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Ciudad Universitaria, México D.F. 04510
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Abstract

If G is a minimally 3-connected graph and C is a double cover of
the set of edges of G by irreducible walks, then |E(G)| ≥ 2|C| − 2.
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1. Introduction

A walk α in a simple graph G is a sequence w0, w1, . . . , ws of vertices of G,
not necessarily different, such that wi−1wi is an edge of G for i = 1, 2, . . . , s.
An edge e of G is said to be traversed in a walk α if its vertices are consecutive
in α; an edge may be traversed more than once in a given walk.

A walk α in a graph G is irreducible if a 6= b for every pair a, b of edges
which are traversed consecutively in α. A set C of irreducible closed walks in
a graph G is a walk double cover of G if each edge of G is traversed exactly
two times, either once in two different walks in C or twice in the same
walk in C.

For any simple graph G and any edge e = uv of G we denote by G − e

the graph obtained from G by deleting the edge e, and by G · e the simple
graph obtained from G by identifying the vertices u and v and deleting loops
and multiple edges. A minimally 3-connected graph is a 3-connected graph
G such that, for every edge e of G, the graph G−e is no longer 3-connected.

Whenever possible we follow the terms and notation given in [1]. A
wheel Wt is a graph with t + 1 vertices, obtained from a cycle Ct with t

vertices by adding a new vertex w adjacent to each vertex in Ct. The cycle
Ct and the vertex w are called the rim and the hub of Wt, respectively. In
this note we prove the following result.

Theorem 1.1. Let G be a minimally 3-connected graph with m edges. If

C is a walk double cover of G with k walks, then m ≥ 2k − 2. Moreover if

m ≤ 2k − 1, then G is a planar graph and C is the set of planar faces of G;

in particular if m = 2k − 2, then G is a wheel.

2. Proof of Theorem 1.1

The following result due to R. Halin [2] will be used in the proof of
Theorem 1.1.

Theorem 2.1. If e = uv is an edge of a minimally 3-connected graph G

with min{d(u), d(v)} ≥ 4, then e lies in no cycle of G of length 3 and G · e
is also minimally 3-connected.

For any graph G and any walk double cover C of G, we denote by m(G) and
by k(C) the number of edges of G and the number of walks in C, respectively.
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Remark 1. Let G be a 3-connected graph and C be a walk double cover of
G. If two edges uw and wv are consecutive edges in two walks in C, then
the degree of w is at least 4.

Proof of Theorem 1.1. The smallest 3-connected graph is the wheel
W3 which is planar and has 6 edges. Since each irreducible walk has at least
3 edges, no walk double cover of W3 has more than 4 walks. Moreover, the
only walk double cover of W3 with 4 walks consists of the planar faces of W3.

We proceed by induction assuming m ≥ 7 and that the result holds for
every minimally 3-connected graph with less than m edges.

If G has an edge e = uv with min{d(u), d(v)} ≥ 4, then by Halin’s
theorem, G · e is also minimally 3-connected. Let C · e denote the set of k

walks of G · e obtained from the walks in C by contracting the edge e.

Also by Halin’s theorem, the edge e lies in no cycle of G of length 3; this
implies that all walks in C · e are irreducible. Because C is a walk double
cover of G and e is not an edge of G · e, C · e is a walk double cover of
G · e. By induction, m(G · e) ≥ 2k(C · e) − 2; therefore m ≥ 2k − 1, since
m(G · e) = m − 1 and k(C · e) = k.

If m = 2k − 1, then m(G · e) = 2k(C · e) − 2; by induction G · e is a
wheel Wt and C · e is the set of planar faces of Wt. Let x be the vertex of
Wt obtained by identifying u and v. Since u and v have degree at least 4
in G, the vertex x must be the hub of Wt; let w0, w1, . . . , wt−1 be the rim
of Wt.

Since e is in no cycle of G of length 3, G is a graph consisting of the
cycle w0, w1, . . . , wt−1, the two adjacent vertices u and v, and one edge
joining each vertex wi to either u or v.

Suppose there are distinct integers a, b and c such that wa, wb+1 and wc

are adjacent to u in G and wa+1, wb and wc+1 are adjacent to v in G. The
walks wa, x, wa+1, wb, x, wb+1 and wc, x, wc+1 lie in C, since they are faces
of G · e. This implies that wa, u, v, wa+1, wb, v, u, wb+1 and wc, u, v, wc+1 are
walks in C which is not possible, since the edge e = uv cannot lie in three
walks in C.

Therefore there are integers i and j such that wi, wi+1, . . . , wj−1 are
adjacent to u in G and wj , wj+1, . . . , wi−1 are adjacent to v in G. This
shows that G is a planar graph.

Since C ·e is the set of faces of G ·e = Wt and each walk in C ·e is either
a walk in C or is obtained from a walk in C by contracting the edge e, the
set C must be the set of faces of G.
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We can now assume that each edge of G has at least one end with degree 3.
If C contains no cycle of length 3, then 2m ≥ 4k and m ≥ 2k. Therefore we
can also assume that C contains at least one cycle of length 3. Let C3 be
the set of cycles in C of length 3; two cases are considered.

Case 1. There is a cycle α in C3 such that no pair of edges of α are
traversed consecutively in any other walk in C.

Let u, v and w be the vertices of α. Since each edge of G has an end
with degree 3, without loss of generality, we can assume dG(u) = dG(v) = 3.
Let u1 and v1 denote the third vertex of G adjacent to u and the third vertex
of G adjacent to v, respectively; notice that u1 6= v1, since G is 3-connected
and has at least 5 vertices.

Subcase 1.1. If dG(w) = 3, let w1 denote the third vertex of G adjacent
to w; as above u1 6= w1 6= v1. Let G′ be the graph obtained from G by
contracting the cycle α to a single point x. We claim that G′ can also
be obtained from G by a delta to wye transformation (see Figure 1), and
therefore it is also a 3-connected graph.

Figure 1

Since dG′(x) = 3 and dG′(z) = dG(z) for each vertex z 6= x of G′, every edge
of G′ has an end with degree 3; therefore G′ is minimally 3-connected.

Let C ′ be the set of k−1 walks of G′ obtained from the walks in C\{α}
by contracting the edges uv, vw and wu. Since no pair of edges of α are
consecutive edges in any walk in C\{α}, all walks in C ′ are irreducible.
Moreover, C ′ is a walk double cover of G′, since C is a walk double cover of
G and uv, vw and wu are not edges of G′.

By induction m(G′) ≥ 2k(C ′)−2; hence m ≥ 2k−1, since m(G′) = m−3
and k(C ′) = k − 1. If m = 2k − 1, then m(G′) = 2k(C ′) − 2. Again by
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induction G · e is a wheel Wt and C ′ is the set of planar faces of Wt. Since
x has degree 3 in G′, we can assume without loss of generality that x lies in
the rim of G′ = Wt and that w1 is the hub; this implies that G is a graph
as in Figure 2 and therefore it is a planar graph in which α is a face.

Figure 2

Since C ′ is the set of faces of G′ and every walk in C ′ is either a walk in
C\{α} or is obtained from a walk in C\{α} by contracting some of the edges
uv, vw and wu, the set C must be the set of planar faces of G.

Subcase 1.2. If dG(w) ≥ 4, we consider the graph G · uv. We claim that
u and v cannot be contained in a 3-vertex cut of G and, therefore, G · uv is
3-connected.

Since dG·uv(x) = 3 and dG·uv(z) ≤ dG(z) for each vertex z 6= x of G ·uv,
every edge of G · uv has an end with degree 3; therefore G · uv is minimally
3-connected.

Let C · uv be the set of k − 1 walks of G · uv obtained from the walks
in C\{α} by contracting the edge uv to a vertex x and substituting each of
the edges uw and vw by the edge xw. Each walk in C · uv is irreducible,
because no pair of edges of α are traversed consecutively in any other walk
in C. Since C is a walk double cover of G and uv is not an edge of G · uv,
the set C · uv is a walk double cover of G · uv.

By induction m(G · uv) ≥ 2k(C · uv) − 2; hence m ≥ 2k − 2, since
m(G · uv) = m − 2 and k(C · uv) = k − 1. If m ≤ 2k − 1, then m(G · uv) ≤
2k(C · uv)− 1; again by induction, G · uv is a planar graph and C · uv is the
set of planar faces of G · uv.

Since G · uv is 3-connected, there is a planar drawing G · uv of G · uv in
which x is an interior vertex. Let R be the region formed by the three faces
of G · uv in which x is a vertex. Since w, u1 and v1 lie in the boundary of R
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and x is in the interior of R, a planar drawing G of G can be obtained from
G · uv by replacing (within the interior of R) the vertex x with two adjacent
vertices u and v, and the edges wx, u1x and v1x with the edges wu, wv, u1u

and v1v as in Figure 3.

Figure 3

Therefore G is a planar graph and α is a face of G. Furthermore, C is the
set of faces of G, since C ·uv is the set of planar faces of G ·uv and each walk
in C · uv is either a walk in C\{α} or is obtained from a walk in C\{α} by
contracting the edge uv to the vertex x and substituting each of the edges
uw and vw by the edge xw.

If m = 2k − 2, then m(G · uv) = 2k(C · uv) − 2; again by induction,
G · uv is a wheel Wt. Since dG·uv(x) = 3, we can assume that x lies in the
rim of G · uv.

If w is the hub of G · uv, then G is the wheel Wt+1, also with hub w. If
u1 is the hub of G ·uv, then G is a graph as in Figure 4. Notice that if t > 3,
then G − u1w is 3-connected which is not possible since G is minimally 3-
connected. Therefore t = 3 and G is the wheel W4 with hub w. Analogously,
if v1 is the hub of G · uv, then G is the wheel W4.

Figure 4
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Case 2. For every cycle α ∈ C3 there is walk σα 6= α in C such that two
edges of α are traversed consecutively in σα.

For this case, we shall prove that the average length of the walks in C

is at least 4 and therefore 2m ≥ 4k and m ≥ 2k.

For each α ∈ C3 let uα, wα and vα denote the vertices of α. Without loss
of generality we assume that uαwα and wαvα are traversed consecutively in
σα. Notice that the walk σα is uniquely determined since C is a walk double
cover of G.

By Remark 1, dG(wα) ≥ 4; therefore dG(uα) = dG(vα) = 3, since every
edge of G has an end with degree 3. Let u′

α and v′α denote the third vertex
of G adjacent to uα and the third vertex of G adjacent to vα, respectively.

Again by Remark 1, the edges wαuα and uαvα are not traversed con-
secutively in σα; therefore σα must traverse the edge uαu′

α; analogously σα

traverses the edge vαv′α. If u′

α = v′α, then uα and vα are adjacent only to
u′

α = v′α, to wα and to each other which is not possible since G is a 3-
connected graph with at least 5 vertices; therefore σα has length at least 5
for each α ∈ C3. For each τ ∈ C let l(τ) denote the length of τ .

Consider the equivalence relation in C3 given by β ∼ γ if and only if
σβ = σγ . For α ∈ C3 let [α] denote the equivalence class of α.

Let β and γ be two distinct cycles in [α] and assume, without loss
of generality, that the edges uβwβ , wβvβ, uγwγ and wγvγ are traversed in
σα = σβ = σγ in that relative order. The edges uβwβ and wβvβ are not
edges of γ since they are traversed in β and in σβ 6= β; analogously uγwγ

and wγvγ are not edges of β.

Suppose that wβvβ and uγwγ are traversed consecutively in σα. Then
vβ = uγ and wβ 6= wγ , since σα is an irreducible walk. Moreover, uβ = vγ

since dG(vβ = uγ) = 3 and wβ , wγ , uβ and vγ are all adjacent to vβ = uγ .
This implies that the vertices vβ = uγ and uβ = vγ are adjacent in G only
to wβ, to wγ and to each other which is not possible since G is 3-connected
and has at least 5 vertices.

Therefore, no edges of two distinct cycles in [α] are traversed consecu-
tively in σα. This implies that σα has at least 3|[α]| edges.

By the above arguments

l (σα) + l (α)

2
≥

5 + 3

2
= 4
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for each α ∈ C3 with |[α]| = 1, and

l (σα) +
∑

β∈[α] l (β)

|[α]| + 1
≥

3 |[α]| + 3 |[α]|

|[α]| + 1
=

6 |[α]|

|[α]| + 1
≥ 4

for each α ∈ C3 with |[α]| ≥ 2.

Since all walks in C which are not in C3 have length at least 4, the
average length in C must also be at least 4.

Corollary 2.2. Let G be a minimally 3-connected graph with n vertices. If

C is a walk double cover of G with k walks, then k ≤ 3n−4
2 .

Proof. Let m denote the number of edges in G. W. Mader proved in [3]

that m ≤ 3n − 6; by Theorem 1.1, k ≤ m+2
2 ≤ (3n−6)+2

2 = 3n−4
2 .

Corollary 2.3. If G is a minimally 3-connected planar graph with n ver-

tices, then G has at most n faces. Moreover if G has exactly n faces, then

G is a wheel.

Proof. Since G is 3-connected, its set of faces is a walk double cover. By
Theorem 1.1, m ≥ 2r− 2, where m and r are the number of edges and faces
of G, respectively. Since n − m + r = 2, it follows r ≤ n.

Also by Theorem 1.1, if G is not a wheel, then m ≥ 2r − 1, in which
case r ≤ n − 1.

Corollary 2.4. If G is a minimally 3-connected graph with n vertices em-

bedded in a closed surface S with Euler characteristic χ 6= 2, then G has at

most n − χ faces.

Proof. As in Corollary 2.3, the set of faces of G is a walk double cover
of G. Since S is not the sphere, C is not the set of planar faces of G. By
Theorem 1.1, m ≥ 2r, where m and r are the number of edges and faces of
G, respectively. Since χ = n − m + r, it follows r ≤ n − χ.
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