 2, . . . , 2n, 0) is an asymmetrical directed path, (i.e., C has at most
one symmetrical arc and in case is the arc (0, 1)), 5 ≤ `(C) ≤ 2α(D) + 1
there exists a V (C)

(
C1

u ∪ {u}
)
-asymmetrical diagonal in D, then D is a

kernel-perfect digraph.

Proof. First we will prove: (1) Asym (D) is a kernel-perfect digraph.
By contradiction assume that Asym (D) is not a kernel-perfect digraph.
Then, there exists a subdigraph H ⊆∗ Asym (D) which is a critical kernel-
imperfect digraph. Let u ∈ V (H); it follows from Theorem 1.1 that there
exists an odd directed cycle C contained in H, passing by u and having
no V (C)

(
C1

u ∪ {u}
)
-pseudodiagonals in H, since H ⊆∗ Asym (D) it follows

that C has no V (C)(C1
u ∪ {u})-asymmetrical diagonal in D. It follows from

the hypothesis that `(C) > 2α(D) + 1 and hence |C1
u| > α(D).

Since C1
u is independent in H and H ⊆∗ AsymD it follows that C1

u is
independent in Asym (D); and the fact |C1

u| > α(D) implies that there exists
at least one symmetrical arc of D with both terminal endpoints in C1

u.
Denote C = (u = 0, 1, 2, . . . , 2n, 0), n > α(D); so C1

u = {1, 3, 5, . . . ,
2n− 1}, and let (i, j) ∈ Sym (D) such that i < j, {i, j} ⊆ C1

u and

A (D [{i, i + 2, i + 4, . . . , j}]) = A
(
D

[
C1

u ∩ V (i, C, j)
])

= {(i, j), (j, i)} .



176 H. Galeana-Sánchez

Now define γ = (i, C, j) ∪ (j, i); clearly γ is an odd directed cycle contained
in D with exactly one symmetrical arc (j, i). The election of (i, j) implies
that γ1

j is an indepedent set of D; (Considering

γ = (j = 0, i = 1, i + 1 = 2, . . . , i + (j − 2) = j − 1, j = 0)

γ1
j = {i, i + 2, i + 4, . . . , j − 2})

hence `(γ) ≤ 2α(D)+1 and the hypothesis imply that γ has a V (γ)(γ1
j ∪{j})-

asymmetrical diagonal. Notice that γ1
j ∪ {j} ⊆ C1

u ∪ {u} and then C has
an asymmetrical V (C)

(
C1

u ∪ {u}
)
-diagonal contradicting the selection of C.

We conclude that Asym (D) is a kernel-perfect digraph.

Now we will prove by induction on |A(Sym (D))|:
(2) There exists an independent set N ⊆ V (D) such that for each z ∈
(V (D)−N) if there exists an Nz-asymmetrical arc then also exists a zN -
asymmetrical arc.

When |A(Sym (D))| = 0 we have D = Asym (D) and it follows directly
from the fact that Asym (D) is kernel-perfect that Asym (D) has a kernel
N . Clearly N satisfies the required properties.

Suppose that (2) holds for any digraph D′ which satisfies the hypothesis
of Theorem 2.4, and with |A(Sym (D′))| = n ≥ 0. Let D be any digraph
satisfying the hypothesis of Theorem 2.4 with |A(Sym (D))| = n + 1, and
take any (u, v) ∈ A(Sym (D)). Denote D′ = D−{(u, v), (v, u)}. First we will
show that D′ satisfies the hypothesis of Theorem 2.4. When α(D′) = α(D)
it is clear that D′ satisfies the hypothesis. Suppose that α(D′) = α(D) + 1
and let C be any odd directed cycle of length 2α(D′) + 1 with at most one
symmetrical arc. Denote C = (0, 1, . . . , 2α(D′), 0) where (1, 2, . . . , 2α(D′), 0)
is an asymmetrical directed path (we order the vertices of C in such a
way that the path (1, 2, . . . , 2α(D′), 0) be an asymmetrical directed path;
that is possible because C has at most one symmetrical arc). Hence C1

0 =
{1, 3, 5, . . . , 2α(D′) − 1} and |C1

0 | = α(D′) = α(D) + 1 and there exists an
arc of D with both terminal endpoints in C1

0 ; let (i, j) be such an arc. When
(i, j) is asymmetrical it is clear that (i, j) is a V (C)(C1

0 ∪{0})-asymmetrical
diagonal. When (i, j) is symmetrical and say i < j then γ = (i, C, j)∪(j, i) is
an odd directed cycle whose length is at most 2α(D)+1 and with at most one
symmetrical arc; it follows from the hypothesis that it has a V (γ)(γ1

j ∪{j})-
asymmetrical diagonal and hence C has a V (C)(C1

0 ∪ {0})-asymmetrical
diagonal. So we have proved that D′ also satisfies the hypothesis of Theorem
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2.4 and the inductive hypothesis implies that there exists an independent
vertex set of D′ (N ′ is independent in D′)such that for every z ∈ (V (D′)−
N ′), if there exists a zN -asymmetrical arc in D′ then also there exists an
Nz-asymmetrical arc in D′.

Now we will prove that (2) holds in D.
Take the independent set N ′ of D′ described above. When N ′ is inde-
pendent in D it is clear that N = N ′ satisfies the required properties.
So we can assume that N ′ is not independent in D and the definition of
D′ = D − {(u, v), (v, u)} implies that {u, v} ⊆ N ′, and in fact A(D[N ′]) =
{(u, v), (v, u)}.
Denote by:
E0 = {u}.
S1 = {x ∈ V (D)−N ′ | there exists an E0x-asymmetrical arc }.
E1 = {x ∈ N ′ −E0 | there exists a S1x-asymmetrical arc }.
S2 = {x ∈ V (D) − (N ′ ∪ S1) | there exists an E1x-asymmetrical arc and
there is no x(E0 ∪ E1)-asymmetrical arc }.
E2 = {x ∈ N ′ − (E0 ∪ E1) | there exists an S2x-asymmetrical arc }.
S3 = {x ∈ V (D) − (N ′ ∪ S1 ∪ S2) | there exists an E2x-asymmetrical arc
and there is no x(E0 ∪ E1 ∪ E2)-asymmetrical arc }.
E3 = {x ∈ N ′ − (E0 ∪ E1 ∪ E2) | there exists an S3x-asymmetrical arc }.
S4 = {x ∈ V (D) − (N ′ ∪ S1 ∪ S2 ∪ S3 | there exists an E3x-asymmetrical
arc and there is no x(E0 ∪ E1 ∪ E2 ∪ E3)-asymmetrical arc }.
If E0, . . . , Ei and S0, . . . , Si are defined, we define:
Si+1 = {x ∈ V (D)− (N ′ ∪ ⋃i

j=1 Sj) | there exists an Eix-asymmetrical arc
and there is no x(

⋃i
j=0 Ej)-asymmetrical arc }.

Ei+1 = {x ∈ N ′ −⋃i
j=0 Ej | there exists an Si+1x-asymmetrical arc }.

Clearly Ei ∩ Ej = ∅, Si ∩ Sj = ∅ for i 6= j and Ei ∩ Sj = ∅ for any i, j.
And since V (D) is a finite set it follows that there exists a smallest integer
k such that Sk = ∅.

Considering E =
⋃k

i=0 Ei we have that the definition of Ei implies that
for any x ∈ V (D) − E for which there exists an Ex-asymmetrical arc, also
there exists an xE-asymmetrical arc. Hence; if E is an independent set
of D then N = E satisfies the required properties. So we can assume
that E is not an independent set of D′; now the fact that E ⊆ N ′ and
A(D[N ′]) = {(u, v), (v, u)} implies that there exists some r ∈ {1, . . . , k}
with v ∈ Er.
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Denote v = er; the definition of Er implies that there exists sr ∈ Sr such
that (sr, er) ∈ Asym (D), the definition of Sr implies that there exists er−1 ∈
Er−1 such that (er−1, sr) ∈ Asym (D). Proceeding in this way we obtain an
odd directed cycle

C = (u = e0, s1, e1, s2, e2, . . . , er−1, sr, er = v)

with (e0, s1, e1, s2, e2, . . . , sr, er) an asymmetrical directed path, the defini-
tion of Ei and Si imply that the only V (C)(C1

u ∪ {u})-asymmetrical diago-
nals in D are of the form (si, ej) where j > i. Now we take the minimum
asymmetrical directed path

T = (e0 = u, sn1 , em1 , sn2 , em2 , sn3 , em3 , . . . , er = v)

such that emi ∈ Emi , sni ∈ Sni and ni < mi < ni+1. Clearly T is an even
directed path; γ = T ∪ (v, u) is an odd directed cycle of length greather
than 3 whose only symmetrical arc is (v, u) and without V (γ)(γ1

v ∪ {v})-
asymmetrical diagonals. Moreover since γ1

v is an independent set of D we
have `(γ) ≤ 2α(D) + 1. This contradicts the hypothesis of Theorem 2.4.

We conclude that N ′ is an independent set of D′ and (2) is proved.
Finally we will prove that:

(3) D is a kernel-perfect digraph.
By contradiction, suppose that D is not a KP -digraph, then there exists a
CKI-digraph H, H ⊆∗ D. Since H ⊆∗ D we have that α(H) ≤ α(D) and
hence H satisfies the hypothesis of Theorem 2.4; it follows from (2) that
there exists a set S independent in H (and hence independent in D) such
that for every z ∈ (V (H) − S) for which there exists an Sz-asymmetrical
arc, also there exists a zS-asymmetrical arc. Now consider

W = V (H)− S ∪ {x ∈ V (H)− S | there exists an xS-arc } .

If W = ∅ then S is a kernel of H which is a contradiction.
If W 6= ∅, taking a kernel X of H[W ] it is easy to see that S ∪X is a

kernel of H contradicting that H has no kernel.
We conclude that D is a kernel-perfect digraph.

Theorem 2.5. Let D be a digraph. If every odd directed cycle C whose
length is at most 2α(D) + 1 has two symmetrical arcs then D is a kernel-
perfect digraph.
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Theorem 2.5 is a direct consequence of Theorem 2.4.

Theorem 2.6. Let D be a digraph such that Asym (D) is a kernel-perfect
digraph and each 3-circuit has two symmetrical arcs. If each odd directed
cycle C, 5 ≤ `(C) ≤ 2α(D) + 1 whose only symmetrical arc is (u, v) has a
V (C)(C1

u ∪ {u})-diagonal in Asym (D), then D is a kernel-perfect digraph.

I omit the proof of Theorem 2.6 which is completly analogous of those of
Theorem 2.4.

Theorem 2.7. Let D be a digraph such that Asym (D) is a kernel-perfect
digraph and every 3-circuit has two symmetrical arcs. If no odd directed
cycle C with 5 ≤ `(C) ≤ 2α(D) + 1 has exactly one symmetrical arc then D
is a kernel-perfect digraph.

It is a direct consequence of Theorem 2.6.

Theorem 2.8. Let D be a digraph such that every 3-circuit is symmetrical.
If every odd directed cycle C, 5 ≤ `(C) ≤ 2α(D) + 1 with at most one
symmetrical arc has two short chords, then D is a kernel-perfect digraph.

Proof. Let C = (u = 0, 1, 2, . . . , 2n, 0) be an odd directed cycle where
(1, 2, . . . , 2n, 0) is an even asymmetrical directed path i.e., C has at most
one symmetrical arc and in case it is the arc (0, 1); 5 ≤ `(C) ≤ 2α(D) + 1.
Denote by H the digraph defined as follows: V (H) = V (C)

A(H) =

{
A(Asym (D[V (C)])) if (0, 1) ∈ Asym (D) ,

A(Asym (D[V (C)])) ∪ {(0, 1)} if (0, 1) ∈ Sym(D) .

We claim that:

(1) H is an asymmetrical digraph,
(2) Every odd directed cycle contained in H has two short chords in H.

Let γ be an odd directed cycle contained in H.
If (0, 1) 6∈ A(γ) then γ ⊆ Asym (D). Let γ = (i0, i1, . . . , i2k, i0) and

suppose that (ij , ij+2) is a short chord of γ contained in D when (ij , ij+2) ∈
Asym (D) it follows that (ij , ij+2) ∈ A(H). If (ij , ij+2) ∈ Sym (D) then
(ij , ij+1, ij+2, ij) is a 3-circuit contained in D with exactly one symmetrical
arc contradicting the hypothesis.
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We conclude that γ has two short chords in H.
Now, assume that (0, 1) ∈ A(γ) and denote γ = (i0 = 0, i1 = 1, i2, . . . ,

i2k, i0 = 0) the definition of H implies that (i1, i2, i3, . . . , i2k, i0) is an even
asymmetrical directed path. Let (ij , ij+2) a short chord of γ contained in D
(notation mod 2k + 1). If (ij , ij+2) is asymmetrical we have that (ij , ij+2) ∈
A(H). If (ij , ij+2) is symmetrical then ~C3 = (ij , ij+1, ij+2, ij) is a 3-circuit
with at most two symmetrical arcs (if (0, 1) ∈ {(ij , ij+1), (ij+1, ij+2)} then
~C3 has two symmetrical arcs; in other case ~C3 has only one symmetrical
arc) contradicting the hypothesis. We conclude that in any case γ has two
short chords in H.

(3) H has no 3-circuits.

It follows directly from the definition of H and from the hypothesis (every
3-circuit contained in D is symmetrical).

It follows from (2) and (3) by applying Theorem 1.4 that every odd
directed cycle contained in H has two pseudodiagonals in H whose terminal
endpoints are consecutive. In particular C has two diagonals in H whose
terminal endpoints are consecutive in C; hence C has a V (C)(C1

u ∪ {u})-
asymmetrical diagonal.

We conclude that every odd directed cycle C = (u = 0, 1, 2, . . . , 2n, 0)
where (1, 2, 3, . . . , 2n, 0) is an even asymmetrical directed path (i.e., C has at
most one symmetrical arc in case is the arc (0, 1)) with 5 ≤ `(C) ≤ 2α(D)+1
has a V (C)(C1

u ∪{u})-asymmetrical diagonal. And it follows from Theorem
2.4 that D is a kernel-perfect digraph.

As a direct consequence of Theorem 2.8 we obtain:

Theorem 2.9. Let D be a digraph such that every 3-circuit is symmetrical.
If every odd directed cycle C with 5 ≤ `(C) ≤ 2α(D) + 1 satisfies at least
one of the two following properties:
(1) C has two symmetrical arcs,
(2) C has two short chords. then D is a kernel-perfect digraph.

Corollary 2.1. Let D be a digraph such that every 3-circuit is symmetri-
cal. If every odd directed cycle C satisfies at least one of the two following
properties:
(1) C has two symmetrical arcs,
(2) C has two short chords, then D is a kernel-perfect digraph.
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Theorem 2.10. Let D be a digraph, and suppose that every odd directed
cycle C with `(C) ≤ 2α(D) + 1 satisfies the following properties:
(1) D[V (C)] is a fraternally oriented digraph and
(2) C has a least two pseudodiagonals, then D is a kernel-perfect diagrph.

Proof. Let C be any odd directed cycle with `(C) ≤ 2α(D)+1 and denote
by H = D[V (C)]. Clearly H satisfies the hypothesis of Theorem 1.7 and
hence every odd directed cycle contained in H has two consecutive poles, in
particular C has two consecutive poles.

We conclude that every odd directed cycle C with `(C) ≤ 2α(D) + 1
has two consecutive poles, and then Theorem 2.2 implies that D is a kernel-
perfect digraph.
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