A SIMPLE LINEAR ALGORITHM FOR THE CONNECTED DOMINATION PROBLEM IN CIRCULAR-ARC GRAPHS*

Ruo-Wei Hung and Maw-Shang Chang
Department of Computer Science and Information Engineering
National Chung Cheng University
Ming-Hsiung, Chiayi 621, Taiwan, R.O.C.
e-mail: \{rwhung,mschang\}@cs.ccu.edu.tw

Abstract

A connected dominating set of a graph $G=(V, E)$ is a subset of vertices $C D \subseteq V$ such that every vertex not in $C D$ is adjacent to at least one vertex in $C D$, and the subgraph induced by $C D$ is connected. We show that, given an arc family F with endpoints sorted, a minimum-cardinality connected dominating set of the circular-arc graph constructed from F can be computed in $O(|F|)$ time.

Keywords: graph algorithms, circular-arc graphs, connected dominating set, shortest path.
2000 Mathematics Subject Classification: 05C85, 05C69.

1. Introduction

All graphs considered in this paper are finite, undirected, without loops or multiple edges. Throughout the paper, n and m denote the numbers of vertices and edges of a graph $G=(V, E)$, respectively. The open neighborhood of a vertex v, denoted by $N(v)$, consists of all vertices adjacent to v in G. The closed neighborhood of v, denoted by $N[v]$, is the set $N(v) \cup\{v\}$. A set of vertices $D \subseteq V$ is called a dominating set of G if every vertex in V is either in D or adjacent to a vertex in D. A dominating set $C D$ of G is called

[^0]a connected dominating set if the subgraph induced by $C D$ is connected. In addition, if the cardinality $|C D|$ is minimum among all possible connected dominating sets, then $C D$ is called a minimum connected dominating set. Dominating sets and connected dominating sets have applications in a variety of fields, including communication theory and political science. For more background on dominating sets and connected dominating sets, we refer readers to [9], [10].

The problem of finding a minimum connected dominating set is NP-hard in general graphs [6]. The same holds true for bipartite graphs [6, 24], split graphs [16], chordal bipartite graphs [23], circle graphs [13] and weighted cocomparability graphs [3]. However, there exist polynomial time algorithms for interval graphs [2], circular-arc graphs [2], doubly chordal graphs [22], trapezoid graphs $[15,18]$ and distance-hereditary graphs [26].

A circular-arc family F is a collection of arcs in a circle. A graph G is a circular-arc graph if there exists a circular-arc family F, and a one-to-one mapping of vertices of G and the arcs in F such that two vertices in G are adjacent if, and only if, their corresponding arcs in F intersect. For a circular-arc family $F, G(F)$ denotes the graph constructed from F. Circular-arc graphs were introduced as a generalization of interval graphs (similarly defined, except that intervals on a real line are used instead of arcs on a circle) [7]. Both classes of graphs have a variety of applications involving traffic light sequencing, genetics, VLSI design and scheduling.

Tucker [25] presented an $O\left(n^{3}\right)$ time algorithm for testing whether a graph is a circular-arc graph and, if it is, constructing an arc family. Hsu [11] proposed an $O(m n)$ time algorithm to recognize circular-arc graphs. Eschen and Spinrad [5] proposed an $O\left(n^{2}\right)$ time recognition algorithm for circular-arc graphs. Recently, McConnell [21] presented an $O(n+m)$ time recognition algorithm for circular-arc graphs.

Given an arc family F with endpoints sorted, some researchers have proved that the following problems can be solved in $O(n)$ time for $G(F)$: the maximum independent set problem $[8,12,19,20]$, the single-source shortest paths problem [1], the circle-cover minimization problem [17], the dominating cycle problem [14], the domination problem [12] and the minimum clique cover problem [12].

Chang [2] proposed an $O(n+m)$ time algorithm for solving the connected domination problem on circular-arc graphs with weights on vertices (arcs). In this paper, we present a simple $O(n)$ time algorithm for finding
a minimum connected dominating set of $G(F)$ given an arc family F with endpoints sorted.

2. The Algorithm

Let F be a circular-arc family with endpoints sorted where $|F|=n$. An arc v in F beginning from point c and ending at point d in clockwise direction is denoted by (c, d). We call both points c and d endpoints of arc v. We call point c the head of arc v, denoted by $h(v)$, and point d the tail of arc v, denoted by $t(v)$, respectively. Without loss of generality, assume that all endpoints of arcs in F are distinct and that no arc covers the entire circle. A contiguous part of the circle beginning from point c and ending at point d in the clockwise direction, is referred to as segment (c, d), denoted by $\operatorname{seg}(c, d)$. We refer to an element of F as an arc and a part of the circle as a segment, respectively. We assume both arcs and segments are open, namely, they do not contain their endpoints. Note that an arc is also a segment of the circle. We say that a point p is contained in a segment $\operatorname{seg}(c, d)$ if it falls within the interior of $\operatorname{seg}(c, d)$. Denote this by $p \in \operatorname{seg}(c, d)$. An arc u of F is said to be contained in another arc v if every point of arc u is contained in arc v. An arc in F is maximal if it is not contained in any other arc of F. Let F^{\prime} denote the collection of all maximal arcs in F. Figure 1 shows a circular-arc family, where dark arcs are maximal arcs.

Figure 1. A circular-arc family F, where dark arcs are maximal arcs.

Remark 1. If a minimum connected dominating set D contains arc v which is not a maximal arc and is contained in a maximal arc u, then $(D \backslash\{v\}) \cup\{u\}$ is still a minimum connected dominating set since $N[v] \subseteq N[u]$. Hence, there exists a minimum connected dominating set of $G(F)$ contained in F^{\prime}. However, a connected dominating set of $G\left(F^{\prime}\right)$ is not necessarily a connected dominating set of $G(F)$.

We call a subset C of a circular-arc family F a circle cover in F, if the union of arcs in C covers the entire circle. A minimum circle cover in F is a circle cover of minimum cardinality among all circle covers in F. Clearly a circle cover in F is a connected dominating set of $G(F)$. If there exists an arc u in F which intersects every other arc in F, then $\{u\}$ is a minimum connected dominating set. Such an arc can be found in $O(n)$ time if it exists [12]. If F does not cover the entire circle, then $G(F)$ is an interval graph. This case can be detected easily. If $G(F)$ is an interval graph, the connected domination problem can be solved in $O(n)$ time [2]. In the following, we assume $G(F)$ is not an interval graph, and F covers the entire circle.

Definition 1. Let u and v be two maximal arcs such that $h(u)$ is not in v. Define a clockwise path from u to v of length $k-1$ to be a sequence $\left\{a_{1}, a_{2}, \cdots, a_{k}\right\}$ of distinct arcs in F such that $a_{1}=u, a_{k}=v, a_{j}$ and a_{j+1} intersect for $j \in\{1,2, \cdots, k-1\}$, and $h\left(a_{j}\right)$ is contained in $\operatorname{seg}(h(u), h(v))$ for $j \in\{2,3, \cdots, k-1\}$. A clockwise path from u to v is called a clockwise shortest path, denoted by $S P_{c}(u, v)$, if it has the smallest length among all possible u-to- v clockwise paths. Notice that if $t(u)$ is in arc v, then $S P_{c}(u, v)$ visits u and v only and hence, $\left|S P_{c}(u, v)\right|=2$.

For the set of arcs shown in Figure 1, we have $S P_{c}(4,1)=\{4,8,12,16,1\}$, $S P_{c}(12,3)=\{12,16,3\}, S P_{c}(1,9)=\{1,3,7,9\}$, and $S P_{c}(1,7)=\{1,3,7\}$.

Remark 2. Let P be a clockwise path from u to v, where u and v are two maximal arcs that do not intersect each other. If $\operatorname{seg}(t(v), h(u))$ does not contain any arc in F, then the set of arcs visited by P is a connected dominating set of $G(F)$. On the other hand, the union of arcs in a connected dominating set of $G(F)$ either covers the entire circle, or is a segment of the circle. In the former case, it is a circle cover in F. If it is a segment $\operatorname{seg}(c, d)$, then $\operatorname{seg}(d, c)$ contains no arc in F. Let c and d be the head and tail of arc u and v, respectively. Then the set of arcs visited by the shortest clockwise path from u to v is also a connected dominating set of $G(F)$.

Based upon the above remarks, we first find a minimum circle cover for F. Then we find two maximal arcs u and v such that $\left|S P_{c}(u, v)\right|$ is minimum and $\operatorname{seg}(t(v), h(u))$ does not contain any arc in F. Then the smaller one of the minimum circle cover, and the set of arcs visited by $S P_{c}(u, v)$ is a minimum connected dominating set of $G(F)$. In the following, we show how to find two such arcs u and v.

Definition 2. [12] For a maximal arc u, the first clockwise undominated arc $U(u)$ is the arc in $F \backslash N[u]$ whose tail is first encountered in a clockwise traversal from $t(u)$. Define $N E X T(u)$ to be the arc in $N[U(u)] \cap F^{\prime}$ whose tail is last encountered in a clockwise traversal from $t(U(u))$.
For example, in the arc family F shown in Figure $1, U(1)=2, N E X T(1)=$ $4, U(13)=15$, and $N E X T(13)=1$.

Remark 3. For a maximal arc $u, h(N E X T(u))$ is either in arc u or not, as shown in Figure 2. In case $h(N E X T(u))$ is not in arc u, we observe that $\operatorname{seg}(t(u), h(N E X T(u)))$ does not contain any arc in F. This implies that $S P_{c}(N E X T(u), u)$ is a connected dominating set of $G(F)$.

(a) $h(N E X T(u))$ is not in arc u

(b) $h(N E X T(u))$ is in arc u

Figure 2. The relative positions of arc u and $\operatorname{NEXT}(u)$.

Our main theorem is given in the following.
Theorem 1. Assume that no arcs in F intersect all other arcs in F, and that F covers the entire circle. Then, either a minimum circle cover in F is a minimum connected dominating set of $G(F)$ or there exists a maximal arc u such that $h(N E X T(u))$ is not in u and $S P_{c}(N E X T(u), u)$ is a minimum connected dominating set of $G(F)$.

Proof. Suppose D, where $|D|=k$, is a minimum connected dominating set of $G(F)$ such that all arcs in D are maximal arcs. By Remark 1, such a minimum connected dominating set exists. By the assumption of the theorem, $k \geq 2$. Since the union of arcs in D either covers the entire circle or is a segment of the circle, the arcs in D can be sorted into a sequence $\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$ in clockwise ordering of tails such that v_{i} intersects v_{i+1} for $1 \leq i \leq k-1$. Let $u=v_{k}$. We claim that both v_{1} and $\operatorname{NEXT}(u)$ intersect $U(u)$ and hence, $N E X T(u)$ intersects v_{2}. Let $D^{\prime}=\left(D \backslash\left\{v_{1}\right\}\right) \cup$ $\{N E X T(u)\}$. If $h(N E X T(u))$ is in arc u, then the union of arcs in D^{\prime} covers the entire circle. Hence D^{\prime} is a minimum connected dominating set of $G(F)$. Since D^{\prime} is a circle cover in $F,\left|D^{\prime}\right|$ is no less than the cardinality of a minimum circle cover in F. Hence a minimum circle cover in F is also a minimum connected dominating set of $G(F)$. On the other hand, assume that $h(N E X T(u))$ is not in arc u. The union of arcs in D^{\prime} is a segment $\operatorname{seg}(h(N E X T(u)), t(u))$. Since segment $\operatorname{seg}(t(u), h(N E X T(u)))$ contains no arc in F, D^{\prime} is a minimum connected dominating set of $G(F)$. Because $\left|S P_{c}(N E X T(u), u)\right| \leq\left|D^{\prime}\right|, S P_{c}(N E X T(u), u)$ is a minimum connected dominating set of $G(F)$.

Our algorithm is formally presented in the following.
Algorithm MCDS. Find a minimum connected dominating set of $G(F)$.
Input: A set F of n sorted arcs, where each arc i is represented as $(h(i), t(i))$, and all arcs in F are labelled from 1 to n.
Output: A minimum connected dominating set of $G(F)$.
Method:

1. if F does not cover the entire circle, then return the minimum connected dominating set found by Chang's algorithm [2] and stop;
2. if there exists an arc $v \in F$ such that $N[v]=F$, then return $\{v\}$ and stop;
3. compute a minimum circle cover C in F;
4. compute all maximal arcs of F;
5. compute $N E X T(v)$ for all maximal arcs v of F;
6. let H be the set of all maximal arcs v with that $h(N E X T(v))$ not in arc v;
7. if $H=\varnothing$, then return C and stop;
8. compute $\left|S P_{c}(N E X T(v), v)\right|$ for all maximal arcs v in H;
9. find a maximal arc u in H such that $\left|S P_{c}(N E X T(u), u)\right| \leq$ $\left|S P_{c}(N E X T(v), v)\right|$ for any other maximal arc v in H;
10. find a clockwise shortest path $S P_{c}(N E X T(u), u)$, and let $D=S P_{c}(N E X T(u), u)$;
11. output the smaller one of C and D.

The correctness of the above algorithm can be seen from Theorem 1. In the following, we show how this algorithm can be implemented in $O(n)$ time. A minimum circle cover in F can be computed in $O(n)$ time [17]. Given an arc family F of n sorted arcs, we can compute $\operatorname{NEXT}(v)$ for all maximal $\operatorname{arcs} v$ in $O(n)$ time [12]. After $O(n)$ time preprocessing, given two maximal arcs u and v with that $h(u)$ is not in arc $v,\left|S P_{c}(u, v)\right|$ can be computed in $O(1)$ time and a clockwise shortest path $S P_{c}(u, v)$ can be reported in $O(n)$ time [4]. Thus we have the following theorem.

Theorem 2. Given a set of n sorted arcs, Algorithm MCDS solves the connected domination problem on circular-arc graphs in $O(n)$ time.

Acknowledgements

The authors thank anonymous referees for their helpful suggestions in improving the presentation of this paper and an anonymous referee who referred us to [4].

References

[1] M.J. Atallah, D.Z. Chen, and D.T. Lee, An optimal algorithm for shortest paths on weighted interval and circular-arc graphs, with applications, Algorithmica 14 (1995) 429-441.
[2] M.S. Chang, Efficient algorithms for the domination problems on interval and circular-arc graphs, SIAM J. Comput. 27 (1998) 1671-1694.
[3] M.S. Chang, Weighted domination of cocomparability graphs, Discrete Appl. Math. 80 (1997) 135-147.
[4] D.Z. Chen, D.T. Lee, R. Sridhar, and C.N. Sekharan, Solving the all-pair shortest path query problem on interval and circular-arc graphs, Networks 31 (1998) 249-258.
[5] E.M. Eschen and J. Spinrad, An $O\left(n^{2}\right)$ algorithm for circular-arc graph recognition, in: Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete Algorithm SODA'93 (1993) 128-137.
[6] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H. Freeman, San Francisco, CA, 1979).
[7] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Academic Press, New York, 1980).
[8] M.C. Golumbic and P.L. Hammer, Stability in circular arc graphs, J. Algorithms 9 (1988) 314-320.
[9] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
[10] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Domination in Graphs Advanced Topics (Marcel Dekker, New York, 1998).
[11] W.L. Hsu, $O(M \cdot N)$ algorithms for the recognization and isomorphism problems on circular-arc graphs, SIAM J. Comput. 24 (1995) 411-439.
[12] W.L. Hsu and K.H. Tsai, Linear time algorithms on circular-arc graphs, Inform. Process. Lett. 40 (1991) 123-129.
[13] J.M. Keil, The complexity of domination problems in circle graphs, Discrete Appl. Math. 42 (1993) 51-63.
[14] J.M. Keil and D. Schaefer, An optimal algorithm for finding dominating cycles in circular-arc graphs, Discrete Appl. Math. 36 (1992) 25-34.
[15] E. Köhler, Connected domination and dominating clique in trapezoid graphs, Discrete Appl. Math. 99 (2000) 91-110.
[16] R. Laskar and J. Pfaff, Domination and irredundance in split graphs, Technical Report 430, Dept. Mathematical Sciences (Clemson University, 1983).
[17] C.C. Lee and D.T. Lee, On a circle-cover minimization problem, Inform. Process. Lett. 18 (1984) 109-115.
[18] Y.L. Lin, F.R. Hsu, and Y.T. Tsai, Efficient algorithms for the minimum connected domination on trapezoid graphs, Lecture Notes in Comput. Sci. 1858 (Springer Verlag, 2000) 126-136.
[19] G.K. Manacher and T.A. Mankus, A simple linear time algorithm for finding a maximum independent set of circular arcs using intervals alone, Networks 39 (2002) 68-72.
[20] S. Masuda and K. Nakajima, An optimal algorithm for finding a maximum independent set of a circular-arc graph, SIAM J. Comput. 17 (1988) 41-52.
[21] R.M. McConnell, Linear-time recognition of circular-arc graphs, in: Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science FOCS'01 (2001) 386-394.
[22] M. Moscarini, Doubly chordal graphs, Steiner trees, and connected domination, Networks 23 (1993) 59-69.
[23] H. Müller and A. Brandstädt, The NP-completeness of Steiner tree and dominating set for chordal bipartite graphs, Theoret. Comput. Sci. 53 (1987) 257-265.
[24] J. Pfaff, R. Laskar, and S.T. Hedetniemi, NP-completeness of total and connected domination, and irredundance for bipartite graphs, Technical Report 428, Dept. Mathematical Sciences (Clemson University, 1983).
[25] A. Tucker, An efficient test for circular-arc graphs, SIAM J. Comput. 9 (1980) 1-24.
[26] H.G. Yeh and G.J. Chang, Weighted connected domination and Steiner trees in distance-hereditary graphs, Discrete Appl. Math. 87 (1998) 245-253.

Received 18 March 2002
Revised 18 January 2003

[^0]: ${ }^{*}$ The research was supported in part by the National Science Council of Republic of China under grant no. NSC90-2213-E194-034.

