Discussiones Mathematicae Graph Theory 24 (2004) 85–107

# LIGHT CLASSES OF GENERALIZED STARS IN POLYHEDRAL MAPS ON SURFACES

STANISLAV JENDROL'

Department of Geometry and Algebra P.J. Šafárik University Jesenná 5, 041 54 Košice, Slovakia

 $\mathbf{e}\text{-}\mathbf{mail:}$ jendrolkosice.upjs.sk

AND

Heinz-Jürgen Voss †

Department of Algebra, Technical University Dresden Mommsenstrasse 13, D-01062 Dresden, Germany

 $\mathbf{e\text{-mail:}}$ vossmath.tu-dresden.de

Dedicated to Professor Hanjo Walther on the occasion of his 60th birthday

### Abstract

A generalized s-star,  $s \ge 1$ , is a tree with a root Z of degree s; all other vertices have degree  $\le 2$ .  $S_i$  denotes a generalized 3-star, all three maximal paths starting in Z have exactly i + 1 vertices (including Z). Let  $\mathbb{M}$  be a surface of Euler characteristic  $\chi(\mathbb{M}) \le 0$ , and  $m(\mathbb{M}) := \lfloor \frac{5+\sqrt{49-24\chi(\mathbb{M})}}{2} \rfloor$ . We prove:

(1) Let  $k \geq 1, d \geq m(\mathbb{M})$  be integers. Each polyhedral map G on  $\mathbb{M}$  with a k-path (on k vertices) contains a k-path of maximum degree  $\leq d$  in G or a generalized s-star  $T, s \leq m(\mathbb{M})$ , on  $d+2-m(\mathbb{M})$  vertices with root Z, where Z has degree  $\leq k \cdot m(\mathbb{M})$  and the maximum degree of  $T \setminus \{Z\}$  is  $\leq d$  in G. Similar results are obtained for the plane and for large polyhedral maps on  $\mathbb{M}$ .

(2) Let k and i be integers with  $k \ge 3, 1 \le i \le \frac{k}{2}$ . If a polyhedral map G on M with a large enough number of vertices contains a k-path then G contains a k-path or a 3-star  $S_i$  of maximum degree  $\le 4(k+i)$  in G. This bound is tight. Similar results hold for plane graphs.

**Keywords:** polyhedral maps, embeddings, light subgraphs, path, star, 2-dimensional manifolds, surface.

2000 Mathematics Subject Classification: 05C10, 05C75, 52B10.

# 1. INTRODUCTION

In this paper all manifolds are compact 2-dimensional manifolds. We shall consider graphs without loops and multiple edges. Multigraphs can have multiple edges and loops. If a multigraph G is embedded in a manifold  $\mathbb{M}$ then the connected components of  $\mathbb{M} - G$  are called the *faces* of G. If each face is an open disc then the embedding is called a 2-*cell embedding*. If each vertex of a 2-cell embedding has degree  $\geq 3$  and each vertex of degree h is incident with h different faces then G is called a *map* in  $\mathbb{M}$ . If, in addition, Gis 3-connected and the embedding has representativity at least three, then Gis called a *polyhedral map* in  $\mathbb{M}$ , see e.g. Robertson and Vitray [19] or Mohar [17]. Let us recall that the *representativity*  $\operatorname{rep}(G,\mathbb{M})$  (or the *face width*) of a (2-cell) embedded graph G into a compact 2-manifold  $\mathbb{M}$  is equal to the smallest number k such that  $\mathbb{M}$  contains a noncontractible closed curve that intersects the graph G in k points.

Let  $\mathbb{S}_g(\mathbb{N}_q)$  be an orientable (a non-orientable) compact 2-dimensional manifold (called also a surface, see [18]) of genus g(q), respectively). Let us recall that the relationship between Euler characteristic and the genus of a surface is the following

$$\chi(\mathbb{S}_q) = 2 - 2g$$
 and  $\chi(\mathbb{N}_q) = 2 - q$ .

We say that H is a *subgraph* of a polyhedral map G if H is a subgraph of the underlying graph of the map G.

The boundary of a face  $\alpha$  of an embedded graph consists of all vertices and edges incident with  $\alpha$ . Note that the boundary of  $\alpha$  can be disconnected. Let  $D_1, D_2, \dots, D_s$  be the components of the boundary of  $\alpha$ . Let  $W_i$  be the shortest closed walk induced by all edges of  $D_i$ , and let  $\partial(W_i)$  be its length, i.e., the number of edges met at the walk  $W_i$  (edges met twice are

86

counted twice). The degree of a face  $\alpha$  is

$$\deg_G(\alpha) = \sum_{i=1}^s \partial(W_i).$$

Hence the degree  $\deg_G(\alpha)$  of a face  $\alpha$  of a 2-cell embedding is the length of its facial walk. Vertices and faces of degree *i* are called *i*-vertices and *i*-faces, respectively. The number of *i*-vertices and *j*-faces in a map is denoted by  $v_i$ and  $f_j$ , respectively. For a map G let V(G), E(G) and F(G) be the vertex set, the edge set and the face set of G, respectively. The degree of a vertex A in G is denoted by  $\deg_G(A)$  or  $\deg(A)$  if G is known from the context. A path and a cycle on k distinct vertices is defined to be the k-path and the k-cycle, respectively.  $P_k$  will denote a k-path. The length of a path or a cycle is the number of its edges.

A generalized s-star,  $s \ge 1$ , is a tree with a root Z of degree s; all other vertices have degree  $\le 2$ . The maximal paths starting in Z are called beams. The symbol  $S_i, i \ge 0$ , denotes a generalized 3-star, all three beams of it are paths with i + 1 vertices (including the root). Obviously,  $S_0 = K_1$ , and  $S_1 = K_{1,3}$ .

It is a consequence of Euler's formula that each planar graph contains a vertex of degree at most 5. It is well known that any graph embedded in a surface  $\mathbb{M}$  with Euler characteristic  $\chi(\mathbb{M})$  has minimum degree

(1) 
$$\delta(G) \leq \left\lfloor \frac{5+\sqrt{49-24\chi(\mathbb{M})}}{2} \right\rfloor =: m(\mathbb{M}), \text{ if } \mathbb{M} \neq \mathbb{S}_0, \text{ and}$$
  
 $\delta(G) \leq 5 =: m(\mathbb{S}_0), \text{ where } \mathbb{S}_0 \text{ is the sphere.}$ 

(For a proof see e.g. Sachs [20], p. 227).

A further consequence of Euler's formula is

$$\sum_{A \in V(G)} (\deg(A) - 6) + 2 \sum_{\alpha \in F(G)} (\deg(\alpha) - 3) = 6(-\chi(\mathbb{M})).$$

For any graph G embedded in a surface M of Euler characteristic  $\chi(\mathbb{M}) \leq 0$  this implies

- (2) if  $\sum_{\deg(A)>6} (\deg(A)-6) > 6|\chi(\mathbb{M})|$  then  $\delta(G) \leq 5$ , and
- (3) if G has more than  $6|\chi(\mathbb{M})|$  vertices then  $\delta(G) \leq 6$ .

A theorem of Kotzig [15] states that every 3-connected planar graph contains an edge with degree-sum of its endvertices being at most 13. This result was further developed in various directions and served as a starting point for discovering many structural properties of embeddings of graphs. For example Ivančo [6] has proved that every polyhedral map on  $\mathbb{S}_g$  contains an edge with degree sum of their end vertices being at most 2g+13 if  $0 \le g \le 3$ and at most 4g+7, if  $g \ge 4$ . The bounds are best possible. For other results in this topic see e.g. [1, 4, 14, 21].

# 2. The General Problem

In the past subgraphs have been investigated which are light in a family of graphs (see our survey article [14]). There we have generalized this concept to a light class  $\mathcal{L}$  of subgraphs in a family  $\mathcal{H}$  of graphs.

**Problem.** Let  $\mathcal{H}$  be a family of graphs and  $\mathcal{L}$  be a finite class of connected graphs having the property that every member of  $\mathcal{L}$  is isomorphic to a proper subgraph of at least one member of  $\mathcal{H}$ . Let  $\varphi(\mathcal{L}, \mathcal{H})$  be the smallest integer with the property that every graph  $G \in \mathcal{H}$ , which has a subgraph isomorphic with a member of  $\mathcal{L}$ , also contains a subgraph  $K, K \simeq H, H \in \mathcal{L}$ , such that for every vertex  $A \in V(K)$ 

$$\deg_G(A) \le \varphi(\mathcal{L}, \mathcal{H}).$$

If such a  $\varphi(\mathcal{L}, \mathcal{H})$  does not exist we write  $\varphi(\mathcal{L}, \mathcal{H}) = +\infty$ . If  $\varphi(\mathcal{L}, \mathcal{H}) < +\infty$  we call the class  $\mathcal{L}$  light in the family  $\mathcal{H}$ . Obviously, if  $\mathcal{L}' \subseteq \mathcal{L}$  then  $\varphi(\mathcal{L}, \mathcal{H}) \leq \varphi(\mathcal{L}', \mathcal{H})$ . The corresponding problem of a light subgraph H is again obtained if  $\mathcal{L} = \{H\}$  is chosen. In this case let  $\varphi(\{H\}, \mathcal{H}) = \varphi(H, \mathcal{H})$ .

# 3. Results

# A. Polyhedral maps

Let  $\mathcal{G}(\delta, \rho; \mathbb{M})$  denote the set of all polyhedral maps on the surface  $\mathbb{M}$  of Euler characteristic  $\chi(\mathbb{M})$  having minimum vertex degree at least  $\delta$  and minimum face degree at least  $\rho$ . The following theorem has been proved for the planes  $\mathbb{S}_0$  and  $\mathbb{N}_1$  by Fabrici and Jendrol' [1] and for 2-dimensional manifolds  $\mathbb{M}$ other than the planes by Jendrol' and Voss [8].

**Theorem 1** ([1], [8]). Let k be an integer,  $k \ge 1$ , and  $\mathbb{M}$  a surface with Euler characteristic  $\chi(\mathbb{M})$ . Then

LIGHT CLASSES OF GENERALIZED STARS IN ...

- (i)  $\varphi(P_k, \mathcal{G}(3, 3; \mathbb{S}_0)) = \varphi(P_k, \mathcal{G}(3, 3; \mathbb{N}_1)) = 5k$ ,
- (ii)  $2\lfloor \frac{k}{2} \rfloor \cdot m(\mathbb{M}) \le \varphi(P_k, \mathcal{G}(3, 3; \mathbb{M})) \le k \cdot m(\mathbb{M}), \text{ if } \mathbb{M} \notin \{\mathbb{S}_0, \mathbb{N}_1\},\$
- (iii)  $\varphi(H, \mathcal{G}(3, 3; \mathbb{M})) = \infty$  for any connected graph  $H \neq P_k$ .

By the same arguments used in the proof of (iii) for the sphere  $\mathbb{S}_0$  and the projective plane  $\mathbb{N}_1$  by Fabrici and Jendrol' [1] it can be proved that a class  $\mathcal{L}$  of plane graphs is light in  $\mathcal{G}(3,3;\mathbb{M})$  if and only if  $\mathcal{L}$  contains a path. So, if  $\mathcal{L}$  contains  $P_k$  then  $\varphi(\mathcal{L}, \mathcal{G}(3,3;\mathbb{M})) \leq \varphi(P_k, \mathcal{G}(3,3;\mathbb{M}))$ . We will study how small can  $\varphi(\mathcal{L}, \mathcal{G}(3,3;\mathbb{M}))$  be if besides  $P_k$  the class  $\mathcal{L}$  contains some trees different from  $P_k$ .

The class  $\mathcal{T}_k$  of all trees of order k contains a k-path. Obviously,  $\varphi(\mathcal{T}_k, \mathcal{G}(3,3;\mathbb{M})) = \varphi(P_k, \mathcal{G}(3, 3;\mathbb{M}))$  for  $k \in \{1, 2, 3\}$ . For the sphere  $\mathbb{S}_0$ Fabrici and Jendrol' [2] and for each surface  $\mathbb{M}, \mathbb{M} \neq \mathbb{S}_0$ , Jendrol' and Voss [13] proved

**Theorem 2** ([2], [13]). Let k be an integer,  $k \ge 4$ , and  $\mathbb{M}$  a surface with Euler characteristic  $\chi(\mathbb{M})$ . Then

(i)  $\varphi(\mathcal{T}_k, \mathcal{G}(3, 3; \mathbb{S}_0)) = \varphi(\mathcal{T}_k, \mathcal{G}(3, 3; \mathbb{N}_1)) = 4k + 3,$ 

(ii) 
$$\left\lfloor \frac{2k+2}{3} \right\rfloor \left( \left\lfloor \frac{5+\sqrt{49-24\chi(\mathbb{M})}}{2} \right\rfloor - \frac{3}{2} \right) \leq \varphi(\mathcal{T}_k, \mathcal{G}(3, 3; \mathbb{M})) \leq \left\lfloor (k+1) \frac{5+\sqrt{49-24\chi(\mathbb{M})}}{3} \right\rfloor \text{ if } \mathbb{M} \notin \{\mathbb{S}_0, \mathbb{N}_1\}.$$

In the Theorem 1(i) not all vertices of a  $P_k$  must have the degree 5k. Really, Madaras [16] improved Theorem 1(i) by showing

**Theorem 3** ([16]). Let k be an integer,  $k \ge 2$ . Then each map of  $\mathcal{G}(3,3;\mathbb{S}_0)$  containing a path  $P_k$  has also a path  $P_k$  such that one vertex has a degree  $\le 5k$  and all other k-1 vertices have a degree  $\le \frac{5k}{2}$ .

Let  $\mathbb{M}$  be a surface of Euler characteristic  $\chi(\mathbb{M})$  and  $m(\mathbb{M})$  as defined in (1). Using the arguments of Madaras [16] we can show that G contains at least one tree from a family of specified trees with given degree constraints.

**Theorem 4.** Let  $\mathbb{M}$  be a surface of Euler characteristic  $\chi(\mathbb{M})$ . Let  $k \geq 1$ and  $d \geq m(\mathbb{M})$  be integers. Let  $G \in \mathcal{G}(3,3;\mathbb{M})$  contain a k-path. Then G contains at least one of the following subgraphs:

(i) a k-path of maximum degree  $\leq d$  in G, or

(ii) a generalized s-star  $T, s \leq m(\mathbb{M})$ , on  $d + 2 - m(\mathbb{M})$  vertices with root Z, where Z has a degree  $\leq k \cdot m(\mathbb{M})$  in G and the maximum degree of  $T \setminus \{Z\}$  is  $\leq d$  in G.

The generalized star T contains a path with  $2\frac{d+1-m(\mathbb{M})}{m(\mathbb{M})} + 1$  vertices.

If  $d = \lfloor \frac{k}{2}m(\mathbb{M}) \rfloor$  then the generalized star T contains a  $P_k$ . Hence Theorem 4 implies the validity of the following result.

**Theorem 5.** Let  $\mathbb{M}$  be a surface of Euler characteristic  $\chi(\mathbb{M})$  and  $k \geq 1$  an integer. Then each map  $G \in \mathcal{G}(3,3;\mathbb{M})$  containing a k-path, has a k-path  $P_k$  with the property: besides one vertex Z all vertices have a degree  $\leq \frac{k}{2} \cdot m(\mathbb{M})$  and the vertex Z has a degree  $\leq k \cdot m(\mathbb{M})$  in G.

For the sphere  $m(\mathbb{S}_0) = 5$  holds and Theorem 5 implies the validity of Theorem 3. If  $d = k \cdot m(\mathbb{M})$  then the generalized star T contains a  $P_k$  not meeting the root of T. Hence Theorem 4 implies the validity of the upper bound in Theorem 1. Interesting special variants of Theorem 4 are also obtained for d = k and d = k + 4.

### B. Large polyhedral maps

Let  $\chi(\mathbb{M}) \leq 0$  throughout section *B*.

For large maps of  $\mathcal{G}(3,3;\mathbb{M})$  we await a smaller bound for the maximum degree of light paths. A *large* polyhedral map is one with a large number of vertices or a large positive charge. A positive *k*-charge  $ch_k(G)$ is defined  $ch_k(G) := \sum_{\deg_G(A)>6k} (\deg_G(A) - 6k)$ . Let  $\mathcal{G}(3,3;\mathbb{M}, n(a))$  and  $\mathcal{G}(3,3;\mathbb{M}, c_k(b))$  denote the sets of the graphs G of  $\mathcal{G}(3,3;\mathbb{M})$  with > a vertices or a *k*-charge  $ch_k(G) > b$ , respectively. Let  $b_k$  denote the largest number of vertices in a connected graph with maximum degree  $\leq 6k$  containing no path of k vertices. Obviously,  $b_k \leq (6k)^{k/2+2}$ .

Let  $l_k(\mathbb{M}) := 3 \cdot 10^4 (|\chi(\mathbb{M})| + 1)^3 (b_k + 3(|\chi(\mathbb{M})| + 1))$ . We have proved

**Theorem 6** ([9], [10]). For any surface  $\mathbb{M}$  with Euler characteristic  $\chi(\mathbb{M}) \leq 0$ , any integer  $k \geq 1$ , any integer  $a > l_k(\mathbb{M})$  and any integer  $b > 6k|\chi(\mathbb{M})|$ ,

- (i)  $\varphi(P_k, \mathcal{G}(3,3;\mathbb{M},n(a))) = \begin{cases} 6k, & \text{if } k = 1 \text{ or } k \text{ is even,} \\ 6k-2, & \text{if } k \ge 3 \text{ is odd,} \end{cases}$
- (ii)  $\varphi(P_k, \mathcal{G}(3, 3; \mathbb{M}, c_k(b))) = 5k$ ,

LIGHT CLASSES OF GENERALIZED STARS IN ...

(iii)  $\varphi(H, \mathcal{G}(3, 3; \mathbb{M}, n(a))) = \varphi(H, \mathcal{G}(3, 3; \mathbb{M}, c_k(a))) = \infty$  for any  $H \not\cong P_k$ and any a.

In [9] we could show that  $\varphi(P_k, \mathcal{G}(3, 3; \mathbb{M}, n(a))) \leq 6k$  even for the smaller bound  $a > (14(k-1)b_k+6)|\chi(\mathbb{M})|$ . For the class  $\mathcal{T}_k$  of all trees of order kwe could prove [11]

**Theorem 7** ([11]). For any surface  $\mathbb{M}$  with Euler characteristic  $\chi(\mathbb{M}) \leq 0$ , any integer  $k \geq 3$ , and any integer  $a > (8k^2 + 6k - 6)|\chi(\mathbb{M})|$ 

- (i)  $\varphi(\mathcal{T}_k, \mathcal{G}(3, 3; \mathbb{M}, n(a))) = 4k + 4$ , and
- (ii)  $\varphi(\mathcal{T}_k, \mathcal{G}(3, 3; \mathbb{M}, c_k(a))) = 4k + 3.$

With the arguments of Madaras [16] we will prove: for the graphs of  $\mathcal{G}(3,3;\mathbb{M},n(a))$  and  $\mathcal{G}(3,3;\mathbb{M},c_k(b))$  with large a and b the Theorem 4 is again valid, if  $m(\mathbb{M})$  is replaced by 6 or 5, respectively.

**Theorem 8.** Let  $\mathbb{M}$  be a surface of Euler characteristic  $\chi(\mathbb{M}) \leq 0$ . Let k, dand a, b be integers with  $k \geq 1, d \geq 6$ ,  $a > (14(k-1)b_k + 6)|\chi(\mathbb{M})|$ , and  $b > 6k|\chi(\mathbb{M})|$ . Let  $G_1 \in \mathcal{G}(3,3;\mathbb{M}, n(a))$  and  $G_2 \in \mathcal{G}(3,3;\mathbb{M}, c_k(b))$  contain a k-path. Let  $m_1 := 6$  and  $m_2 := 5$ .

Then for i = 1, 2 the map  $G_i$  contains at least one of the following subgraphs:

- (i) a k-path of maximum degree  $\leq d$  in  $G_i$ , or
- (ii) a generalized s-star  $T, s \leq m_i$  on  $d+2-m_i$  vertices with root Z, where Z has a degree  $\leq k \cdot m_i$  in  $G_i$  and the maximum degree of  $T \setminus \{Z\}$  is  $\leq d$  in  $G_i$ .

Finally we deal with light classes  $\mathcal{H} \neq \mathcal{T}_k, \ k \geq 1$ .

Since by Theorem 7 each polyhedral map G on  $\mathbb{M}$  of large order contains a tree of order k such that each vertex has a degree at most 4k + 4, if  $k \geq 3$ , the map G also contains a  $P_k$  or a  $K_{1,3}$  with the same bound. Examples in [11] show that the bound is best possible.

**Theorem 9.** For any surface  $\mathbb{M}$  of Euler characteristic  $\chi(\mathbb{M}) \leq 0$  and any integer  $k \geq 3$  let  $a > (8k^2 + 6k - 6)|\chi(\mathbb{M})|$ . Then

- (i)  $\varphi(\{P_k, K_{1,3}\}, \mathcal{G}(3, 3; \mathbb{M}, n(a))) = 4k + 4$ , and
- (ii)  $\varphi(\{P_k, K_{1,3}\}, \mathcal{G}(3, 3; \mathbb{M}, c_k(a))) = 4k + 3.$

Next the class  $\{P_k, S_i\}$ ,  $i \geq 2$ , will be considered. If  $\chi(\mathbb{M}) \leq 0$ ,  $a > 6k(2b_k+1)|\chi(\mathbb{M})|$  and  $i \geq \frac{k}{2}$  then  $P_k \subseteq S_i$  and  $\varphi(\{P_k, S_i\}, \mathcal{G}(3, 3; \mathbb{M}, n(a))) = \varphi(\{P_k\}, \mathcal{G}(3, 3; \mathbb{M}, n(a)))$ . For different *i* we will prove the following theorem.

**Theorem 10.** Let  $\mathbb{M}$  be a surface with Euler characteristic  $\chi(\mathbb{M})$ , and let  $k \geq 3, i \geq 1$  be integers.

(i) If  $\mathbb{M}$  is the sphere  $\mathbb{S}_0$  or the projective plane  $\mathbb{N}_1$ , then

$$\varphi(\{P_k, S_i\}, \mathcal{G}(3, 3; \mathbb{S}_0)) = \varphi(\{P_k, S_i\}, \mathcal{G}(3, 3; \mathbb{N}_1)) \le 4(k+i) - 1.$$

(ii) If  $\chi(\mathbb{M}) \leq 0$ , then for each integer  $b > 4(k+i)|\chi(\mathbb{M})|$  it holds

 $\varphi(\{P_k, S_i\}, \mathcal{G}(3, 3; \mathbb{M}, c_k(b))) \le 4(k+i) - 1.$ 

(iii) If  $\chi(\mathbb{M}) \leq 0$ , then for each integer  $a > (6k+1)(2b_k+1)|\chi(\mathbb{M})|$  it holds

$$\varphi(\{P_k, S_i\}, \mathcal{G}(3, 3; \mathbb{M}, n(a)) \le 4(k+i).$$

Taking into the consideration the Theorems 1 and 6 we obtain tight bounds in some subclasses of  $\mathcal{G}(3,3;\mathbb{M})$ .

**Theorem 11.** Let k and i be integers with  $k \ge 3$  and  $i \ge 1$ . If  $\mathbb{M}$  is the sphere  $\mathbb{S}_0$  or the projective plane  $\mathbb{N}_1$ , then

$$\varphi(\{P_k, S_i\}, \mathcal{G}(3, 3; \mathbb{S}_0)) = \varphi(\{P_k, S_i\}, \mathcal{G}(3, 3; \mathbb{N}_1)) = \min\{4(k+i) - 1; 5k\}.$$

**Theorem 12.** For any surface  $\mathbb{M}$  with Euler characteristic  $\chi(\mathbb{M}) \leq 0$ , any integers  $k \geq 3, i \geq 1$ , and  $b > 6k|\chi(\mathbb{M})|$  it holds:

$$\varphi(\{P_k, S_i\}, \mathcal{G}(3, 3; \mathbb{M}, c_k(b))) = \min\{4(k+i) - 1; 5k\}.$$

**Theorem 13.** For any surface  $\mathbb{M}$  with Euler characteristic  $\chi(\mathbb{M}) \leq 0$ , any integers  $k \geq 3, i \geq 1$ , and  $a > l_k(\mathbb{M})$  it holds:

$$\varphi(\{P_k, S_i\}, \mathcal{G}(3, 3; \mathbb{M}, n(a))) = \begin{cases} \min\{4(k+i); 6k\} & \text{for even } k, \\ \min\{4(k+i); 6k-2\} & \text{for odd } k. \end{cases}$$

#### 4. Proof of Theorems 4 and 8

Assume there is a counterexample G to Theorem 4 or 8 having v = |V(G)| vertices, where in Theorem 8 the number of vertices  $v > (14(k-1)b_k + 6)|\chi(\mathbb{M})|$  or the positive k-charge

$$ch_k(G) = \sum_{\deg_G(A) > 6k} (\deg_G(A) - 6k) > 6k |\chi(\mathbb{M})|.$$

Let G be a counterexample with the maximum number of edges among all counterexamples having v vertices. A vertex A of the graph G is major (minor) if its degree is  $\geq d + 1 \leq d$ , respectively). The assertions (1) - (3) can be found in the introduction.

(4) Each path  $P_k$  of k vertices contains a major vertex.

Hence G contains at least one major vertex.

(5) Each r-face  $\alpha, r \geq 4$ , contains at most two major vertices; if  $\alpha$  has precisely two major vertices then they are adjacent.

# Proof of (5).

Suppose G has an r-face with two nonadjacent vertices of degree  $\geq d + 1$ . Since G is a polyhedral map we can join these two vertices by an edge. The resulting embedding is again a counterexample but with one edge more, a contradiction.

Let H denote the subgraph of G induced by the major vertices, and let v(H) be the number of vertices of H.

(6) The subgraph H contains a vertex Z of degree  $s := \deg_H(Z)$  with

- (i)  $s \leq m(\mathbb{M})$  if  $G \in \mathcal{G}(3,3;\mathbb{M})$ , or
- (ii)  $s \leq 6$ , if  $G \in \mathcal{G}(3,3;\mathbb{M},n(a)), \chi(\mathbb{M}) \leq 0$ , or
- (iii)  $s \leq 5$ , if  $G \in \mathcal{G}(3,3;\mathbb{M},c_k(b)), \chi(\mathbb{M}) \leq 0$ .

# Proof of (6).

(i) This assertion follows from (1)(see the introduction).

(ii) Suppose there is a  $G \in \mathcal{G}(3,3;\mathbb{M},n(a))$  with the subgraph H of major vertices of G with minimum degree  $\delta(H) > 6$ . In Lemma 5 of [9] we have proved that  $v(H) > 6|\chi(\mathbb{M})|$ . By (3) the subgraph H has  $v(H) \leq 6|\chi(\mathbb{M})|$  vertices. This contradiction completes the proof of (ii).

(iii) Suppose there is a  $G \in \mathcal{G}(3,3;\mathbb{M},c_k(b))$  with the subgraph H of major vertices of G with minimum degree  $\delta(H) > 5$ . By (2) we have  $\sum (\deg_H(A) - 6) \leq 6|\chi(\mathbb{M})|$  where the sum is taken over all vertices A of H with  $\deg_H(A) > 6$ .

Since G is a polyhedral map the union of all faces incident with Z forms a wheel with nave Z and cycle  $C_Z$ ; it may be that some vertices of the cycle  $C_Z$  are not joined with Z by an edge. By (5) each vertex of  $C_Z$  not adjacent with Z is a minor vertex. Hence all major vertices of  $C_Z$  are neighbours of Z. These neighbours partition  $C_Z$  into  $\deg_H(Z)$ paths which have at most k-1 minor vertices according (4). Therefore,  $\deg_G(Z) \leq k \deg_H(Z)$ . This together with  $ch_k(G) > 6k|\chi(\mathbb{M})|, \ \delta(H) \geq 6$ and  $\sum_{\deg_H(A)>6}(\deg_H(A)-6) \leq 6|\chi(\mathbb{M})|$  implies:

$$\begin{aligned} 6k|\chi(\mathbb{M})| &< ch_k(G) = \sum_{\deg_G(A) > 6k} (\deg_G(A) - 6k) \le \sum_{\deg_G(A) > 6k} (k \ \deg_H(A) - 6k) \\ &\le k \sum_{A \in V(H)} (\deg_H(A) - 6) \le 6k |\chi(\mathbb{M})|. \end{aligned}$$

This contradiction completes the proof of assertion (iii).

The s neighbours  $Y_1, Y_2, \ldots, Y_s$  of Z in H are the only major vertices on the cycle  $\mathcal{C}_Z$ . An upper bound for s is known by (6). If  $\mathcal{C}_Z$  has no major vertices then let s := 1 and  $Y_1$  be an arbitrary neighbour of Z on  $\mathcal{C}_Z$ . The cycle  $\mathcal{C}_Z$  contains altogether  $\deg_G(Z) \ge d + 1$  neighbours of Z. Next  $\mathcal{C}_Z \setminus \{Y_1, \ldots, Y_s\}$  consists of s paths  $p_1, p_2, \ldots, p_s$  of minor vertices. These paths and Z induce a subgraph which contains a generalized star T with root Z of degree  $\deg_T(Z) \le s$  and containing all  $\ge \deg_G(Z) - s \ge d + 1 - s$ minor neighbours of Z. By (4) each path  $p_i$  has at most k-1 vertices. Hence the cycle  $\mathcal{C}_Z$  has at most  $s \cdot k$  vertices and  $\deg_G(Z) \le s \cdot k$ . Consequently, G contains a generalized star T of order d + 2 - s with root Z of degrees  $\deg_T(Z) \le s$  and  $\deg_G(Z) \le s \cdot k$ , all other vertices of T have a degree  $\le d$  in G. This contradicts our assumption that G is a counterexample to Theorem 4 or 8. Thus the proof of the Theorems 4 and 8 is complete.

# 5. Proof of Theorems 10–13 — Upper Bounds

Theorem 1, 6, and 10 imply the validity of the upper bounds in Theorems 11–13. Hence it suffices to prove Theorem 10.

If  $i \geq \frac{k}{2}$  then  $P_k \subseteq S_i$  and  $\varphi(\{P_k, S_i\}, \mathcal{L}) = \varphi(\{P_k\}, \mathcal{L})$  for each class  $\mathcal{L}$  of graphs. This bound is  $\leq 6k$  in each class  $\mathcal{L}$  we have considered. Hence  $\varphi(\{P_k, S_i\}, \mathcal{L}) \leq 6k \leq 4(k+i)$ , and it suffices to accomplish the proof for all  $i \leq \frac{k-1}{2} \leq \frac{k}{2}$ .

The proof follows the ideas of [1] and [13]. Suppose that there is a counterexample to one version of our theorem having v vertices. Let G be a counterexample with the maximum number of edges among all counterexamples having v vertices. Obviously, G contains a  $P_k$  or an  $S_i$ .

(A) If G is a counterexample to Theorem 10(i) then  $\mathbb{M}$  is the sphere  $\mathbb{S}_0$  or is the projective plane  $\mathbb{N}_1$  and each  $P_k$  and each  $S_i$  of G contains a vertex of degree  $\geq 4(k+i)$ .

(B) If G is a counterexample to Theorem 10(ii) then  $\chi(\mathbb{M}) \leq 0$ , the map G has a positive k-charge  $ch_k(G) > 4(k+i)|\chi(\mathbb{M})|$ , and each  $P_k$  and each  $S_i$  of G contains a vertex of degree  $\geq 4(k+i)$ .

(C) If G is a counterexample to Theorem 10(iii) then  $\chi(\mathbb{M}) \leq 0$ , the map G has an order  $v(G) > (6k+1)(2b_k+1)|\chi(\mathbb{M})|$  and each  $P_k$  and each  $S_i$  of G contains a vertex of degree  $\geq 4(k+i) + 1$ .

In the cases (A) and (B) a vertex A is a *minor vertex* if  $\deg_G(A) \leq 4(k+i)-1$ and is a *major* vertex if  $\deg_G(A) \geq 4(k+i)$ . In case (C) a vertex A is a *minor vertex* if  $\deg_G(A) \leq 4(k+i)$  and is a *major vertex* if  $\deg_G(A) \geq 4(k+i)+1$ . Since G is a counterexample it holds.

(1) Each k-path and each generalized star  $S_i$  in G contains a major vertex.

(2) Every r-face  $\alpha, r \geq 4$ , of G is incident only with minor vertices.

**Proof of (2).** Suppose there is a major vertex B incident with an r-face  $\alpha, r \geq 4$ . Let C be a diagonal vertex on  $\alpha$  with respect to B i.e., BC is no edge of the boundary of  $\alpha$ . Because G is a polyhedral map we can insert the edge BC into the r-face  $\alpha$  The resulting embedding is again a counterexample but with one edge more, a contradiction.

Let H = H(G) and H' = H'(G) be the subgraphs of G induced on all major or minor vertices of G, respectively.

(3) H is not empty.

**Proof of (3).** Since G is a counterexample it contains a k-path  $P_k$  or a 3-star  $S_i$ . By (1)  $P_k$  or  $S_i$  contains a major vertex.

(2) directly implies:

(4) All faces incident with a major vertex X induce a wheel with nave X and a cycle C of length  $\geq 4(k+i)$  consisting of all neighbours of X. The cycle C contains at least 5 major vertices.

**Proof of (4).** The first assertion is clear. If C would contain at most 4 major vertices then C would also contain at most 4 paths of  $\leq k - 1$  minor vertices and C would have a length  $\leq 4 + 4(k - 1) = 4k < 4(k + i)$ . This contradiction proves (4).

(5) By (4) the minimum degree of H is at least 5.

Note that a triangle is always a 3-face. For the following we need Lemma 1.

**Lemma 1.** The three vertices of each triangle D of H are joint with the minor vertices inside D by at most 2(k-1+i) - 1 edges.

**Proof.** Let D = [PQR] be a triangle of H. Let K denote the subgraph of G induced by the minor vertices of G lying in the interior of [PQR]. By (2) all faces incident with P induce a wheel  $W_P$  with nave P and a cycle containg all neighbours of P. Correspondingly, Q and R are the naves of a wheel  $W_Q$  and  $W_R$ , respectively. Let p, q, and r denote the path of  $W_P \cap K, W_Q \cap K$ , and  $W_R \cap K$ , respectively. Then p, q and q, r and r, p have a common endvertex Q', R', and P', respectively (a sketch of the situation is depicted in Figure 1).



Figure 1

Case 1. Let p and q have precisely one common vertex, namely, Q'. Then  $p \cup q$  is a path of K having  $\leq k - 1$  vertices. Hence the paths  $p \cup q$  and r having at most k - 1 vertices each, and P, Q, R are joined by  $\leq 2k - 1 < 2(k - 1 + i)$  edges with K.

Case 2. Let p, q and q, r and r, p have a second common vertex. Let Q'', and R'', and P'' denote the last common vertex of p, q, and q, r, and r, p by walking along p, or q, or r with start in Q', or R', or P', respectively. Since K does not contain a generalized star  $S_i$ , w.l.o.g. the paths R''qR' and R'rR'' have at most i vertices. The paths P'rR'' and R''qQ' have precisely one common vertex, namely, R''. Hence P'rR''qQ' is a path of K with  $\leq k - 1$  vertices. The path p has also  $\leq k - 1$  vertices, and  $R'rR'' - \{R''\}$  and  $R''qR' - \{R''\}$  have at most i - 1 vertices each. Therefore, P, Q, R are joined with K by  $\leq (k-1) + (k-1) + 1 + (i-1) + (i-1) = 2(k-1+i) - 1$  edges with K.

Let  $\alpha$  be a face of H. Let  $D_1, D_2, \dots, D_s$  be the components of the boundary of  $\alpha$ . Let  $W_i$  be the shortest closed walk induced by all edges of  $D_i$ , and let  $\partial(W_i)$  be its length. Then the degree of the face  $\alpha$  is  $\deg_H(\alpha) = \sum_{i=1}^s \partial(W_i)$ . Since G is a polyhedral map any three consecutive vertices on the boundary of  $\alpha$  (i.e., in the walk  $W_i$  for some i) are pairwise different. Hence  $\partial(W_i) \geq 3$ , and

(6)  $\deg_H(\alpha) \ge 3s \ge 3$ .

Let X, Y, Z be three consecutive vertices on the boundary of  $\alpha$ . We call XYZa *corner* of  $\alpha$  at the vertex Y. Assertion (4) implies: In G the vertices X and Z are joined by a path q completely lying in  $\alpha$  and containing all minor neighbours of Y in this corner (Y can have some other minor neighbours at some other corners of  $\alpha$  at the vertex Y, because Y can appear on the boundary of  $\alpha$  more than once).

The path  $q \setminus \{X, Z\}$  consists of all minor neighbours of Y in this corner.

(7) In each corner XYZ of  $\alpha$  at Y the vertex Y has at most k-1 minor neighbours. They form a path of H'(G).

It is obvious that

(8) each face  $\alpha$  of H has precisely deg<sub>H</sub>( $\alpha$ ) corners.

Let  $w(\alpha)$  denote the number of edges joining the minor vertices inside  $\alpha$  with all major vertices of H (i.e., the major vertices on the boundary of  $\alpha$ ).

With (8) it follows:

(9) The minor vertices inside  $\alpha$  are joined with all major vertices by  $w(\alpha) \leq (k-1) \deg_H(\alpha)$  edges.

Thus the number w of all edges of G joining minor vertices with major vertices is

(10) 
$$w = \sum_{\alpha \in F(H)} w(\alpha) \le \sum_{\alpha \in F(H)} (k-1) \deg_H(\alpha).$$

By Lemma 1 we have a better bound if  $\alpha$  is a 2-cell 3-face (triangle).

(11) If  $\alpha$  is a triangle of H then  $w(\alpha) \leq 2(k-1+i)-1$ .

We proceed in three steps. First, we assign to each face  $\alpha$  of H the charge  $w(\alpha)$ . Next, we triangulate each face  $\alpha$  of H by introducing diagonals into the face  $\alpha$  (a diagonal is an edge joining two vertices of the boundary of  $\alpha$  such that no 1-face or 2-face is generated). By this method  $\alpha$  is splitted into at least t - 2 triangles,  $t = \deg_H(\alpha)$ . The obtained semitriangulation  $H^*$  can have loops or muliple edges (A triangulation (semitriangulation) is an embedding of a graph (multigraph) such that each face is a triangle). In the third step the charge  $w(\alpha)$  is equally distributed to the triangles inside  $\alpha$ . The charge of a triangle D of  $H^*$  is denoted by  $w^*(D)$ . Distributing the old charges no charge has been lost. Hence,

(12) 
$$w = \sum_{\alpha \in F(H)} w(\alpha) = \sum_{D \in F(H^*)} w^*(D).$$

(13) Each triangle D of  $H^*$  has a charge  $w^*(D) \le 2(k-1+i)-1$ .

**Proof of (13).** Let  $\alpha$  be a face of H. We consider two cases.

Case 1. Let  $t := \deg_H(\alpha) \ge 4$ . Then with (9) each triangle D inside  $\alpha$  has a charge

$$w^*(D) \leq \frac{w(\alpha)}{t-2} \leq \frac{t(k-1)}{t-2} \leq \left(1 + \frac{2}{t-2}\right)(k-1)$$
  
$$\leq 2(k-1) < 2(k-1+i) - 1.$$

(Note  $i \ge 1$ ).

98

# LIGHT CLASSES OF GENERALIZED STARS IN ...

Case 2. Let  $t = \deg_H(\alpha) = 3$ .

If  $\alpha$  is a triangle (2-cell 3-face) of H then  $\alpha$  is also a triangle of  $H^*$ . Hence with (11) the charge  $w^*(\alpha) = w(\alpha) \leq 2(k-1+i)$ .

Next let  $\alpha$  not be a triangle (2-cell 3-face). Then at least one diagonal d can be added so that no new face is created. The diagonal is counted twice on the boundary of  $\alpha$ , i.e.,  $\deg_{H+d}(\alpha) = 5$ . The charge  $w(\alpha) \leq 3(k-1)$  is equally distributed to at least three (new) triangles of  $H^*$ , each receiving a charge  $\leq \frac{w(\alpha)}{3} \leq \frac{3(k-1)}{3} = k-1 \leq 2(k-1+i)-1$ . Thus the proof of (13) is complete.

Properties (12) and (13) imply:

(14) 
$$w = \sum_{\alpha \in F(H)} w(\alpha) = \sum_{D \in F(H^*)} w^*(D) \le (2(k-1+i)-1)f(H^*).$$

where  $f(H^*) = |F(H^*)|$ .

The semitriangulation  $H^*$  satisfies the equation

$$2e(H^*) = 3f(H^*),$$

and Euler's formula

$$v(H^*) - e(H^*) + f(H^*) = \chi(\mathbb{M}).$$

Hence

(15) 
$$f(H^*) = 2(v(H^*) - \chi(\mathbb{M})),$$

and

(16) 
$$e(H^*) = 3(v(H^*) - \chi(\mathbb{M})).$$

The number of the edges joining vertices of H and the number w of the edges joining minor vertices with major vertices in G contribute to the degree sum  $\sum_{A \in V(H)} \deg_G(A)$ . Consequently, with (14) it holds

$$\sum_{A \in V(H)} \deg_G(A) = \sum_{A \in V(H)} \deg_H(A) + w$$
$$\leq \sum_{A \in V(H)} \deg_H(A) + (2(k-1+i)-1)f(H^*).$$

With (15)

(17) 
$$\sum_{A \in V(H)} \deg_G(A) \le 2e(H) + (4(k-1+i)-2)(v(H^*) - \chi(\mathbb{M})).$$

With  $e(H) \leq e(H^*)$  and (16) we have

$$\sum_{A \in V(H)} \deg_G(A) \le (6 + 4(k - 1 + i) - 2)(v(H^*) - \chi(\mathbb{M})), \text{ and}$$

(18) 
$$\sum_{A \in V(H)} \deg_G(A) \le 4(k+i)(v(H^*) - \chi(\mathbb{M})).$$

The inequality (18) implies with  $v(H) = v(H^*)$  the existence of a major vertex B of degree

(19) 
$$\deg_G(B) \le 4(k+i) \left(1 - \frac{\chi(\mathbb{M})}{v(H^*)}\right).$$

If  $\mathbb{M} = \mathbb{S}_0$  or  $\mathbb{N}_1$  then  $\chi(\mathbb{M}) \geq 1$  and by (5) H has at least 6 vertices. Moreover (18) implies the existence of a major vertex B of degree  $\deg_G(B) \leq 4(k+i)-1$ . But by condition (A) each major vertex has a degree  $\geq 4(k+i)$ . This contradiction completes the proof of Theorem 10(i).

Next Theorem 10(ii) can be proved in the following way. By condition (B) with  $6k \ge 4(k+i)$  (i.e., with  $i \le \frac{k}{2}$ ) and  $\chi(\mathbb{M}) \le 0$ 

$$\sum_{\deg_G(A) \ge 4(k+i)} (\deg_G(A) - 4(k+i)) \ge \sum_{\deg_G(A) > 6k} (\deg_G(A) - 6k)$$
$$= ch_k(G) > 4(k+i)|\chi(\mathbb{M})|.$$

With

$$\sum_{\deg_G(A) \ge 4(k+i)} (\deg_G(A) - 4(k+i)) = \left(\sum_{\deg_G(A) \ge 4(k+i)} \deg_G(A)\right) - 4(k+i)v(H^*)$$

this implies

(20) 
$$\sum_{\deg_G(A) \ge 4(k+i)} \deg_G(A) > 4(k+i)(v(H^*) + |\chi(\mathbb{M})|) \\ = 4(k+i)(v(H^*) - \chi(\mathbb{M})).$$

100

The assertion (20) contradicts (18). Thus the proof of Theorem 10(ii) is complete.  $\hfill\blacksquare$ 

Finally Theorem 10(iii) will be proved. For these purposes we need an upper bound for the number v(H') of vertices of H' in dependence on  $f(H^*)$ . Recall that H' is the subgraph of G induced by the minor vertices of G. Let l denote the number of components of H'. Since G is 3-connected each component K of H' contains the minor vertices of at least three corners of a face of H. The number of corners of H is not greater than the number of corners of  $H^*$ , and  $H^*$  has at most  $3f(H^*)$  corners. Hence  $3l \leq 3f(H^*)$ , and  $l \leq f(H^*)$ . Since each component K of H' has no path with k vertices and each (minor) vertex of K has a degree  $\leq 4(k + i) \leq 6k$  in G the number of vertices of Kis  $v(K) \leq b_k$ , and the number of vertices of H' is  $v(H') \leq l \cdot b_k \leq f(H^*) \cdot b_k$ . Therefore,

$$v(G) = v(H) + v(H') \le v(H^*) + f(H^*) \cdot b_k.$$

Assertion (15) implies

$$v(G) \le v(H^*) + 2(v(H^*) + |\chi(\mathbb{M})|) \cdot b_k \le 2(v(H^*) + |\chi(\mathbb{M})|) \left(b_k + \frac{1}{2}\right).$$

With the hypothesis  $v(G) > (6k+1)(2b_k+1)|\chi(\mathbb{M})|$  the number of vertices of  $H^*$  is

$$v(H^*) \ge \frac{v(G)}{2b_k + 1} - |\chi(\mathbb{M})| > \frac{12k(b_k + \frac{1}{2})|\chi(\mathbb{M})|}{2b_k + 1} = 6k|\chi(\mathbb{M})|,$$

and

(21) 
$$v(H^*) > 6k|\chi(\mathbb{M})| \ge 4(k+i)|\chi(\mathbb{M})|.$$

(19) and (21) imply: there is a vertex  $B \in V(H)$  such that its degree

(22)  
$$\deg_{G}(B) \leq 4(k+i) + \frac{4(k+i)|\chi(\mathbb{M})|}{v(H^{*})} \\ < 4(k+i) + \frac{4(k+i)|\chi(\mathbb{M})|}{4(k+i)|\chi(\mathbb{M})|} = 4(k+i) + 1$$

Therefore, the degree of the major vertex B in G is  $\leq 4(k+i)$ . But by the condition (C) each major vertex has a degree  $\geq 4(k+i) + 1$ . This contradiction completes the proof of Theorem 10(iii).

# 6. Proof of Theorem 13 for Polyhedral Maps — Lower Bound

The main goal of this part is to prove that  $\varphi(\{P_k, S_i\}, \mathcal{G}(3, 3; \mathbb{M}, n(a))) \geq 4k + 4i, k \geq 3, \chi(\mathbb{M}) \leq 0$ , that is to construct a large polyhedral map G on surface  $\mathbb{M}$  with Euler characteristic  $\chi(\mathbb{M}) \leq 0$  so that each path  $P_k$  with k vertices and each generalized 3-star  $S_i$  contains a vertex of degree at least 4k + 4i. This construction is very similar to our construction presented in Sections 3 and 4 of [11].

Let  $P_n \times P_n$  be the cartesian product of two *n*-paths with vertex set  $\{(x,y)|x, y \in \mathbb{Z}, 1 \le x \le n, 1 \le y \le n\}$  and edge set  $\{\{(x,y), (x,y+1)\}|1 \le x \le n, 1 \le y \le n-1\} \cup \{\{(x,y), (x+1,y)\}|1 \le x \le n-1, 1 \le y \le n\}$ . Add the edge set  $\{\{(x,y), (x+1,y-1)\}|1 \le x \le n-1, 2 \le y \le n\}$ . The so obtained plane graph with  $2(n-1)^2$  triangles and an outer 4(n-1)-face is denoted by  $R_n$ .

Into each triangle D of the obtained graph we insert a generalized 3star S(r),  $0 \le r \le k - 2i$ , consisting of a central vertex Z and three paths  $p_1, p_2$  and  $p_3$  starting in Z, the path  $p_1$  of length k - (i + r), the path  $p_2$  of length i + r, and the path  $p_3$  of length i. Let the paths  $p_1, p_2$ , and  $p_3$  be in this anticlockwise cyclic order in D. If  $D_{x,y} = ((x, y), (x + 1, y), (x, y + 1))$ then (x, y) is joined to all vertices of  $p_1$  and  $p_2, (x + 1, y)$  is joined to all vertices of  $p_2$  and  $p_3$ , and (x, y + 1) is joined to all vertices of  $p_3$  and  $p_1$  (see Figure 2). We do the same in  $D'_{x,y} = ((x, y), (x - 1, y), (x, y - 1))$ . The resulting plane graph is denoted by  $R_n^*$ .



Figure 2

The situation is presented in Figure 3, where in each triangle D an arrow indicates which vertex of D is joined with all vertices of  $p_1$  and  $p_2$ . In this part of the proof the labels 0 and  $k - 2i, \cdots$  have no meaning. For the further proof of the lower bound 4(k+i) choose a fixed  $r, 0 \le r \le k - 2i$ .



Figure 3

The inserted trees have k - (i + r) + (i + r) + i - 2 = k + i - 2 vertices, and the degree of each inner vertex  $(x, y), 2 \le x, y \le n - 1$  is

$$deg(x, y) = 6 + 2((k - (i + r)) + (i + r) - 1) + 2((i + r) + i - 1) + 2(i + (k - (i + r) - 1) = 4k + 4i.$$

Deleting the outer face of  $R_n^*$  and identifying opposite sides of the "quadrangle" results in a toroidal map  $T_n$ , and reversing one side of this "quadrangle" and then identifying opposite sides of this "quadrangle" results in a map  $Q_n$ on the Klein bottle, respectively, both satisfying the degree requirements.

The required polyhedral map on an orientable surface  $S_g$  of genus  $g \ge 2$ will be constructed from the toroidal triangulation  $T_n^*$  with the triangulation  $T_n$ . We choose 2g-2 triangles of  $T_n$  so that any two of them have a distance  $\ge 2$  in  $T_n$  (this is possible if n is large enough). In  $T_n^*$  from each of these triangles D we delete the interior part so that the bounding 3-cycle of D bounds now a hole of the torus. We join repeatedly two holes of  $T_n^*$  by a handle, and g-1 handles are added to the torus in this way.

The handles are triangulated in the following way: if  $[X_1X_2X_3]$  and  $[Y_1Y_2Y_3]$  are the bounding cycles of some handle which are around the handle in the same cyclic order then add the cycle  $[X_1Y_1X_2Y_2X_3Y_3]$ . In each of the new triangles a generalized 3-star S(r) can be placed in such a manner that the obtained polyhedral triangulation of  $\mathbb{S}_g$  fulfils also the degree requirements.

The required polyhedral map on an unorientable surface  $\mathbb{N}_q$  of genus  $q \geq 3$  will be constructed from the triangulation  $Q_n^*$  of the Klein bottle with triangulation  $Q_n$ . We choose q-2 triangles of  $Q_n$  so that any two of them have a distance  $\geq 4$  in  $Q_n$ .

Let D be one of these triangles with bounding cycle  $[X_1X_2X_3]$  and  $D_1, D_2, D_3$  the three neighbouring triangles in  $Q_n$  with bounding cycles  $[Y_1X_3X_2]$ ,  $[Y_2X_1X_3]$ , and  $[Y_3X_2X_1]$  (see Figure 4). In  $Q_n^*$  we delete the inserted trees of  $D, D_1, D_2, D_3$  and the separating edges  $X_1X_2, X_2X_3$  and  $X_3X_1$ . A greater face F with bounding 6-cycle  $\mathcal{C} = [X_1Y_3X_2Y_1X_3Y_2]$  is obtained (for the notation see Figure 5).

In F a crosscap is placed and the edges  $X_1X_2$ ,  $X_2X_3$ , and  $X_3X_1$  are again added so that the "interior" of C is subdivided into three quadrangles (see Figure 5). These quadrangles are subdivided by the edges  $X_iY_i$ , i =1,2,3 (see Figure 6). Finally in each of the new triangles a generalized 3-star S(r) can be placed in such a manner that the obtained polyhedral triangulation of  $\mathbb{N}_q$  fulfils the degree requirements.



104

# 7. Proof of Theorems 11 and 12 for Polyhedral Maps — Lower Bounds

Let  $\mathbb{M}$  be a surface with Euler characteristic  $\chi(\mathbb{M})$ . Firstly we construct a polyhedral graph of the plane with degree sum  $\sum_{j>4k+4} (j-6k)v_j > (4k+4i)|\chi(\mathbb{M})|, k \geq 3$ , such that each subgraph  $P_k$  and each subgraph  $S_i$ contains a vertex of degree at least  $4(k+i) - 1, k \geq 3$ . Our method used here is very similar to that one used in [12]. We start with a plane graph  $R_{n+1}$  with  $n > (k+1)|\chi(\mathbb{M})| + 3k$  as described in Section 6. Next the outer 4n-face is deleted and the opposite "vertical sides" are identified, i.e., the two paths  $(1,1), (1,2), \ldots, (1,n+1)$  and  $(n+1,1), (n+1,2), \ldots, (n+1,n+1)$ are identified in the given order.

The result is a triangulated cylinder  $Z_n^*$ . A plane polyhedral graph  $Z_n$  is obtained by adding a bottom *n*-face  $F_1$  and a top *n*-face  $F_2$  which are the only *n*-faces of a  $Z_n$ , all other faces of  $Z_n$  are triangles. We use the same notation as in  $R_n$ . If in all triangles of  $Z_n$  a generalized 3-star S(r) with a fixed r is inserted then all inner vertices of  $Z_n$  have the degree 4(k + i). For instance choose r = 0. We want to increase the degrees of the vertices of the boundaries of  $Z_n$ , i.e., for the vertices  $(1,1),(1,2),\ldots,(1,n)$  and  $(n+1,1),(n+1,2),\ldots,(n+1,n)$ . In order to do this we vary r so that from each inner vertex near to these boundaries a degree unit is transferred to one of these boundaries. We achieve this in the following way: According to Figure 3 insert the 3-star S(k-2i) into  $D'_{x,k}$ , the 3-star S(k-2i-1) into  $D'_{x,2},\ldots$ , the 3-star S(0) into  $D'_{x,k-2i+1}$  for all  $x, 1 \leq x \leq n$ . According to Figure 3 insert the 3-star S(k-2i) into  $D_{x,n+1}$ , the 3-star S(k-2i-1) into  $D_{x,n+1}$ . Into all other triangles insert the 3-star S(0) according to Figure 3.

By the construction the vertices (x, y),  $1 \le x \le n$ ,  $2 + (k - 2i) \le y \le n - (k - 2i)$  have degree 4(k + i). The vertices (x, y),  $1 \le x \le n$ ,  $2 \le y \le k - 2i + 1$  or  $n - (k - 2i) + 1 \le y \le n$  have the degree 4(k+i) - 1. The vertices on the boundaries, i.e., the vertices (x, 1) and (x, n + 1),  $1 \le x \le n$  have the degree 3k + 1. In order to complete our construction we put into  $F_i$  a new vertex  $X_i$  and join  $X_i$  with all bounding vertices of  $F_i$ , i = 1, 2. In each new triangle  $\Delta$  a k-path p of  $F_1$  and  $F_2$  is inserted. One endvertex of p is joined with all three vertices of  $\Delta$ , and all other vertices of p are joined with each of the two remaining vertices of  $\Delta$ . In the obtained triangulation  $Z_n^{**}$  the vertices bounding  $F_i$  have degree 3k + 1 + 3 + 2(k - 1) - 2 = 5k,

and  $X_i$  has degree deg  $X_i \ge 2n > 2(k+i)|\chi(\mathbb{M})| + 6k$ . Thus  $ch_k(Z_n^{**}) \ge (\deg X_1 - 6k) + (\deg X_2 - 6k) > 4(k+i)|\chi(\mathbb{M})|$ .

Next the wanted polyhedral maps of  $\mathbb{M}$  will be constructed. If  $\mathbb{M}$  is an orientable 2-manifold  $\mathbb{S}_q$  of genus g then g handles have to be added. If  $\mathbb{M}$  is a nonorientable 2-manifold  $\mathbb{N}_q$  of genus q then q crosscaps have to be added. In both cases this is accomplished in the same way as in Section 6. The addition of g handles or of q crosscaps causes no problems according Section 6.

# Acknowledgement

- 1. Support of Slovak VEGA Grant 1/0424/03 is acknowledged.
- 2. The authors are gratitude to anonymous referees who read original versions of the paper very carefully. Their suggestions helped us to improve the presentation of the paper.

# References

- [1] I. Fabrici and S. Jendrol', Subgraphs with restricted degrees of their vertices in planar 3-connected graphs, Graphs and Combinatorics 13 (1997) 245–250.
- [2] I. Fabrici and S. Jendrol', Subgraphs with restricted degrees of their vertices in planar graphs, Discrete Math. 191 (1998) 83–90.
- B. Grünbaum, New views on some old questions of combinatorial geometry (Int. Theorie Combinatorie, Rome, 1973) 1 (1976) 451–468.
- [4] B. Grünbaum and G.C. Shephard, Analogues for tiling of Kotzig's theorem on minimal weight of edges, Ann. Discrete Math. 12 (1982) 129–140.
- [5] J. Harant, S. Jendrol' and M. Tkáč, On 3-connected plane graphs without trianglar faces, J. Combin. Theory (B) 77 (1999) 150–61.
- [6] J. Ivančo, The weight of a graph, Ann. Discrete Math. **51** (1992) 113–116.
- [7] S. Jendrol', T. Madaras, R. Soták and Zs. Tuza, On light cycles in plane triangulations, Discrete Math. 197/198 (1999) 453–467.
- [8] S. Jendrol' and H.-J. Voss, A local property of polyhedral maps on compact 2-dimensional manifolds, Discrete Math. 212 (2000) 111–120.
- [9] S. Jendrol' and H.-J. Voss, A local property of large polyhedral maps on compact 2-dimensional manifolds, Graphs and Combinatorics 15 (1999) 303–313.
- [10] S. Jendrol' and H.-J. Voss, Light paths with an odd number of vertices in large polyhedral maps, Annals of Combin. 2 (1998) 313–324.

- [11] S. Jendrol' and H.-J. Voss, Subgraphs with restricted degrees of their vertices in large polyhedral maps on compact 2-manifolds, European J. Combin. 20 (1999) 821–832.
- [12] S. Jendrol' and H.-J Voss, Light subgraphs of multigraphs on compact 2dimensional manifolds, Discrete Math. 233 (2001) 329–351.
- [13] S. Jendrol' and H.-J. Voss, Subgraphs with restricted degrees of their vertices in polyhedral maps on compact 2-manifolds, Annals of Combin. 5 (2001) 211–226.
- [14] S. Jendrol' and H.-J. Voss, Light subgraphs of graphs embedded in 2dimensional manifolds of Euler characteristic  $\leq 0$  – a survey, in: Paul Erdös and his Mathematics, II (Budapest, 1999) Bolyai Soc. Math. Stud., 11 (János Bolyai Math. Soc., Budapest, 2002) 375–411.
- [15] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Math. Čas. SAV (Math. Slovaca) 5 (1955) 111–113.
- [16] T. Madaras, Note on weights of paths in polyhedral graphs, Discrete Math. 203 (1999) 267–269.
- [17] B. Mohar, Face-width of embedded graphs, Math. Slovaca 47 (1997) 35–63.
- [18] G. Ringel, Map color Theorem (Springer-Verlag Berlin, 1974).
- [19] N. Robertson and R. P. Vitray, *Representativity of surface embeddings*, in: B. Korte, L. Lovász, H.J. Prömel and A. Schrijver, eds., Paths, Flows and VLSI-Layout (Springer-Verlag, Berlin-New York, 1990) 293–328.
- [20] H. Sachs, Einführung in die Theorie der endlichen Graphen, Teil II. (Teubner Leipzig, 1972).
- [21] J. Zaks, Extending Kotzig's theorem, Israel J. Math. 45 (1983) 281–296.

Received 10 January 2002 Revised 20 May 2003