LOWER BOUND ON THE DOMINATION NUMBER OF A TREE

Magdalena Lemańska
Department of Mathematics
Gdańsk University of Technology
Narutowicza 11/12, 80-952 Gdańsk, Poland

e-mail: magda@mif.pg.gda.pl

Abstract

We prove that the domination number $\gamma(T)$ of a tree T on $n \geq 3$ vertices and with n_{1} endvertices satisfies inequality $\gamma(T) \geq \frac{n+2-n_{1}}{3}$ and we characterize the extremal graphs.

Keywords: domination number, tree.
2000 Mathematics Subject Classification: 05C05, 05C69.

1. Introduction

In a simple undirected graph $G=(V, E)$ a subset D of V is dominating if every vertex of $V-D$ has at least one neighbour in D and D is independent if no two vertices of D are adjacent. A set is independent dominating if it is independent and dominating. Let $\gamma(G)$ be the minimum cardinality of a dominating set and let $i(G)$ denotes the minimum cardinality of an independent dominating set of G. The neighbourhood $N_{G}(v)$ of a vertex v is the set of all vertices adjacent to v. For a set $X \subseteq V$, the neighbourhood $N_{G}(X)$ is defined to be $\bigcup_{v \in X} N_{G}(v)$. The degree of a vertex v is $d_{G}(v)=$ $\left|N_{G}(v)\right|$. For unexplained terms and symbols see [2].

Here we consider trees on at least three vertices. If T is a tree, let $n=n(T)$ be the order of T and let $n_{1}=n_{1}(T)$ denote the number of endvertices of T. The set of endvertices of T is denoted by $\Omega(T)$.

Let D be a dominating set of a tree T. We say that D has the property \mathcal{F} if D contains no endvertex of T. It is obvious that in every tree on at least 3 vertices exists a minimum dominating set having property \mathcal{F}.

Favaron [1] has proved that $i(T) \leq \frac{n+n_{1}}{3}$ for a tree T. The number $\frac{n+n_{1}}{3}$ is also an upper bound on the domination number, because $\gamma(T) \leq i(T)$. In this paper we give a lower bound on the domination number of a tree in terms of n and n_{1}. Precisely, we prove that $\gamma(T) \geq \frac{n+2-n_{1}}{3}$ for a tree T on $n \geq 3$ vertices and we characterise all trees T for which $\gamma(T)=\frac{n+2-n_{1}}{3}$.

2. Results

Theorem 1. If T is a tree of order at least 3 , then $n_{1}(T) \geq n(T)+2-3 \gamma(T)$.
Proof. We use induction on n, the order of a tree. The result is trivial for a tree of order 3. Let T be a tree of order $n>3$ and assume that $n_{1}\left(T^{\prime}\right) \geq n\left(T^{\prime}\right)+2-3 \gamma\left(T^{\prime}\right)$ for each tree T^{\prime} with $3<n\left(T^{\prime}\right) \leq n-1$. Let D be a minimum dominating set of T having property \mathcal{F}, let $P=\left(v_{0}, v_{1}, \ldots, v_{l}\right)$ be a longest path in T and let $T^{\prime}=T-\left\{v_{0}\right\}$ be the subtree of T. Without loss of generality we may assume that P is chosen in such a way that $d_{T}\left(v_{1}\right)$ is as large as possible. We consider two cases: $d_{T}\left(v_{1}\right)>2$ or $d_{T}\left(v_{1}\right)=2$.

Case 1. $d_{T}\left(v_{1}\right)>2$. In T^{\prime} we have $n_{1}\left(T^{\prime}\right) \geq n\left(T^{\prime}\right)+2-3 \gamma\left(T^{\prime}\right)$ (by induction), and therefore $n_{1}(T) \geq n(T)+2-3 \gamma(T)$ as $n_{1}\left(T^{\prime}\right)=n_{1}(T)-1$, $\gamma\left(T^{\prime}\right)=\gamma(T)$ and $n\left(T^{\prime}\right)=n(T)-1$.

Case 2. If $d_{T}\left(v_{1}\right)=2$, we consider two subcases: $\gamma\left(T^{\prime}\right)<\gamma(T)$ or $\gamma\left(T^{\prime}\right)=\gamma(T)$.

Subcase 2.1. If $\gamma\left(T^{\prime}\right)<\gamma(T)$, then it is easy to observe, that $\gamma\left(T^{\prime}\right)=$ $\gamma(T)-1$. By induction, $n_{1}\left(T^{\prime}\right) \geq n\left(T^{\prime}\right)+2-3 \gamma\left(T^{\prime}\right)$ and consequently $n_{1}(T) \geq n(T)+2-3 \gamma(T)$ as $n_{1}\left(T^{\prime}\right)=n_{1}(T), n\left(T^{\prime}\right)=n(T)-1$.

Subcase 2.2. If $\gamma\left(T^{\prime}\right)=\gamma(T)$, then $v_{2} \notin N_{T}(\Omega(T))$ (otherwise $D-\left\{v_{1}\right\}$ would be a dominating set of T^{\prime} and $\left.\gamma\left(T^{\prime}\right)=\gamma\left(T-v_{0}\right)<\gamma(T)\right)$ and therefore $l \geq 4$. By T_{1} and T_{2} we denote the subtrees of $T-v_{2} v_{3}$ to which belong vertices v_{3} and v_{2}, respectively. If $n\left(T_{1}\right)=2$, then certainly $n_{1}\left(T_{1}\right) \geq$ $n_{1}\left(T_{1}\right)-2+3 \gamma\left(T_{1}\right)$. Thus assume that $n\left(T_{1}\right) \geq 3$.

Let Ω_{2} denotes the set $\Omega\left(T_{2}\right) \cap \Omega(T)$ and let D_{2} be a minimum dominating set of T_{2} which does not contain v_{2}. Since $d_{T}\left(v_{1}\right)=2$, from the choice of
P it follows that all neighbours of v_{2} in T_{2} are of degree two and this implies $\left|\Omega_{2}\right|=\left|D_{2}\right|$.

It is no problem to observe, that $\gamma(T)=\gamma\left(T_{1}\right)+\gamma\left(T_{2}\right)=\gamma\left(T_{1}\right)+\left|D_{2}\right|$ and $n(T)=n\left(T_{1}\right)+\left|\Omega_{2}\right|+\left|D_{2}\right|+1$. If v_{3} is an endvertex of T_{1} we have $n_{1}(T)=$ $n_{1}\left(T_{1}\right)+\left|\Omega_{2}\right|-1$, otherwise $n_{1}(T)=n_{1}\left(T_{1}\right)+\left|\Omega_{2}\right| \geq n_{1}\left(T_{1}\right)+\left|\Omega_{2}\right|-1$ as well. Now, since $n\left(T_{1}\right) \geq 3$, we have by induction $n_{1}\left(T_{1}\right) \geq n\left(T_{1}\right)+2-3 \gamma\left(T_{1}\right)$. In both cases, for $n\left(T_{1}\right)=2$ and for $n\left(T_{1}\right) \geq 3$ we get $n\left(T_{1}\right)+2-3 \gamma\left(T_{1}\right) \leq$ $n_{1}\left(T_{1}\right) \leq n_{1}(T)-\left|\Omega_{2}\right|+1$. Thus $n(T)-\left|\Omega_{2}\right|-\left|D_{2}\right|-1+2-3\left(\gamma(T)-\left|D_{2}\right|\right) \leq$ $n_{1}(T)-\left|\Omega_{2}\right|+1$ and $n_{1}(T) \geq n(T)+2\left|D_{2}\right|-3 \gamma(T) \geq n(T)+2-3 \gamma(T)$.
By \mathcal{R} we denote the family of all trees in which the distance between any two distinct endvertices is congruent to 2 modulo 3 , i.e., a tree $T \in \mathcal{R}$ if $d(x, y) \equiv 2(\bmod 3)$ for distinct $x, y \in \Omega(T)$. The next lemma describes main properties of trees belonging to \mathcal{R}.

Lemma 2. Let T be a tree belonging to \mathcal{R} and let D be a minimum dominating set having property \mathcal{F} in T. Then $d(u, v) \equiv 0(\bmod 3)$ for every two vertices $u, v \in D$. In addition, $n_{1}(T)=n(T)+2-3 \gamma(T)$.

Proof. We use induction on n, the order of a tree. The result is obvious for stars $K_{1, n-1}, n \geq 3$. Thus, let $T \in \mathcal{R}$ be a tree of order $n>3$ which is not a star, and let D be a minimum dominating set with property \mathcal{F} in T. Let $P=\left(v_{0}, v_{1}, \ldots, v_{l}\right)$ be a longest path in T. Since T is not a star and $T \in \mathcal{R}$ we certainly have $l \geq 5$ and $l \equiv 2(\bmod 3)$. We consider two cases.

Case 1. At least one of the vertices v_{1}, v_{l-1} is of degree at least three, say $d_{T}\left(v_{1}\right) \geq 3$. Then $T^{\prime}=T-v_{0}$ belongs to \mathcal{R}, the set D is a minimum dominating set with property \mathcal{F} in T^{\prime} and by induction $d(u, v) \equiv 0(\bmod 3)$ for every two vertices $u, v \in D$. Consequently, D has the same property in T. By induction, $n_{1}\left(T^{\prime}\right)=n\left(T^{\prime}\right)+2-3 \gamma\left(T^{\prime}\right)$ and therefore $n_{1}(T)=$ $n(T)+2-3 \gamma(T)$ as $n_{1}\left(T^{\prime}\right)=n_{1}(T)-1, n\left(T^{\prime}\right)=n(T)-1$ and $\gamma\left(T^{\prime}\right)=\gamma(T)$.

Case 2. $d_{T}\left(v_{1}\right)=d_{T}\left(v_{l-1}\right)=2$. Since D is a minimum dominating set having property \mathcal{F} in T, vertices v_{1} and v_{l-1} belong to D. Because $T \in \mathcal{R}$, $d_{T}\left(v_{2}\right)=d_{T}\left(v_{3}\right)=2$ and it is possible to choose D containing v_{4} and not v_{3}. In this case, the subgraph $T^{\prime}=T-v_{0}-v_{1}-v_{2}$ is a tree belonging to \mathcal{R} and v_{3} is an end vertex of T^{\prime}. The set $D^{\prime}=D-\left\{v_{1}\right\}$ is a minimum dominating set with property \mathcal{F} in T^{\prime}. Since $v_{3} \notin D^{\prime}$, it follows that $v_{4} \in D^{\prime}$. By induction, $d(u, v) \equiv 0(\bmod 3)$ if $u, v \in D^{\prime}$. From this property and from the fact that
$T^{\prime} \in \mathcal{R}$ it follows that all vertices belonging to $V\left(T^{\prime}\right)-\left(D^{\prime} \cup \Omega\left(T^{\prime}\right)\right)$ are of degree two in T^{\prime}. Since $d(u, v) \equiv 0(\bmod 3)$ for every two vertices $u, v \in D^{\prime}$, $d\left(v_{1}, v\right)=d\left(v_{1}, v_{4}\right)+d\left(v_{4}, v\right)$ is a multiple of 3 for every $v \in D$ and therefore the distance between any two vertices from D is a multiplicity of 3 . This easily implies that each vertex belonging to $V(T)-(D \cup \Omega(T))$ is of degree two and this forces $|V(T)-(D \cup \Omega(T))|=2(\gamma(T)-1)$. Thus $n(T)=|V(T)|=$ $|\Omega(T) \cup D \cup(V(T)-(D \cup \Omega(T)))|=n_{1}(T)+\gamma(T)+2(\gamma(T)-1)$ and so $n_{1}(T)=n(T)+2-3 \gamma(T)$.

Now we characterise trees T for which the following equality $n_{1}(T)=n(T)+$ $2-3 \gamma(T)$ holds.

Theorem 3. If T is a tree, then $n_{1}(T)=n(T)+2-3 \gamma(T)$ if and only if T belongs to \mathcal{R}.

Proof. If the tree T belongs to \mathcal{R} then $n_{1}(T)=n(T)+2-3 \gamma(T)$ by Lemma 1. Now assume that T does not belong to \mathcal{R}. Then T has at least four vertices and it suffices to show that $n_{1}(T)>n(T)+2-3 \gamma(T)$.

If T is of order four, then $T=P_{4}$ and certainly $n_{1}\left(P_{4}\right)>n\left(P_{4}\right)+2-$ $3 \gamma\left(P_{4}\right)$. Assume that T has at least five vertices and let $P=\left(v_{0}, v_{1}, v_{2}, \ldots, v_{l}\right)$ be a longest path in T and let D be a minimum dominating set satisfying property \mathcal{F} in T. We consider three cases.

Case 1. If $d_{T}\left(v_{1}\right)>2$, then the tree $T^{\prime}=T-v_{0}$ does not belong to \mathcal{R} and $n_{1}\left(T^{\prime}\right)>n\left(T^{\prime}\right)+2-3 \gamma\left(T^{\prime}\right)$ (by induction), which implies $n_{1}(T)$ $>n(T)+2-3 \gamma(T)$ as $n_{1}\left(T^{\prime}\right)=n_{1}(T)-1, n\left(T^{\prime}\right)=n(T)-1, \gamma\left(T^{\prime}\right)=\gamma(T)$.

Case 2. If $d_{T}\left(v_{1}\right)=2$ and $d_{T}\left(v_{2}\right) \geq 3$ then we consider $T^{\prime}=T-v_{0}-v_{1}$. Notice, that $v_{1} \in D$, since D safisfies property $\mathcal{F}, D^{\prime}=D-\left\{v_{1}\right\}$ is a dominating set of T^{\prime} and certainly it is the smallest. Thus $\gamma\left(T^{\prime}\right)=\gamma(T)-1$. For a tree T^{\prime} we have also $n_{1}\left(T^{\prime}\right)=n_{1}(T)-1$ and $n\left(T^{\prime}\right)=n(T)-2$. Then $n_{1}(T)-n(T)+3 \gamma(T)=n_{1}\left(T^{\prime}\right)+1-n\left(T^{\prime}\right)-2+3\left(\gamma\left(T^{\prime}\right)+1\right)=$ $n_{1}\left(T^{\prime}\right)-n\left(T^{\prime}\right)+3 \gamma\left(T^{\prime}\right)+2 \geq 2+2>2$ by Theorem 1 applied to T^{\prime}.

Case 3. If $d_{T}\left(v_{1}\right)=2$ and $d_{T}\left(v_{2}\right)=2$, then we consider $T^{\prime}=\left(\left(T-v_{0}\right)\right.$ $\left.-v_{1}\right)-v_{2}$. Like in Case $2, v_{1} \in D$, since D safisfies property \mathcal{F}, and $D^{\prime}=$ $D-\left\{v_{1}\right\}$ is a minimum dominating set of T^{\prime}. Thus $\gamma\left(T^{\prime}\right)=\gamma(T)-1$. If $d_{T}\left(v_{3}\right)>2$, then $n_{1}\left(T^{\prime}\right)=n_{1}(T)-1, n\left(T^{\prime}\right)=n(T)-3$ and $n_{1}(T)-n(T)+$ $3 \gamma(T)=n_{1}\left(T^{\prime}\right)+1-n\left(T^{\prime}\right)-3+3 \gamma\left(T^{\prime}\right)+3=n_{1}\left(T^{\prime}\right)-n\left(T^{\prime}\right)+3 \gamma\left(T^{\prime}\right)+1 \geq$ $2+1>2$ by Theorem 1 applied to T^{\prime}. If $d_{T}\left(v_{3}\right)=2$ then notice, that $T^{\prime} \notin \mathcal{R}$
(since $T \notin \mathcal{R}$). Hence $n_{1}\left(T^{\prime}\right)>n\left(T^{\prime}\right)+2-3 \gamma\left(T^{\prime}\right)$ by induction and finally we have $n_{1}(T)>n(T)+2-3 \gamma(T)$ as $n_{1}\left(T^{\prime}\right)=n_{1}(T), n\left(T^{\prime}\right)=n(T)-3$.

3. Concluding Remarks

From [1] and above results it follows that $\frac{n(T)+2-n_{1}(T)}{3} \leq \gamma(T) \leq \frac{n(T)+n_{1}(T)}{3}$ for every tree T on at least 3 vertices. The example of caterpillar given in Figure 1 proves that the difference between $\gamma(T)$ and $\frac{n(T)+2-n_{1}(T)}{3}$ can be arbitrarily large. It is no problem to observe that $\gamma\left(T_{l}\right)-\frac{n\left(T_{l}\right)+2-n_{1}\left(T_{l}\right)}{3}=$ $\frac{2 l-2}{3}$ for any integer $l \geq 3$.

Figure 1. Caterpillar

Acknowledgements

Thanks are due to the referee for many suggestions to make this paper much better.

References

[1] O. Favaron, A bound on the independent domination number of a tree, Vishwa International Journal of Graph Theory 1 (1992) 19-27.
[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan. London, 1976).

