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Abstract

We prove that the domination number v(7T') of a tree T on n > 3
vertices and with n; endvertices satisfies inequality ~(7T") > @
and we characterize the extremal graphs.
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1. Introduction

In a simple undirected graph G = (V, E) a subset D of V is dominating if
every vertex of V' — D has at least one neighbour in D and D is independent
if no two vertices of D are adjacent. A set is independent dominating if
it is independent and dominating. Let v(G) be the minimum cardinality
of a dominating set and let i(G) denotes the minimum cardinality of an
independent dominating set of G. The neighbourhood Ng(v) of a vertex v
is the set of all vertices adjacent to v. For a set X C V, the neighbourhood
Ng(X) is defined to be ,cx Ng(v). The degree of a vertex v is dg(v) =
|Ng(v)|. For unexplained terms and symbols see [2].

Here we consider trees on at least three vertices. If T is a tree, let
n = n(T) be the order of T and let ny = n1(T") denote the number of end-
vertices of T. The set of endvertices of T" is denoted by Q(T").
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Let D be a dominating set of a tree T. We say that D has the property F if
D contains no endvertex of T. It is obvious that in every tree on at least 3
vertices exists a minimum dominating set having property F.

Favaron [1] has proved that i(T) < "™ for a tree T. The number “£"
is also an upper bound on the domination number, because v(7T') < i(T).
In this paper we give a lower bound on the domination number of a tree in
terms of n and nj. Precisely, we prove that v(7") > % for a tree T on
n > 3 vertices and we characterise all trees T for which y(T') = 24211,

2. Results
Theorem 1. IfT is a tree of order at least 3, then ny(T') > n(T)+2-3~v(T).

Proof. We use induction on n, the order of a tree. The result is trivial
for a tree of order 3. Let T be a tree of order n > 3 and assume that
ni(T") > n(T") +2 — 3y(T") for each tree T with 3 < n(T") <n —1. Let D
be a minimum dominating set of 7" having property F, let P = (vg, v1,...,v;)
be a longest path in 7" and let T = T — {vy} be the subtree of 7. Without
loss of generality we may assume that P is chosen in such a way that dp(v;)
is as large as possible. We consider two cases: dr(vi) > 2 or dr(v1) = 2.

Case 1. dr(vy) > 2. In T' we have ny(T") > n(T") +2 — 3v(T") (b
induction), and therefore ny(T) > n(T) + 2 — 3y(T) as ny(T") = ny (T) — 1,
A(T') = ~(T) and n(T") = n(T) — 1.

Case 2. If dp(v) = 2, we consider two subcases: y(T') < ~(T) or
1T =~(T).

Subcase 2.1. If v(T") < ~(T), then it is easy to observe, that v(T") =
~(T) — 1. By induction, ni(T") > n(T') + 2 — 3y(T") and consequently
ni(T) > n(T) + 2 — 3v(T) as ny(T") = ny(T), n(T") = n(T) — 1.

Subcase 2.2. If v(T") = (T), then vy ¢ Np(QT)) (otherwise D — {v;}
would be a dominating set of 7" and y(T") = v(T—vo) < v(T")) and therefore
Il > 4. By T and T5 we denote the subtrees of T' — vov3 to which belong
vertices vz and vy, respectively. If n(7y) = 2, then certainly ni(71) >
n1(T1) — 2 4 3y(T1). Thus assume that n(77) > 3.

Let Q9 denotes the set Q(T2)NQ(T') and let Dy be a minimum dominat-
ing set of Ty which does not contain vy. Since dp(vq) = 2, from the choice of
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P it follows that all neighbours of v9 in T5 are of degree two and this implies
Q22| = [Da].

It is no problem to observe, that v(T') = v(T1) + v(T2) = v(T1) + | D2|
and n(T) = n(T1)+|Qa|+|Da|+1. If v3 is an endvertex of T we have ny (T) =
ni (T1)+ |QQ‘ —1, otherwise ny (T) =n1 (T1)+ |QQ| > ny (T1)+ |QQ‘ —1 as well.
Now, since n(711) > 3, we have by induction nq(71) > n(T1) + 2 — 3v(11).
In both cases, for n(T1) = 2 and for n(T1) > 3 we get n(11) + 2 — 3y(11) <
nl(Tl) < nl(T) — |QQ| +1. Thus n(T) — ’QQ| — ‘DQ‘ — 1+2—3(’}/(T) - ’DQ’) <
ny(T) — Q] + 1 and m1(T) > n(T) + 2\Da| — 39(T) > n(T) +2 — 3y(T). m

By R we denote the family of all trees in which the distance between any
two distinct endvertices is congruent to 2 modulo 3, i.e., a tree T € R if
d(x,y) = 2 (mod 3) for distinct =,y € Q(T). The next lemma describes main
properties of trees belonging to R.

Lemma 2. Let T be a tree belonging to R and let D be a minimum domi-
nating set having property F in T. Then d(u,v) = 0(mod3) for every two
vertices u,v € D. In addition, ni(T) = n(T) + 2 — 3v(T).

Proof. We use induction on n, the order of a tree. The result is obvious
for stars K1 ,-1,n > 3. Thus, let T' € R be a tree of order n > 3 which is
not a star, and let D be a minimum dominating set with property F in T.
Let P = (vg,v1,...,v;) be a longest path in 7. Since T" is not a star and
T € R we certainly have [ > 5 and | = 2 (mod 3). We consider two cases.

Case 1. At least one of the vertices vy, v;_1 is of degree at least three,
say dr(vy) > 3. Then T =T — v belongs to R, the set D is a minimum
dominating set with property F in T' and by induction d(u,v) = 0 (mod 3)
for every two vertices u,v € D. Consequently, D has the same property
in T. By induction, n1(T") = n(T") + 2 — 3y(T") and therefore ni(T) =
n(T)+2—3(T) as ny(T) = n1(T) =1, n(T") = n(T) —1 and v(T") = (7).

Case 2. dr(vi1) = dr(vi—1) = 2. Since D is a minimum dominating set
having property F in T, vertices v; and v;_1 belong to D. Because T' € R,
dp(ve) = dp(vs) = 2 and it is possible to choose D containing vy and not vs.
In this case, the subgraph T = T—vg—v1—vs is a tree belonging to R and vs
is an end vertex of T'. The set D' = D — {v;} is a minimum dominating set
with property F in T . Since vg ¢ D', it follows that vy € D'. By induction,
d(u,v) = 0(mod 3) if u,v € D'. From this property and from the fact that
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T' € R it follows that all vertices belonging to V(T") — (D" U Q(T")) are of
degree two in T". Since d(u,v) = 0 (mod 3) for every two vertices u,v € D',
d(vy,v) = d(v1,v4) +d(vy, v) is a multiple of 3 for every v € D and therefore
the distance between any two vertices from D is a multiplicity of 3. This
easily implies that each vertex belonging to V(T') — (D UQ(T)) is of degree
two and this forces |V (T)—(DUT))| = 2(y(T)—1). Thus n(T) = |[V(T)| =
UT)U DU (V(T) — (DUQT)))| = ni(T) +~(T) + 2(y(T) — 1) and so
ni(T) =n(T) +2 —3v(T). n

Now we characterise trees T' for which the following equality n,(T) = n(T')+
2 —3~(T) holds.

Theorem 3. If T is a tree, then ni(T) = n(T) +2—3v(T) if and only if T
belongs to R.

Proof. If the tree T belongs to R then ni(T) = n(T) + 2 — 3y(T') by
Lemma 1. Now assume that 7" does not belong to R. Then T has at least
four vertices and it suffices to show that ni(T) > n(T) + 2 — 3v(T).

If T is of order four, then T' = Py and certainly ni(Py) > n(Py) + 2 —
37(Ps). Assume that T has at least five vertices and let P = (vg, v1,v2, ..., 1)
be a longest path in T and let D be a minimum dominating set satisfying
property F in T'. We consider three cases.

Case 1. If dp(vy) > 2, then the tree T" = T — vy does not belong to
R and ny(T) > n(T") + 2 — 3y(T") (by induction), which implies n1 (T
>n(T) +2=3y(T) as na(T') = na(T) = 1,n(T") = n(T) = 1,4(T") = 5(T).

Case 2. If dp(vi) = 2 and dp(v2) > 3 then we consider T =T —vg—v1.
Notice, that v; € D, since D safisfies property F, D' = D — {v;} is a
dominating set of 7" and certainly it is the smallest. Thus v(T") = v(T) — 1.
For a tree T' we have also n1(T") = ny(T) — 1 and n(T") = n(T) — 2.
Then n1(T) — n(T)+ 3y(T) = n(T') +1 —n(T) =2+ 3(y(T) + 1) =
ni(T') = n(T") + 3y(T") +2 > 24 2 > 2 by Theorem 1 applied to T".

Case 3. If dp(v1) = 2 and dr(vy) = 2, then we consider T = (T — vp)
—v1) — vg. Like in Case 2, v1 € D, since D safisfies property F, and D =
D — {v1} is a minimum dominating set of T". Thus y(T") = ~(T) — 1.

If dp(vs) > 2, then ny(T") = n(T)—1,n(T") = n(T)—3 and ny (T) —n(T) +
3Y(T) =y (T ) +1=n(T) = 3+3y(T)+3 = (T) —n(T) +3y(T ) +1 >
241 > 2 by Theorem 1 applied to T". If dp(v3) = 2 then notice, that 7' ¢ R
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(since T ¢ R). Hence ny(T') > n(T") +2 — 3(T") by induction and finally
we have n1(T) > n(T) +2 — 3y(T) as ny(T') = ni(T),n(T') =n(T) — 3. m

3. Concluding Remarks

From [1] and above results it follows that M <H(T) < M
for every tree T on at least 3 vertices. The example of caterpillar given in
Figure 1 proves that the difference between ~(7") and w can be
arbitrarily large. It is no problem to observe that v(7}) — w =

%T_Q for any integer [ > 3.

V-1

Figure 1. Caterpillar
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