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Abstract

For each vertex s of the vertex subset S of a simple graph G, we
define Boolean variables p = p(s, S), q = q(s, S) and r = r(s, S) which
measure existence of three kinds of S-private neighbours (S-pns) of s.
A 3-variable Boolean function f = f(p, q, r) may be considered as a
compound existence property of S-pns. The subset S is called an f -set
of G if f = 1 for all s ∈ S and the class of f -sets of G is denoted
by Ωf (G). Only 64 Boolean functions f can produce different classes
Ωf (G), special cases of which include the independent sets, irredundant
sets, open irredundant sets and CO-irredundant sets of G.

Let Qf (G) be the maximum cardinality of an f -set of G. For each
of the 64 functions f, we establish sharp upper bounds for the sum
Qf (G) + Qf (G) and the product Qf (G)Qf (G) in terms of n, the
order of G.
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1. Introduction

Generalised irredundant sets were defined in [2]. We repeat the definition
here for completeness but omit motivation which may be found in [2]. The
open (closed) neighbourhood of the vertex subset S of a simple graph G =
(V, E) is denoted by N(S) (N [S]) and as usual, for s ∈ V, N({s}) and N [{s}]
are abbreviated to N(s) and N [s].
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The basic ingredients of the definition of generalised irredundant sets are
three properties which make a vertex s (informally) important in a vertex
subset S of a graph G. It will also help the intuition to replace the word
“important” by “essential” or “non-redundant.” Each property depends on
the existence of one of the three types of S-private neighbour (S-pn) t for s,
which we now formally define.

For s ∈ S, vertex t is an:
(i) S-self private neighbour (S-spn) of s if t = s and s is an isolated vertex

of G[S],

(ii) S-internal private neighbour (S-ipn) of s if t ∈ S − {s} and N(t) ∩
S = {s},

(iii) S-external private neighbour (S-epn) of s if t ∈ V − S and N(t) ∩
S = {s}.

Observe that each such t is an element of N [s] − N(S − {s}) and that no
s ∈ S may have S-pns of both type (i) and type (ii).

For s ∈ S let p(s, S), q(s, S), r(s, S) be Boolean Variables which take
the value 1 if and only if s has an S-pn of type (i), (ii), (iii) respectively.
Whenever possible we use the abbreviations p, q, r for these variables.
Further let S(s) = (p(s, S), q(s, S), r(s, S)). Observe that for all s and S,
p(s, S) ∩ q(s, S) = 0, i.e., the three Boolean variables are not independent
and S(s) is never (1, 1, 0) or (1, 1, 1).

Example 1. Consider the vertex subset S = {a, b, c, d} of the graph G
depicted in Figure 1. The S-pns of vertices of S are tabulated in Table 1
and we observe

S(a) = (0, 1, 1), S(b) = (0, 0, 0), S(c) = (0, 0, 1), S(d) = (1, 0, 1).

We are now ready to define generalised irredundant sets. Let f be a Boolean
function of the three variables p(s, S), q(s, S), r(s, S).

Definition. The vertex subset S of G is an f -set of G if for each s ∈ S

f(S(s)) = f(p(s, S), q(s, S), r(s, S)) = 1.

The function f may be viewed as a compound existence/non-existence prop-
erty of the three types of S-pn. The class of all f -sets of G will be denoted
by Ωf (G) (abbreviated to Ωf whenever possible).
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Figure 1. Graph G for Example 1

type(i) type(ii) type(iii)
a b, c e
b
c g
d d h, i

Table 1. S-pns of vertices of S for graph G for Example 1.

The rows of the truth table of f will be labelled 0, . . . , 7, so that the entry
in row i is f(p, q, r), where pqr is the binary representation of the integer i
(e.g., f(1, 0, 1) is the fifth entry in the table). Recall that for each s ∈ S,
S(s) is never equal to (1, 1, 0) or (1, 1, 1). We deduce:

(a) If the only 1’s in the truth table for f occur in rows 6 or 7, then Ωf = ∅.
(b) If f ′ is formed from f by replacing the values in rows 6 and 7 by 0’s,

then Ωf ′ = Ωf .

Thus we will only be concerned with the set F of 64 functions with 0’s in
rows 6 and 7. Two of these are in fact rather uninteresting since f = 0 gives
Ωf = ∅ and the function g with 1’s in all rows 0, 1, . . . , 5 has Ωg equal to the
class of all subsets of V.

The functions of F will be numbered (as in [4]) as follows. Let a0a1a2

a3a4a5 be the binary representation of i. Then fi is defined to be the
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function with entries a0a1a2a3a4a5 in rows 0 through 5, respectively. Note
that F = {f0, . . . , f63}.

We now list four special classes of f -sets. Additional examples may be
found in [2, 4].

Example 2.

(i) The function p.
The truth table column is 0, 0, 0, 0, 1, 1, 0, 0. Since 3 (decimal) = 00011
(binary), p = f3. The subset S of V (G) is an f -set of G if and only if each
s ∈ S is isolated in G[S], i.e., S is independent in G. Thus Ωp = Ωf3 is
precisely the class of independent sets of G.

(ii) The function p ∨ r.
The truth table column is 0, 1, 0, 1, 1, 1, 0, 0. Since 010111 (binary) = 23
(decimal), p∨ r = f23. Then S ⊆ V (G) is an f23-set of G if and only if each
s ∈ S is isolated in G[S] or has an S-epn, i.e., S is an irredundant set of
G (originally defined in [7]). Hence Ωf23 is precisely the class of irredun-
dant sets of G. See [18] for a bibliography of over 100 papers concerning
irredundance.

(iii) The function p ∨ q ∨ r,
The truth table column is 0, 1, 1, 1, 1, 1, 0, 0. So that p ∨ q ∨ r = f31. Each
vertex of an f31-set S has at least one S-pn, i.e., Ω31 is the class of CO-
irredundant sets which are defined in [14] and studied in [8, 9, 12, 21].

(iv) The function r.
The truth table column is 0, 1, 0, 1, 0, 1, 0, 0. Since (010101) binary = 21
(decimal), r = f21. The subset S is an f21-set if each s ∈ S has an S-epn.
Such sets (called open irredundant) were introduced in [14] and applied to
broadcast networks. They are also known as OC-irredundant sets and have
been studied in [1, 2, 3, 5, 13, 15, 16, 17, 19].

In view of Example 2, we regard each Ωf as a class of generalised irredundant
sets.

In [2, 4] the hereditary classes among the Ωf ’s were determined and
Ramsey properties of the classes were investigated.

Let Qi(G) be the maximum cardinality of an fi-set of G. Wherever pos-
sible we abbreviate Qi(G), Qi(G) to Qi, Qi respectively. In this paper we
determine Nordhaus-Gaddum type bounds (see [20]) for these parameters.
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More specifically for each i = 1, . . . , 63 we find upper bounds for

max
G

(
Qi + Qi

)
and max

G

(
QiQi

)

where the maximum is taken over all n vertex graphs G. The bounds are
attained for an infinite number of values of n.

2. The Bounds

The Nordhaus-Gaddum bounds for the 63 non-zero values of i, will be given
in Theorems 3, 5 and 11. We first state an obvious Lemma.

Lemma 1. If fi =⇒ fj , then for any graph G, Qi ≤ Qj .

Theorem 1. If i ≥ 32 and n ≥ 5, then

max
G

(
Qi + Qi

)
= 2n and max

G

(
QiQi

)
= n2.

Proof. If i ≥ 32, then f32 =⇒ fi, so that for all G (using Lemma 1)
Q32 ≤ Qi ≤ n and Q32 ≤ Qi ≤ n. Hence

Q32 + Q32 ≤ Qi + Qi ≤ 2n

and
Q32Q32 ≤ QiQi ≤ n2.

However for n ≥ 5, Q32(Cn) = Q32(Cn) = n and the result follows.

We next use the Nordhaus-Gaddum bounds for standard irredundant (i.e.,
f23-) sets obtained by Cockayne and Mynhardt [10] to deduce the same
bounds for other values of i.

Theorem 2 ([10]). If n ≥ 3, then for any graph G

Q23 + Q23 ≤ n + 1 and Q23Q23 ≤
⌈

n2 + 2n

4

⌉
.

Theorem 3. If n ≥ 5 and i ∈ {2, 3, 6, 7, 18, 19, 22, 23}, then

max
G

(
Qi + Qi

)
= n + 1 and max

G

(
QiQi

)
=

⌈
n2 + 2n

4

⌉
.
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Proof. If i ∈ {2, 3, 6, 7, 18, 19, 22, 23}, then f2 =⇒ fi =⇒ f23 hence by
Lemma 1 and Theorem 3

Q2 + Q2 ≤ Qi + Qi ≤ Q23 + Q23 ≤ n + 1

and

Q2Q2 ≤ QiQi ≤ Q23Q23 ≤
⌈

n2 + 2n

4

⌉
.

Consider the graph H which consists of a set X of bn+1
2 c vertices, a set Y of

dn+1
2 e vertices (where X ∩ Y = {x}), the edges to make H[Y ] complete and

a matching joining the vertices of X − {x} to Y − {x}. In the case where n
is even, an edge is added between the vertex of Y which was not previously
matched and any vertex of X − {x}.

Since each vertex of an f2-set S is a S-spn and has no S-epn, it is easily
seen that X, Y are f2-sets of H, H respectively and so Q2(H) ≥ |X| and
Q2(H) ≥ |Y |. Hence for H all of the above inequalities are equalities and
the result follows.

We now proceed in a similar manner using the bounds for CO-irredundant
(i.e., f31-) sets established by Cockayne, McCrea and Mynhardt [9].

Theorem 4 ([9]). For any graph G,

Q31 + Q31 ≤ n + 2 and Q31Q31 ≤
⌊

(n + 2)2

4

⌋
.

Theorem 5. If 8 ≤ i ≤ 15 or 24 ≤ i ≤ 31, then

max
G

(
Qi + Qi

) ≤ n + 2, max
G

(
QiQi

) ≤
⌊

(n + 2)2

4

⌋

and these bounds are attained for n ≡ 2 (mod 4), n ≥ 6.

Proof. For any i satisfying 8 ≤ i ≤ 15 or 24 ≤ i ≤ 31, f8 =⇒ fi =⇒ f31.
Thus, by Lemma 1, for any G,

Q8Q8 ≤ QiQi ≤ Q31Q31 ≤
⌊

(n + 2)2

4

⌋

and
Q8 + Q8 ≤ Qi + Qi ≤ Q31 + Q31 ≤ n + 2.
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Thus the bounds of the theorem are established. Now let n ≡ 2 (mod4) and
n ≥ 6. Let the graph H consist of vertex sets X and Y where |X| = |Y | =
(n + 2)/2 and |X ∩ Y | = 2. Add edges so that H[X] and H[Y ] are both
isomorphic to (n+2

4 )K2 and add a matching from X − Y to Y −X.

Since a subset S is an f8-set if each vertex has an S-ipn and no S-epn,
it is easily seen that X, Y are f8-sets of H, H respectively. Therefore H
attains the bounds.

In order to find the bounds for the remaining values of i, it will be necessary
to improve the following result of Cockayne [3] concerning open irredundant
(i.e., f21-) sets. A set S is an f21-set if each s ∈ S has an S-epn.

Theorem 6 ([3]). For any graph G with n ≥ 16,

Q21 + Q21 ≤
⌊

3n

4

⌋
.

Further if n ≥ 17, then

Q21Q21 <
9n2

64
.

We show that for larger n, the second bound of Theorem 6 can be improved
to n2/8. This will be accomplished by more detailed analysis of the various
cases used in the proof of Theorem 6 given in [3]. Some of the details of our
proof may be found in [3] but must be repeated here for completeness.

Let X(Y ) be open irredundant sets of G(G), |X| = x and |Y | = y. Each
u ∈ X(v ∈ Y ) has an at least one X-epn in G (Y -epn in G). Let ur(vb) be
any X-epn of u in G (Y -epn of v in G). The edges of G (resp. G) will be
coloured red (blue). Occasionally ur (vb) will be called a red epn of u (blue
epn of v). Let X ′ = {ur|u ∈ X}. Then each edge of {uur|u ∈ X} is red
while all other edges joining X to X ′ are blue. Hence the set {uur|u ∈ X}
induces a matching in G. Similarly, it can be seen that, the set {vvb|v ∈ Y }
induces a matching in G. Note that the set X ′ is also an open irredundant
set of G and u is an X ′-epn of ur in G. Let Z = V − (X ∪X ′).

The principal result will follow immediately from three propositions
which are broken down into cases depending on the distribution of vertices
of Y and blue epns among the three sets X, X ′, Z.

The open irredundance property implies that both x and y are at most
n/2. From this we deduce that xy ≤ n2

8 if x (or y) ≤ n
4 . Hence it is sufficient

to establish the propositions under the assumption x, y > n
4 and we use this
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hypothesis in the proofs without further emphasis. We also repeatedly use
the following obvious fact.

Lemma 2. Let A be an open irredundant set in a graph F and B ⊆ V (F ).
If each u ∈ A ∩B has A-epn in B, then |A ∩B| ≤ |B|/2.

Proposition 7. If n ≥ 32 and |Y ∩X| ≥ 3, then xy ≤ n2/8.

Proof. Since |Y ∩X| ≥ 3, for each u ∈ Y ∩X, ub /∈ X ′. Hence ub ∈ X ∪Z.
Define

X1 = {u ∈ Y ∩X|ub ∈ X},
X2 = {u ∈ Y ∩X|ub ∈ Z},
X3 = X − (X1 ∪X2)

and for i = 1, 2, 3, let |Xi| = xi.

For w ∈ Y ∩ Z, wb /∈ X1 ∪X2 ∪X ′, hence wb ∈ X3 ∪ Z.

Case 1. Y ∩X ′ = φ.
Let t = |{w ∈ Y ∩ Z|wb ∈ X3}|. Then by Lemma 2

(1) |{w ∈ Y ∩ Z|wb ∈ Z} ≤ (n− 2x− x2 − t)/2.

We will now give more detailed justification for (1). Similar explanations
will be omitted in future cases of the propositions. Define

B = Z − ({w ∈ Y ∩ Z|wb ∈ X3} ∪ {wb ∈ Z|w ∈ X2})
(disjoint Union).

Note that |B| = (n− 2x− x2 − t) and

{w ∈ Y ∩ Z|wb ∈ Z} = {w ∈ Y ∩B|wb ∈ B} .

Then (1) follows by applying Lemma 2 with A = Y.
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Now

x + y = x + |Y ∩X|+ |Y ∩ Z|

≤ x + (x1 + x2) + t +
(

n− 2x− x2 − t

2

)
(2)

= x1 +
x2

2
+

t

2
+

n

2
.

The blue epns in X3 are distinct and so x3 ≥ t + x1, i.e.,

(3)
t

2
≤ x3

2
− x1

2
.

From (2) and (3) we obtain

x + y ≤
(

x1 + x2 + x3

2

)
+

n

2
=

x

2
+

n

2
.

Therefore y ≤ n
2 − x

2 and xy ≤ nx
2 − x2

2 . By elementary calculus, xy attains
its maximum n2

8 when x = n
2 .

Case 2. |Y ∩X ′| ≥ 2.
In this case x1 = 0, each w ∈ Y ∩ Z has wb ∈ Z and for each w ∈ Y ∩X ′,
wb /∈ X ′ i.e., wb ∈ X3 ∪ Z.

Subcase 2(a). w ∈ Y ∩X ′ has wb ∈ X3.
This implies |Y ∩X ′| = 2. Let Y ∩X ′ = {w, v}. Now

x + y = x + |Y ∩X|+ |Y ∩X ′|+ |Y ∩ Z|

≤ x + x2 + 2 +
(n− 2x− x2 − λ)

2

where λ = 1 (resp. 0) if vb ∈ Z(X3). Hence

(4) x + y ≤ n

2
+

x2

2
− λ

2
+ 2.

By counting blue epns in X3, we obtain x3 ≥ 2 − λ and since |Z| ≥ x2, we
deduce x2 ≤ n− 2x. Use of these gives

x2 ≤ n− 2 (x1 + x2 + x3) = n− 2 (x2 + x3) .
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Therefore

(5) x2 ≤ n− 2x3

3
≤ n− 4− 2λ

3
.

From (4) and (5)

x + y ≤ 2n + 4
3

− 5λ

6
≤ 2n + 4

3
,

so that xy ≤ x(2n+4
3 −x). Calculus shows that xy ≤ b(n+2

3 )2c ≤ n2

8 (n ≥ 32).

Subcase 2(b). Each w ∈ Y ∩X ′ has wb ∈ Z.
In this situation every v ∈ Y has vb ∈ Z. Therefore y ≤ |Z| = n − 2x and
xy ≤ nx− 2x2. The maximum of this for x ∈ [n4 , n

2 ] is n2

8 .

Case 3. |Y ∩X ′| = {v}.
Define λ as in subcase 2(a) and let µ(= 0 or 1) be the number of vertices in
Y ∩ Z with blue epns in X3.

The set Z contains λ + x2 blue epns of vertices in Y ∩ (X ∪X ′) and µ
vertices of Y ∩ Z have blue epns in X3. Hence using Lemma 2 we obtain

x + y = x + |Y ∩X|+ |Y ∩X ′|+ |Y ∩ Z|

≤ x + (x1 + x2) + 1 + µ +
(

n− 2x− µ− x2 − λ

2

)
(6)

=
n

2
+ x1 +

x2

2
+

(µ− λ)
2

+ 1 .

By counting blue epns in X3 we obtain x3 ≥ (1 − λ) + x1 + µ and since
|Z| ≥ x2 we have x2 ≤ n− 2x. Use of these gives

x2 ≤ n− 2 (x1 + x2 + x3) .

Hence

x2 ≤ n− 2(x1 + x3)
3

≤ n− 2x1 − 2[(1− λ) + x1 + µ]
3

(7)

=
n− 4x1 − 2− 2(µ− λ)

3
.
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Combining (6) and (7) we obtain

(8) x + y ≤ 2n + 2
3

+
x1

3
+

µ− λ

6
.

However hypothesis and the private neighbour property imply that x1+
µ ≤ 1. Hence from (8) we deduce

x + y ≤ 2n + 3
3

−
(

λ + µ

6

)
≤ 2n + 3

3
.

Calculus shows that xy ≤ (2n+3
6 )2 ≤ n2

8 (n ≥ 32). This completes the proof
of Proposition 7.

Proposition 8. If n ≥ 32 and |Y ∩X| ≤ 2, then xy ≤ n2/8.

Proof. Define Y ′ = {vf |v ∈ Y }. If |Y ∩X ′| (|Y ′∩X| or |Y ′∩X ′|) > 2, then
we may apply Proposition 7 to the open irredundant sets Y, X ′ (Y ′, X or
Y ′, X ′) of G, G and infer the result. Thus we assume that |Y ∩X ′| |Y ′ ∩X|
and |Y ′ ∩X ′| are at most two. Then

n ≥ |X|+ |X ′|+ |Y |+ |Y ′| − |Y ∩X| − |Y ′ ∩X| − |Y ∩X ′| − |Y ′ ∩X ′|
≥ 2x + 2y − 2− 2− 2− 2.

Hence x + y ≤ n+8
2 and therefore by elementary calculus xy ≤ (n+8

4 )2 ≤ n2

8
(n ≥ 32).

The preceding propositions have established a bound for Q21Q21.

Theorem 9. If n ≥ 32, then Q21Q21 ≤ n2/8.

Proof. Immediate from Propositions 7 and 8.

We now use Theorems 6 and 9 to determine exact Nordhaus-Gaddum bounds
for the remaining values of i.

Theorem 10. If n ≥ 32 and i ∈ {1, 4, 5, 16, 17, 20, 21}, then maxG(Qi +Qi)
≤ 3n/4, maxG(QiQi) ≤ n2/8 and these bounds are attained for infinitely
many values of n.
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Proof. For any i ∈ {1, 4, 5, 16, 17, 20, 21},
f1 =⇒ fi =⇒ f21,

f4 =⇒ fi =⇒ f21

or
f16 =⇒ fi =⇒ f21.

Hence by Lemma 1, Theorems 6 and 9, for any G

Qj + Qj ≤ Qi + Qi ≤ Q21 + Q21 ≤
3n

4

and

QjQj ≤ QiQi ≤ Q21Q21 ≤
n2

8
,

where j ∈ {1, 4, 16}. Thus the bounds of the theorem are established. To
show that they are attained it is sufficient to exhibit for each j ∈ {1, 4, 16}
graphs satisfying

Qj + Qj ≥
3n

4
and QjQj ≥

n2

8
.

In order to describe the three examples we need the following definition. Let
A,B be disjoint m-vertex subsets of a graph L. We say there is an induced
matching from A to B in L if the bipartite subgraph of L defined by A,B
is isomorphic to mK2.

We form the graph H as follows. Let V (H) = X ∪ Y ∪ Y ′ (disjoint
union) where |X| = n

2 where n ≡ 0 (mod4), n ≥ 32, |Y | = |Y ′| = n
4 and

X ′ = Y ∪ Y ′. Add edges so that there are induced matchings from X to X ′

in H and from Y to Y ′ in H.
Each of the three examples will be formed by adding edges to H. For

each of the three values of j it is easily checked that X and Y are fj-sets of
the constructed graph H∗ and H∗ respectively, so that H∗ satisfies (9). In
each case we remind the reader of the fj-set definition.

j = 1 : Subset S is an f1-set if each s ∈ S is a S-spn and has an S-epn.
Form H∗ from H by adding edges so that H∗[Y ] is complete.

j = 4 : Subset S is an f4-set if each s ∈ S has both an S-ipn and an S-epn.
In this case we require n ≡ 0 (mod 8). Form H∗ from H by adding edges
so that H∗[X] and H∗[Y ] are isomorphic to n

4 K2 and n
8 K2, respectively.
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j = 16 : Subset S is an f16-set if each s ∈ S has an S-epn, has no S-ipn
and is not an S-spn. Form H∗ from H by adding edges so that H∗[X] and
H∗[Y ] are isomorphic to Cn

2
and Cn

4
respectively.
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