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Abstract

A generalized s-star, s > 1, is a tree with a root Z of degree s;
all other vertices have degree < 2. S; denotes a generalized 3-star,
all three maximal paths starting in Z have exactly ¢ + 1 vertices
(including Z). Let M be a surface of Euler characteristic (M) < 0, and

m(M) = ij. We prove:

(1) Let £ > 1,d > m(M) be integers. Each polyhedral map G on
M with a k-path (on & vertices) contains a k-path of maximum degree
< din G or a generalized s-star T, s < m(M), on d+2—m(M) vertices
with root Z, where Z has degree < k-m(M) and the maximum degree
of T\ {Z} is < din G. Similar results are obtained for the plane and
for large polyhedral maps on M.
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(2) Let k and 4 be integers with k > 3,1 < i < g If a polyhedral
map G on M with a large enough number of vertices contains a k-path
then G contains a k-path or a 3-star S; of maximum degree < 4(k + 1)
in G. This bound is tight. Similar results hold for plane graphs.

Keywords: polyhedral maps, embeddings, light subgraphs, path,
star, 2-dimensional manifolds, surface.

2000 Mathematics Subject Classification: 05C10, 05C75, 52B10.

1. INTRODUCTION

In this paper all manifolds are compact 2-dimensional manifolds. We shall
consider graphs without loops and multiple edges. Multigraphs can have
multiple edges and loops. If a multigraph G is embedded in a manifold M
then the connected components of Ml — G are called the faces of G. If each
face is an open disc then the embedding is called a 2-cell embedding. If each
vertex of a 2-cell embedding has degree > 3 and each vertex of degree h is
incident with h different faces then G is called a map in M. If, in addition, G
is 3-connected and the embedding has representativity at least three, then G
is called a polyhedral map in M, see e.g. Robertson and Vitray [19] or Mohar
[17]. Let us recall that the representativity rep(G,M) (or the face width) of
a (2-cell) embedded graph G into a compact 2-manifold M is equal to the
smallest number k such that M contains a noncontractible closed curve that
intersects the graph G in k points.

Let Sy (Ng) be an orientable (a non-orientable) compact 2-dimensional
manifold (called also a surface , see [18]) of genus g (g, respectively). Let us
recall that the relationship between Euler characteristic and the genus of a
surface is the following

X(Sg) =2 —2g and x(Ng)=2-gq.

We say that H is a subgraph of a polyhedral map G if H is a subgraph of
the underlying graph of the map G.

The boundary of a face a of an embedded graph consists of all vertices
and edges incident with «.. Note that the boundary of « can be disconnected.
Let Dy,Do,---,Ds be the components of the boundary of a. Let W; be
the shortest closed walk induced by all edges of D;, and let 9(W;) be its
length, i.e., the number of edges met at the walk W; (edges met twice are
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counted twice). The degree of a face a is
degq(a) = Z o(W;).
i=1

Hence the degree degq(«) of a face a of a 2-cell embedding is the length of
its facial walk. Vertices and faces of degree ¢ are called i-vertices and i-faces,
respectively. The number of i-vertices and j-faces in a map is denoted by v;
and f;, respectively. For a map G let V(G), E(G) and F(G) be the vertex
set, the edge set and the face set of G, respectively. The degree of a vertex
A in G is denoted by deg(A) or deg(A) if G is known from the context. A
path and a cycle on k distinct vertices is defined to be the k-path and the
k-cycle, respectively. Pj will denote a k-path. The length of a path or a
cycle is the number of its edges.

A generalized s-star, s > 1, is a tree with a root Z of degree s; all
other vertices have degree < 2. The maximal paths starting in Z are called
beams. The symbol S;,7 > 0, denotes a generalized 3-star, all three beams
of it are paths with ¢ + 1 vertices (including the root). Obviously, Sy = K7,
and Sl = K173.

It is a consequence of Euler’s formula that each planar graph contains
a vertex of degree at most 5. It is well known that any graph embedded in
a surface Ml with Euler characteristic x (M) has minimum degree

(1) §(Q) < [MJ —: m(M), if M # S, and

0(G) <5 =:m(Sy), where Sy is the sphere.

or a proof see e.g. Sachs , p- .
F f Sachs [20 227
A further consequence of Euler’s formula is

Y (deg(A) = 6)+2 Y (deg(a) —3) = 6(—x(M)).

AeV(G) a€F(G)

For any graph G embedded in a surface M of Euler characteristic x(M) < 0
this implies

(2) if D geg(a)>6(deg(A4) — 6) > 6[x(M)| then §(G) < 5, and

(3) if G has more than 6|y (M)| vertices then §(G) < 6.

A theorem of Kotzig [15] states that every 3-connected planar graph contains
an edge with degree-sum of its endvertices being at most 13. This result
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was further developed in various directions and served as a starting point
for discovering many structural properties of embeddings of graphs. For
example Ivanco [6] has proved that every polyhedral map on S, contains an
edge with degree sum of their end vertices being at most 2g+13if0 < g <3
and at most 49+ 7, if g > 4. The bounds are best possible. For other results
in this topic see e.g. [1, 4, 14, 21].

2. THE GENERAL PROBLEM

In the past subgraphs have been investigated which are light in a family of
graphs (see our survey article [14]). There we have generalized this concept
to a light class £ of subgraphs in a family H of graphs.

Problem. Let H be a family of graphs and £ be a finite class of connected
graphs having the property that every member of £ is isomorphic to a proper
subgraph of at least one member of H. Let o(L,H) be the smallest integer
with the property that every graph G € H, which has a subgraph isomorphic
with a member of £, also contains a subgraph K, K ~ H, H € L, such that
for every vertex A € V(K)

deg(A4) < (L, H).

If such a ¢(L£,H) does not exist we write (L, H) = +oo0. If o(L,H) <
+oo we call the class L light in the family H. Obviously, if £ C L then
©(L,H) < ¢(L',H). The corresponding problem of a light subgraph H is
again obtained if £ = {H} is chosen. In this case let p({H}, H) = ¢(H, H).

3. RESULTS

A. Polyhedral maps

Let G(, p; M) denote the set of all polyhedral maps on the surface M of Euler
characteristic x(M) having minimum vertex degree at least ¢ and minimum
face degree at least p. The following theorem has been proved for the planes
So and Ny by Fabrici and Jendrol’ [1] and for 2-dimensional manifolds M
other than the planes by Jendrol’ and Voss [8].

Theorem 1 ([1], [8]). Let k be an integer, k > 1, and M a surface with
Euler characteristic x(M). Then
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(if) 2|5 - m(M) < (P, G(3,3;M)) < k-m(M), if M ¢ {So,Ni},
(i) w(H,G(3,3;M)) = oo for any connected graph H # Pj.

By the same arguments used in the proof of (iii) for the sphere Sy and the
projective plane Ny by Fabrici and Jendrol’ [1] it can be proved that a class
L of plane graphs is light in G(3,3; M) if and only if £ contains a path. So,
if £ contains Py then ¢(L£,G(3,3;M)) < ¢(Pg,G(3,3;M)). We will study
how small can ¢(L,G(3,3;M)) be if besides Py the class £ contains some
trees different from Pj.

The class 7; of all trees of order k contains a k-path. Obviously,
(7, G(3,3; M) = o(Pg,G(3, 3;M)) for k € {1,2,3}. For the sphere Sy
Fabrici and Jendrol’ [2] and for each surface M, Ml # Sy, Jendrol’ and Voss
[13] proved

Theorem 2 ([2], [13]). Let k be an integer, k > 4, and M a surface with
Euler characteristic x(M). Then

(1) ¢(Tk,G(3,3;50)) = ¢(Tx, G(3,3;N1)) = 4k + 3,
(ii) Pk;zj [L5+ 49;24X(M)J _ %] < o(Th,G(3,3; M) <
| (o + )T | i ¢ {0, ).

In the Theorem 1(i) not all vertices of a P;, must have the degree 5k. Really,
Madaras [16] improved Theorem 1(i) by showing

Theorem 3 ([16]). Let k be an integer, k > 2. Then each map of G(3,3;Sy)
containing a path Py has also a path Py such that one vertex has a degree
< 5k and all other k — 1 vertices have a degree < %

Let M be a surface of Euler characteristic x(M) and m(M) as defined in (1).
Using the arguments of Madaras [16] we can show that G contains at least
one tree from a family of specified trees with given degree constraints.

Theorem 4. Let M be a surface of Euler characteristic x(M). Let k > 1
and d > m(M) be integers. Let G € G(3,3;M) contain a k-path. Then G
contains at least one of the following subgraphs:

(i) a k-path of maximum degree < d in G, or
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(ii) a generalized s-star T,s < m(M), on d + 2 — m(M) wvertices with root
Z, where Z has a degree < k-m(M) in G and the mazximum degree of
T~A{Z} is <dinG.

%%M) + 1 vertices.

Ifd= Lgm(M)J then the generalized star T' contains a P.
Hence Theorem 4 implies the validity of the following result.

The generalized star T contains a path with 2

Theorem 5. Let M be a surface of Euler characteristic x(M) and k > 1 an
integer. Then each map G € G(3,3; M) containing a k-path, has a k-path Py,
with the property: besides one vertex Z all vertices have a degree < %m(M)
and the vertex Z has a degree < k-m(M) in G.

For the sphere m(Sp) = 5 holds and Theorem 5 implies the validity of
Theorem 3. If d = k- m(M) then the generalized star T' contains a Py not
meeting the root of 7. Hence Theorem 4 implies the validity of the upper
bound in Theorem 1. Interesting special variants of Theorem 4 are also
obtained for d = k and d = k + 4.

B. Large polyhedral maps

Let x(M) < 0 throughout section B.

For large maps of G(3,3; M) we await a smaller bound for the max-
imum degree of light paths. A large polyhedral map is one with a large
number of vertices or a large positive charge. A positive k-charge chi(G)
is defined chi(G) = 3 geq.(a)>61(de8a(A) — 6k). Let G(3,3; M, n(a)) and
G(3,3; M, ¢k (b)) denote the sets of the graphs G of G(3,3; M) with > a ver-
tices or a k-charge chy(G) > b, respectively. Let by denote the largest num-
ber of vertices in a connected graph with maximum degree < 6k containing
no path of k vertices. Obviously, b, < (6k)*/2+2.

Let 11,(M) := 3 - 104 (]x(M)| 4+ 1)3(by + 3(|x(M)| + 1)). We have proved

Theorem 6 ([9], [10]). For any surface M with Euler characteristic
x(M) < 0, any integer k > 1, any integer a > l(M) and any integer
b > Gklx(M),

. ) | 6k, if k=1 or kis even,

0 o(P g3 M) = { oy, T ES g e

(i) (P, G(3,3; M, cx (b)) = 5E,
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(i) @(H,G(3,3M,n(a))) = ¢(H,G(3,3:M, ¢, (a)) = oc for any H % P,
and any a.

In [9] we could show that ¢(Py,G(3,3;M,n(a))) < 6k even for the smaller
bound a > (14(k — 1)by + 6)|x(M)|. For the class 7 of all trees of order k
we could prove [11]

Theorem 7 ([11]). For any surface M with Euler characteristic x(M) <0,
any integer k > 3, and any integer a > (8k? + 6k — 6)|x(M)|

(i) ©(7x,G(3,3;M,n(a))) =4k + 4, and

(i) ©(Ti, G(3,3: M, cx(a))) = 4k + 3.

With the arguments of Madaras [16] we will prove: for the graphs of
G(3,3;M,n(a)) and G(3,3; M, ¢k (b)) with large a and b the Theorem 4 is
again valid, if m(M) is replaced by 6 or 5, respectively.

Theorem 8. Let M be a surface of Euler characteristic x(M) < 0. Let k,d

and a,b be integers with k > 1,d > 6, a > (14(k — 1)by + 6)|x(M)|, and

b > 6k|x(M)|. Let G1 € G(3,3;M,n(a)) and Gy € G(3,3; M, ¢k (b)) contain

a k-path. Let mq := 6 and mq := 5.

Then fori = 1,2 the map G; contains at least one of the following subgraphs:
(i) a k-path of mazximum degree < d in G;, or

(ii) a generalized s-star T,s < m; on d+ 2 —m; vertices with root Z, where

Z has a degree < k- m; in G; and the mazimum degree of T~ {Z} is

Finally we deal with light classes H # 7y, k > 1.

Since by Theorem 7 each polyhedral map G on M of large order contains
a tree of order k such that each vertex has a degree at most 4k +4, if £ > 3,
the map G also contains a P}, or a K3 with the same bound. Examples in
[11] show that the bound is best possible.

Theorem 9. For any surface M of Euler characteristic x(M) < 0 and any
integer k > 3 let a > (8k% + 6k — 6)|x(M)|. Then

(i) o({Pr, K13},G(3,3;M,n(a))) =4k + 4, and
(i) ¢({Px,K13},6(3,3; M, ci(a))) =4k + 3.
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Next the class {Px,S;}, i > 2, will be considered. If y(M) < 0, a >
6k (2b,+1)|x(M)| and i > & then Py, C S; and p({Ps, Si},G(3,3; M, n(a))) =
©({Pr},G6(3,3; M, n(a))). For different i we will prove the following theorem.

Theorem 10. Let M be a surface with Euler characteristic x(M), and let
k> 3,i > 1 be integers.

(i) If M is the sphere Sg or the projective plane Ny, then
({Pr, i}, G(3,3;50)) = o({Pr, Si}, G(3,3;N1)) < 4(k +1) — 1.
(ii) If x(M) <0, then for each integer b > 4(k + )| x(M)| it holds
e({Pr, Si},G(3,3; M, ¢ (b)) < 4(k + 1) — 1.
(iii) If x(M) <0, then for each integer a > (6k + 1)(2b, + 1)|x(M)| it holds

©({ Py, Si},G(3,3;M,n(a)) < 4(k+1).

Taking into the consideration the Theorems 1 and 6 we obtain tight bounds
in some subclasses of G(3,3; M).

Theorem 11. Let k and i be integers with k > 3 and i > 1. If M is the
sphere Sgy or the projective plane Ny, then

@({Pka Sl}’g(gv 3aSO)) = @({Pka Sl}’g(gv 3aN1)) = Hlln{4(/{? + Z) -1 5k}

Theorem 12. For any surface M with Euler characteristic x(M) < 0, any
integers k > 3,1 > 1, and b > 6k|x(M)| it holds:

©({Px,Si},G(3,3; M, ¢k (b)) = min{d(k + i) — 1; 5k}.

Theorem 13. For any surface M with Euler characteristic x(M) < 0, any
integers k > 3,1 > 1, and a > (M) it holds:

o({Pe, S;},G(3,3; M, n(a))) = { min{4(k + i); 6k} for even k,

min{4(k +1);6k — 2} for odd k.
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4. PROOF OF THEOREMS 4 AND 8

Assume there is a counterexample G to Theorem 4 or 8 having v = |V(G)|
vertices, where in Theorem 8 the number of vertices v > (14(k — 1)by +
6)|x(M)| or the positive k-charge

chi(G) = Y (degg(A) — 6k) > 6k[x(M)].
degq (A)>6k

Let G be a counterexample with the maximum number of edges among all
counterexamples having v vertices. A vertex A of the graph G is major
(minor) if its degree is > d + 1(< d, respectively). The assertions (1) — (3)
can be found in the introduction.

(4) Each path Py of k vertices contains a major vertex.
Hence G contains at least one major vertex.

(5) Each r-face a,r > 4, contains at most two major vertices; if o has
precisely two major vertices then they are adjacent.

Proof of (5).

Suppose G has an r-face with two nonadjacent vertices of degree > d + 1.
Since G is a polyhedral map we can join these two vertices by an edge. The
resulting embedding is again a counterexample but with one edge more, a
contradiction. [

Let H denote the subgraph of G induced by the major vertices, and let v(H)
be the number of vertices of H.

(6) The subgraph H contains a vertex Z of degree s := degy(Z) with
(i) s <m(M) if G € G(3,3;M), or
(i) s <6, if G € G(3,3;M,n(a)), x(M)

, 0, or
(i) s <5, if G € G(3,3; M, (b)), x(M) < 0.

<
<0

Proof of (6).

(i) This assertion follows from (1)(see the introduction).

(ii) Suppose there is a G € G(3,3; M, n(a)) with the subgraph H of major
vertices of G with minimum degree §(H) > 6. In Lemma 5 of [9] we have
proved that v(H) > 6|x(M)|. By (3) the subgraph H has v(H) < 6|x(M)|
vertices. This contradiction completes the proof of (ii).
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(iii) Suppose there is a G € G(3,3;M, ¢k (b)) with the subgraph H of
major vertices of G with minimum degree §(H) > 5. By (2) we have
> (degy(A) — 6) < 6|x(M)| where the sum is taken over all vertices A
of H with degg(A) > 6.

Since G is a polyhedral map the union of all faces incident with Z
forms a wheel with nave Z and cycle Cz; it may be that some vertices
of the cycle Cz are not joined with Z by an edge. By (5) each vertex
of Cz not adjacent with Z is a minor vertex. Hence all major vertices
of Cz are neighbours of Z. These neighbours partition Cz into degy(Z)
paths which have at most & — 1 minor vertices according (4). Therefore,

deg(Z) < k degy(Z). This together with chi(G) > 6k|x(M)|, 6(H) > 6
and EdegH(A)Zﬁ(degH(A) —6) < 6|x(M)| implies:

6k[X(M)| < chi(G) = Y (degg(A) —6k) < > (k degy(A) — 6k)

<k Y (degy(A)—6) < 6k[x(M)].
AeV(H)

This contradiction completes the proof of assertion (iii). |

The s neighbours Y1,Ys,...,Y; of Z in H are the only major vertices on
the cycle Cz. An upper bound for s is known by (6). If Cz has no major
vertices then let s := 1 and Y7 be an arbitrary neighbour of Z on Cy.
The cycle Cz contains altogether deg(Z) > d + 1 neighbours of Z. Next
Cz\{Y1,...,Ys} consists of s paths pi,pa,...,ps of minor vertices. These
paths and Z induce a subgraph which contains a generalized star T' with
root Z of degree deg(Z) < s and containing all > deg(Z) —s>d+1—s
minor neighbours of Z. By (4) each path p; has at most k—1 vertices. Hence
the cycle Cz has at most s - k vertices and deg,(Z) < s- k. Consequently,
G contains a generalized star T' of order d + 2 — s with root Z of degrees
degr(Z) < s and degn(Z) < s - k, all other vertices of T" have a degree
< d in G. This contradicts our assumption that G is a counterexample to
Theorem 4 or 8. Thus the proof of the Theorems 4 and 8 is complete. [ |

5. PROOF OF THEOREMS 10-13 — UPPER BOUNDS

Theorem 1, 6, and 10 imply the validity of the upper bounds in Theorems
11-13. Hence it suffices to prove Theorem 10.
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Ifi > % then P, C S; and p({Px,Si}, L) = ¢({Px}, L) for each class L
of graphs. This bound is < 6k in each class £ we have considered. Hence
©({Pg, Si}, L) < 6k < 4(k + 1), and it suffices to accomplish the proof for
alli < B < &

The proof follows the ideas of [1] and [13]. Suppose that there is a
counterexample to one version of our theorem having v vertices. Let G be a
counterexample with the maximum number of edges among all counterex-

amples having v vertices. Obviously, G contains a Py or an S;.

(A) If G is a counterexample to Theorem 10(i) then M is the sphere S¢ or
is the projective plane N; and each P and each S; of G contains a vertex
of degree > 4(k +1i).

(B) If G is a counterexample to Theorem 10(ii) then x(M) < 0, the map G
has a positive k-charge chi(G) > 4(k + i)|x(M)|, and each Py and each S;
of G contains a vertex of degree > 4(k + ).

(C) If G is a counterexample to Theorem 10(iii) then x(M) < 0, the map G
has an order v(G) > (6k + 1)(2bx + 1)|x(M)| and each Py and each S; of G
contains a vertex of degree > 4(k +1i) + 1.

In the cases (A) and (B) a vertex A is a minor vertezrif degq(A) < 4(k+i)—1
and is a magjor vertex if deg,(A) > 4(k+1). In case (C) a vertex A is a minor
vertex if deg;(A) < 4(k+1) and is a magor vertex if deg,(A) > 4(k+1)+ 1.
Since G is a counterexample it holds.

(1) Each k-path and each generalized star S; in G' contains a major vertex.

(2) Every r-face a,r > 4, of G is incident only with minor vertices.

Proof of (2). Suppose there is a major vertex B incident with an r-face
a,7 > 4. Let C' be a diagonal vertex on « with respect to B i.e., BC
is no edge of the boundary of . Because G is a polyhedral map we can

insert the edge BC into the r-face o The resulting embedding is again a
counterexample but with one edge more, a contradiction. [ |

Let H = H(G) and H' = H'(G) be the subgraphs of G induced on all major
or minor vertices of GG, respectively.

(3) H is not empty.

Proof of (3). Since G is a counterexample it contains a k-path Pj or a
3-star S;. By (1) Py or S; contains a major vertex. ]

(2) directly implies:
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(4) All faces incident with a major vertex X induce a wheel with nave X
and a cycle C of length > 4(k + i) consisting of all neighbours of X. The
cycle C contains at least 5 major vertices.

Proof of (4). The first assertion is clear. If C would contain at most 4
major vertices then C would also contain at most 4 paths of < k — 1 minor
vertices and C would have a length < 4 4+ 4(k — 1) = 4k < 4(k +4). This
contradiction proves (4). ]

(5) By (4) the minimum degree of H is at least 5.

Note that a triangle is always a 3-face. For the following we need Lemma 1.

|
Lemma 1. The three vertices of each triangle D of H are joint with the
minor vertices inside D by at most 2(k — 1+ 1) — 1 edges.

Proof. Let D = [PQR)] be a triangle of H. Let K denote the subgraph
of G induced by the minor vertices of G lying in the interior of [PQR).
By (2) all faces incident with P induce a wheel Wp with nave P and a
cycle containg all neighbours of P. Correspondingly, @) and R are the naves
of a wheel Wg and Wg, respectively. Let p,q, and r denote the path of
WpNK,WgNK, and WrN K, respectively. Then p,q and ¢, and r, p have
a common endvertex @', R, and P’, respectively (a sketch of the situation
is depicted in Figure 1).




LiGHT CLASSES OF GENERALIZED STARS IN ... 97

Case 1. Let p and ¢ have precisely one common vertex, namely, Q’. Then
pUq is a path of K having < k — 1 vertices. Hence the paths p U g and r
having at most k — 1 vertices each, and P, @, R are joined by < 2k — 1 <
2(k — 1+ 1) edges with K.

Case 2. Let p,q and ¢,r and r,p have a second common vertex. Let
Q", and R”, and P” denote the last common vertex of p,q, and ¢,r, and
r,p by walking along p, or ¢, or r with start in Q’, or R, or P/, respectively.
Since K does not contain a generalized star S;, w.l.o.g. the paths R”qR’ and
R'rR” have at most 7 vertices. The paths P'rR"” and R"qQ’" have precisely
one common vertex, namely, R”. Hence P'rR"qQ’" is a path of K with
< k — 1 vertices. The path p has also < k — 1 vertices, and R'rR” — {R"}
and R"qR' — {R"} have at most i — 1 vertices each. Therefore, P,Q, R are
joined with K by < (k—1)+(k—1)+1+(G—-1)+(i—-1)=2(k—1+1i)—1
edges with K. [ |

Let a be a face of H. Let Dy, Do, --- , Ds be the components of the boundary
of a. Let W; be the shortest closed walk induced by all edges of D;, and let
O(W;) be its length. Then the degree of the face a is deg (o) = > 7, O(W;).
Since G is a polyhedral map any three consecutive vertices on the boundary
of « (i.e., in the walk W; for some i) are pairwise different. Hence O(W;) > 3,
and

(6) degp(a) > 3s > 3.

Let X, Y, Z be three consecutive vertices on the boundary of . We call XY Z
a corner of a at the vertex Y. Assertion (4) implies: In G the vertices X
and Z are joined by a path ¢ completely lying in a and containing all minor
neighbours of Y in this corner (Y can have some other minor neighbours
at some other corners of « at the vertex Y, because Y can appear on the
boundary of o more than once).

The path ¢~ {X, Z} consists of all minor neighbours of Y in this corner.

(7) In each corner XY Z of o at Y the vertex Y has at most k¥ — 1 minor
neighbours. They form a path of H'(G).

It is obvious that
(8) each face a of H has precisely degy () corners.

Let w(a) denote the number of edges joining the minor vertices inside «
with all major vertices of H (i.e., the major vertices on the boundary of «).
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With (8) it follows:

(9) The minor vertices inside « are joined with all major vertices by w(a) <
(k —1)degy(a) edges.

Thus the number w of all edges of G joining minor vertices with major
vertices is

10 w=" > wla)< > (k—1)degy(a).

aEF(H) a€F(H)
By Lemma 1 we have a better bound if « is a 2-cell 3-face (triangle).
(11) If « is a triangle of H then w(a) < 2(k—1+14) — 1.

We proceed in three steps. First, we assign to each face a of H the charge
w(a). Next, we triangulate each face a of H by introducing diagonals into
the face « (a diagonal is an edge joining two vertices of the boundary of
a such that no 1-face or 2-face is generated). By this method « is splitted
into at least ¢t — 2 triangles, ¢t = degy (). The obtained semitriangulation
H* can have loops or muliple edges (A triangulation (semitriangulation) is
an embedding of a graph (multigraph) such that each face is a triangle). In
the third step the charge w(a) is equally distributed to the triangles inside
a. The charge of a triangle D of H* is denoted by w*(D). Distributing the
old charges no charge has been lost. Hence,

(R2)w= > w)= > w(D).
acF(H) DeF(H*)
(13) Each triangle D of H* has a charge w*(D) < 2(k —1+1) — 1.
Proof of (13). Let a be a face of H. We consider two cases. ]

Case 1. Let t := degy(a) > 4. Then with (9) each triangle D inside «
has a charge

20k —1) <2(k —1+1) — 1.

IN

IN

(Note ¢ > 1).
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Case 2. Let t = degy(a) = 3.

If v is a triangle (2-cell 3-face) of H then « is also a triangle of H*. Hence
with (11) the charge w*(a) = w(a) < 2(k — 1 +1).

Next let « not be a triangle (2-cell 3-face). Then at least one diagonal d
can be added so that no new face is created. The diagonal is counted twice
on the boundary of o, i.e., degy, 4(a) = 5. The charge w(a) < 3(k —1) is
equally distributed to at least three (new) triangles of H*, each receiving a
charge < # < @ =k—1<2(k—1+14)—1. Thus the proof of (13)
is complete. [ |

Properties (12) and (13) imply:

(14) w= ¥ w@)= ¥ w(D)<@k-1+i)—1)fH").

aEF(H) DeF(H*)

where f(H*) = |F(H")|.
The semitriangulation H* satisfies the equation

2e(H*) =3f(H"),
and Euler’s formula

v(H") —e(H") + f(H") = x(M).

Hence

(15) fH?) =2(v(H") = x(M)),
and

(16) e(H") = 3(v(H") — x(M)).

The number of the edges joining vertices of H and the number w of the edges
joining minor vertices with major vertices in G contribute to the degree sum
> aev(m) degg(A). Consequently, with (14) it holds

Z deg (A Z degy (A

A€V (H) A€V (H)

< Y degy(A) + (2(k — 1 41) — 1) f(H).

AEV(H
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With (15)

(17) > degg(A) < 2e(H) + (4(k — 1+ 1) — 2)(v(H*) — x(M)).
AeV (H)

With e(H) < e(H*) and (16) we have

> degg(A) < (64 4(k — 1 +14) — 2)(v(H*) — x(M)), and
A€V (H)
(18) D degg(A) <Ak +i)(v(H?) — x(M)).
AcV(H)

The inequality (18) implies with v(H) = v(H™) the existence of a major
vertex B of degree

x(M) ] ‘

(19) dege(B) < 4(k + 1) (1 - )

If M = Sg or Ny then x(M) > 1 and by (5) H has at least 6 vertices.
Moreover (18) implies the existence of a major vertex B of degree deg(B) <
4(k+1i)—1. But by condition (A) each major vertex has a degree > 4(k+1).
This contradiction completes the proof of Theorem 10(i). ]

Next Theorem 10(ii) can be proved in the following way. By condition (B)
with 6k > 4(k + i) (i.e., with i < &) and x(M) < 0

> (degg(A) —4(k+id) > Y (degg(A) —6k)
deg (A)>4(k+1) deg(A)>6k
= chi(G) > 4(k + 1) [x(M)]
With
> (degg(A)—4(k+i)) = < > degG(A)> —4(k+i)v(H)
degq (A)>4(k+1) degq (A)>4(k+1)

this implies

> degg(A) > 4(k +i)(v(H™) + [x(M)])
(20) deg(A)>4(k+i)

= 4k +i)(v(H") = x(M)).
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The assertion (20) contradicts (18). Thus the proof of Theorem 10(ii) is
complete. m

Finally Theorem 10(iii) will be proved. For these purposes we need an upper
bound for the number v(H’) of vertices of H' in dependence on f(H*). Recall
that H' is the subgraph of G induced by the minor vertices of G. Let [ denote
the number of components of H’. Since G is 3-connected each component
K of H' contains the minor vertices of at least three corners of a face of H.
The number of corners of H is not greater than the number of corners of H*,
and H* has at most 3f(H"*) corners. Hence 3] < 3f(H*), and | < f(H™).
Since each component K of H' has no path with k vertices and each (minor)
vertex of K has a degree < 4(k + i) < 6k in G the number of vertices of K
is v(K) < b, and the number of vertices of H' is v(H') <1-b < f(H*) - b.
Therefore,

v(G) = v(H) +v(H') < v(H") + f(H) - by
Assertion (15) implies

o(G) < w(H) 4 2(0(H*) + [x(MD)) - by < 2(0(H) + x0)) by + 5 )

With the hypothesis v(G) > (6k + 1)(2bg + 1)|x(M)| the number of vertices
of H* is

1
o) 2 o ) » 2D gy,
and
2 o(H) > S| = 4(k -+ D)x(LD).

(19) and (21) imply: there is a vertex B € V(H) such that its degree
Ak + 1) (M)
v(H*)

Ak +8) [x(M)|
Ak + ) [x (M)

degn(B) < 4(k+1)+
(22)

< 4k +1i) + = 4k +14) + 1.

Therefore, the degree of the major vertex B in G is < 4(k +i). But by
the condition (C) each major vertex has a degree > 4(k + i) + 1. This
contradiction completes the proof of Theorem 10(iii). [ ]
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6. PROOF OF THEOREM 13 FOR POLYHEDRAL MAPS — LOWER BOUND

The main goal of this part is to prove that ¢({Pg, Si},G(3,3; M, n(a))) >
4k +4i, k>3, x(M) <0, that is to construct a large polyhedral map G on
surface Ml with Euler characteristic x(M) < 0 so that each path Py with &k
vertices and each generalized 3-star S; contains a vertex of degree at least
4k + 4i. This construction is very similar to our construction presented in
Sections 3 and 4 of [11].

Let P, x P, be the cartesian product of two n-paths with vertex set
{(x,y)|z,y € Z,1 <2z <n,1 <y <n}and edge set {{(z,y), (x,y +1)}1 <
r<nl<y<n-1}U{{(z,y),z+Ly}Hl <z <n-11<y<n}
Add the edge set {{(z,y),(z+1,y—1)}1 <z <n-1,2<y<n}. Theso
obtained plane graph with 2(n — 1)? triangles and an outer 4(n — 1)-face is
denoted by R,.

Into each triangle D of the obtained graph we insert a generalized 3-
star S(r), 0 < r < k — 2i, consisting of a central vertex Z and three paths
p1,p2 and ps starting in Z, the path p; of length k — (¢ + r), the path ps of
length 7 + r, and the path ps of length ¢. Let the paths p1,po, and ps be in
this anticlockwise cyclic order in D. If Dy, = ((z,y), (x + 1,y), (z,y + 1))
then (z,y) is joined to all vertices of p; and pa, (x + 1,y) is joined to all
vertices of ps and ps, and (z,y + 1) is joined to all vertices of ps and p; (see
Figure 2). We do the same in D, = ((z,y),(z — 1,y),(z,y — 1)). The
resulting plane graph is denoted by Ry.

xy+1)

xy)

Figure 2
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The situation is presented in Figure 3, where in each triangle D an arrow
indicates which vertex of D is joined with all vertices of p; and py. In this
part of the proof the labels 0 and & — 2¢,--- have no meaning. For the
further proof of the lower bound 4(k + i) choose a fixed r, 0 < r < k — 2i.

V4 Vi 7 Z 7

4
0 e
v Nv v \lv \lv
NN N

0 e<)'

¢ \lv \l¢ P
of-/o ZO 4« % 7

0 s x

v Xy Rl v \J¢

Figure 3

The inserted trees have k — (i +7) + (i +r) +i— 2 = k + 1 — 2 vertices, and
the degree of each inner vertex (z,y), 2 <z,y <n—11is

deg(z,y) =6 + 2((k—(i+7))+(@+7r)—1)
+2(G+r)+i—1)
420+ (k= (i+7) —1) = 4k + 4i.

Deleting the outer face of R} and identifying opposite sides of the ”quadran-
gle” results in a toroidal map T),, and reversing one side of this ”quadrangle”
and then identifying opposite sides of this ”quadrangle” results in a map @,
on the Klein bottle, respectively, both satisfying the degree requirements.
The required polyhedral map on an orientable surface S, of genus g > 2
will be constructed from the toroidal triangulation 7} with the triangulation
T,,. We choose 2g — 2 triangles of T}, so that any two of them have a distance
> 2 in T, (this is possible if n is large enough). In T, from each of these
triangles D we delete the interior part so that the bounding 3-cycle of D
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bounds now a hole of the torus. We join repeatedly two holes of T)¥ by a
handle, and g — 1 handles are added to the torus in this way.

The handles are triangulated in the following way: if [X;X5X3] and
[Y1Y2Y3] are the bounding cycles of some handle which are around the han-
dle in the same cyclic order then add the cycle [X;Y; X2Y5X3Y3]. In each
of the new triangles a generalized 3-star S(r) can be placed in such a man-
ner that the obtained polyhedral triangulation of S, fulfils also the degree
requirements.

The required polyhedral map on an unorientable surface N, of genus
g > 3 will be constructed from the triangulation @)}, of the Klein bottle with
triangulation Q). We choose ¢ — 2 triangles of (), so that any two of them
have a distance > 4 in Q.

Let D be one of these triangles with bounding cycle [X;X2X3] and
Dy, D5, D3 the three neighbouring triangles in @, with bounding cyles
[Y1X3Xs], [Y2X1X3], and [Y3X2X1] (see Figure 4). In Q} we delete the
inserted trees of D, D1, Do, D3 and the separating edges X1 X», X2 X3 and
X3X1. A greater face F' with bounding 6-cycle C = [X1Y3X2Y1X3Y5] is
obtained (for the notation see Figure 5).

In F a crosscap is placed and the edges X1 Xs, XoX3, and X3X; are
again added so that the ”interior” of C is subdivided into three quadrangles
(see Figure 5). These quadrangles are subdivided by the edges X;Y;, i =
1,2,3 (see Figure 6). Finally in each of the new triangles a generalized
3-star S(r) can be placed in such a manner that the obtained polyhedral
triangulation of N, fulfils the degree requirements.

Figure 4 Figure 5 Figure 6
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7. PROOF OF THEOREMS 11 AND 12 FOR POLYHEDRAL MAPS —
LowER BOUNDS

Let M be a surface with Euler characteristic x(M). Firstly we construct
a polyhedral graph of the plane with degree sum Zj>4k+4 (j —6k)v; >
(4k + 44)|x(M)|, k > 3, such that each subgraph Py and each subgraph S;
contains a vertex of degree at least 4(k + i) — 1, £ > 3. Our method used
here is very similar to that one used in [12]. We start with a plane graph
Ry 11 with n > (k4 1)|x(M)| + 3k as described in Section 6. Next the outer
4n-face is deleted and the opposite ”vertical sides” are identified, i.e., the
two paths (1,1),(1,2),...,(1,n+1) and (n+1,1),(n+1,2),...,(n+1,n+1)
are identified in the given order.

The result is a triangulated cylinder Z*. A plane polyhedral graph Z,
is obtained by adding a bottom n-face Fy and a top n-face F5 which are the
only n-faces of a Z,,, all other faces of Z,, are triangles. We use the same
notation as in R,,. If in all triangles of Z,, a generalized 3-star S(r) with
a fixed r is inserted then all inner vertices of Z,, have the degree 4(k + 7).
For instance choose r = 0. We want to increase the degrees of the ver-
tices of the boundaries of Z,,, i.e., for the vertices (1,1),(1,2),...,(1,n) and
(n+1,1),(n+1,2),...,(n+1,n). In order to do this we vary r so that from
each inner vertex near to these boundaries a degree unit is transferred to
one of these boundaries. We achieve this in the following way: According
to Figure 3 insert the 3-star S(k — 2i) into Dj ;, the 3-star S(k — 2i — 1)
into D) ,,..., the 3-star S(0) into D] ; o, for all 2,1 <z < n. Ac-
cording to Figure 3 insert the 3-star S(k — 2i) into Dy 41, the 3-star
S(k —2i — 1) into Dgp, ..., the 3-star S(0) into Dy n_(x—2i)ar, for all
2 <z < n+ 1. Into all other triangles insert the 3-star S(0) according
to Figure 3.

By the construction the vertices (z,y), 1 < z < n, 2+ (k — 2i) <
y < n — (k — 2i) have degree 4(k + i). The vertices (z,y),1 < z < n,
2<y<k—2i+lorn—(k—2i)+1 <y < nhave the degree 4(k+i)—1. The
vertices on the boundaries, i.e., the vertices (z,1) and (z,n+1), 1 <z <n
have the degree 3k 4+ 1. In order to complete our construction we put into
F; a new vertex X; and join X; with all bounding vertices of F;, ¢ = 1,2. In
each new triangle A a k-path p of Fy and F5 is inserted. One endvertex of
p is joined with all three vertices of A, and all other vertices of p are joined
with each of the two remaining vertices of A. In the obtained triangulation
Z* the vertices bounding F; have degree 3k + 1+ 3 + 2(k — 1) — 2 = bk,
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and X; has degree deg X; > 2n > 2(k + 7)|x(M)| + 6k. Thus chi(Z}*) >
(deg X1 — 6k) + (deg X9 — 6k) > 4(k + i)|x(M)|.

Next the wanted polyhedral maps of M will be constructed. If M is an
orientable 2-manifold S, of genus g then g handles have to be added. If
M is a nonorientable 2-manifold N, of genus ¢ then ¢ crosscaps have to be
added. In both cases this is accomplished in the same way as in Section 6.
The addition of g handles or of ¢ crosscaps causes no problems according
Section 6.
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