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Abstract

We describe some new applications of nonabelian pg-groups to con-
struction problems in Graph Theory. The constructions include the
smallest known trivalent graph of girth 17, the smallest known regular
graphs of girth five for several degrees, along with four edge colorings
of complete graphs that improve lower bounds on classical Ramsey
numbers.
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For primes p and ¢ such that p < ¢ and ¢ = 1 (mod p), there exists a
nonabelian group of order pg, which is a semidirect product of Z, by Z,.
Details on the properties of these groups can be found in [3]. In this note, we
use nonabelian pg-groups to construct several graphs and graph colorings.

Let G be a nonabelian pg-group and let a and b be elements of orders
p and ¢, respectively. The subgroup generated by b is normal in G and
a'ba = b" where 7 =1 (mod ¢). So the elements of G can be represented
in the form a'b’, for 0 < i < p and 0 < j < ¢. Group multiplication can be
defined by

aibj % Cstt — ai+sbjrs+t'

In what follows, it will be convenient to refer to elements of a pg-group using
the notation (i, j) instead of a'’.
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1. RAMSEY GRAPHS

Recall that an (s, t)-coloring of the complete graph K, is a 2-coloring of its
edges such that there is neither a complete subgraph of order s, all of whose
edges are color 1, nor a complete subgraph of order ¢, all of whose edges
are color 2. The Ramsey number R(s,t) is the minimum n such that no
(s,t)-coloring on K, exists.

Our first application of pg-groups gives us a new lower bound for R(4,8).
For this we use a Cayley coloring on the nonabelian group G of order 55,
where we take p = 5, ¢ = 11, and » = 3. Recall that in a Cayley coloring,
the vertices of the graph are identified with group elements, and we assign
a color to each element g € G, and then assign that color to all edges of the
form (x,zg), for all z € G. In the array below, the entry in row ¢ and column
j gives the color assigned to each element (i, j), i.e., a’b’, of G. It can be
easily verified by computer that this indeed determines a (4, 8)-coloring of
K55, thereby improving the lower bound on R(4,8) to 56 [4].
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To obtain more new Ramsey colorings we use a well known property of pg-
groups: they have a permutation representation of degree ¢. One can use
GAP to obtain such a representation [6]. The representation is applied to
the construction of Ramsey graphs on ¢ vertices by considering the induced
action on the edges of K,. Each edge orbit contains pg edges, and so we
only need to make % color choices to determine a coloring. Thus dealing
with searches for relatively large Ramsey graphs is much easier than when
dealing with circle colorings, for example.

Following up on this idea, and using the combinatorial search tech-
nique outlined in [1], we are able to improve three classical Ramsey bounds
[4]. These colorings may be of particular interest, since they are not circle
colorings.

R(3,27) > 157,

3
R(3,31) > 197,
R(5,17) > 283.
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Since these graphs are so large, rather than attempt to present them here,
we note that they can be obtained in several electronic formats from the
author’s web site at http://ginger.indstate.edu/ge/RAMSEY.

2. A TRIVALENT GRAPH OF GIRTH 17

In this section, we use a construction method, first discussed in [2], that can
be viewed as a generalization of Cayley graphs. Instead of using one copy
of a group as the vertex set, as with Cayley graphs, we use multiple copies.
The groups that seem to be most useful for the cage problems below are the
nonabelian pg-groups.* A property of pg-groups that makes them useful in
this regard is the absence of elements of order less than p (save the identity).

Our next construction is made by using the nonabelian group G of order
301 = 7 x 43. To complete the definition of the group, we take r = 4,
then start with a set V of 2408 vertices, viewed as 8 copies of G. Define a
group action on V by fixing an ordering of the group elements, go, ..., 9300,
and identify the vertices with the integers 0...2407. The ordering of the
group elements is given by having (i1, j1) < (i2,72) if and only if i1 < iy or
i1 = 12 and j1 < j2. We associate vertex 301z + j with group element g;
for 1 <4 < 8. Then the action of G of V is defined as follows. For g € G,
let g(301i + j) = 3017 + k if and only if gjg = g in G. Then it is simply
a matter of selecting a set of orbits from the induced action on the edges.
The orbits used are indicated below, where we list one edge from each edge
orbit chosen.

0 593

0 1185

0 1329
301 1343
301 2206
602 1158
602 1967
602 2278
903 1506
1204 2006
1505 1923
1505 2374

*Recall that a (k, g)-cage is a smallest k-regular graph of girth g.
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Adjacency lists for all the cage constructions presented here can be obtained
from http://ginger.indstate.edu/ge/CAGES.

Similarly, we were able to construct the smallest known four-regular
graph of girth 9 [5] from five copies of the nonabelian group G of order 55,
using p = 5, ¢ = 11, » = 3. Edge orbit representatives are again listed below.

0 55
0 73
0 212
0 239
55 219
95 227
110 176
110 214
110 258
110 263

3. SMALL REGULAR GRAPHS OF GIRTH 5

Finally, we undertook a search for Cayley graphs of girth 5 on nonabelian
pg-groups. We were able to find the smallest known regular graphs of girth
5 for several even degrees in the range 12 to 32. The table below summarizes
our results, listing the degree, girth, and order of the graph along with the
values of p, ¢, and r for the group. The column labeled "ratio” gives the
order of the graph divided by the Moore bound, which of course is 1 + k?
for graphs of degree k and girth 5.

degree ‘ girth ‘ order ‘ P ‘ q ‘ r ‘ ratio ‘
12 5 203 | 7| 29| 7| 1.400
14 5 355 | 5| 71| 5| 1.802
16 5 497 | 7| 71|20 | 1.934
18 ) 655 | 5| 131 | 53 | 2.015
20 5 889 | 7| 127 | 2| 2.217
22 51 1027 | 13| 79| 8] 2.118
24 51 1255 | 5| 251 | 20| 2.175
26 51| 1655 | 5| 331 | 64 | 2.445
28 51| 2005 | 5 |401 |39 | 2.554
30 51 2359 | 7337 | 82618
32 51 2947 | 7| 421 | 33 | 2.875
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Below we give the generators for each of the Cayley graphs. An entry of
(i,7) means that the group element '’ is a generator. The inverses of these
generators are not listed.

For d =12, n = 203:
(1,0)(2,2)(2,27)(2,3)(3,11)(3, 28)

For d = 14, n = 355:
(0,10)(0,61)(1,54)(1,69)(2,35)(2,41)(2,53)(2,64)

For d = 16, n = 497:
(1,24)(1,41)(1,51)(2,20)(2,22)(2,45)(3,4)(3,56)

For d = 18, n = 655:
(1,10)(1,113)(1,29)(1, 37)(1,87)(2, 118)(2, 62)(2, 86)(2, 97)

For d = 20, n = 889:

(1,112)(1,122)(1,21)(1,75)(1,90)(1, 98)(2, 50)(2, 56)
(2,59)(3,41)

For d = 22, n = 1027:

(1,22)(1,30)(1,52)(2,0)(2, 27)(2, 39)(3, 27)(3, 71)(4, 13)
(5,14)(5, 16)

For d = 24, n = 1255:

(1,140)(1,159)(1, 198)(1, 246)(1, 33)(1, 63)(2, 110)(2, 126)
(2,150)(2, 173)(2, 209)(2, 32)

For d = 26, n = 1655:

(1,108)(1,109)(1,260)(1,265)(1,267)(1, 38)(2,107)(2, 191)
(2,215)(2,237)(2,25)(2, 312)(2, 54)

For d = 28, n = 2005:

(1,109)(1,140)(1, 166)(1, 376)(1, 390)(1,92)(2, 133)(2, 161)
(2,196)(2, 204)(2, 340)(2, 372)(2, 377)(2, 40)
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For d = 30, n = 2359:
(1,183)(1,201)(1,302)(1,334)(1,75)(2,140)(2, 181)(2, 233)
(2,293)(2,306)(3,179)(3,238)(3,327)(3,4)(3,96)

For d = 32, n = 2947:

(1,190)(1,214)(1, 328)(1, 336)(1, 83)(2, 161)(2, 220)(2, 340)
(2,341)(2,360)(3,25)(3, 253)(3, 330)(3, 334)(3, 340)(3, 392)

REFERENCES

[1] G. Exoo, Some New Ramsey Colorings, Electronic J. Combinatorics 5 (1998)
#R29.

[2] G. Exoo0, A Small Trivalent Graph of Girth 14, to appear.
[3] M. Hall, The Theory of Groups (The Macmillan Company, New York, 1959).

[4] S.P. Radziszowski, Small Ramsey Numbers, Dynamic Survey DS1, Electronic
J. Combinatorics 1 (1994) pp. 28.

[5] G. Royle, Cubic Cages, (http://www.cs.uwa.edu.au/~gordon/cages/
index.html), February, 2001 (Accessed: January 20, 2002).

[6] M. Schonert et al, Groups, Algorithms and Programming, version 4 release 2,
Department of Mathematics, University of Western Australia.

Received 4 February 2002
Revised 28 August 2002


http://www.tcpdf.org

