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Abstract

The heterochromatic number hc(D) of a digraph D, is the minimum
integer k such that for every partition of V (D) into k classes, there is
a cyclic triangle whose three vertices belong to different classes.

For any two integers s and n with 1 ≤ s ≤ n, let Dn,s be the
oriented graph such that V (Dn,s) is the set of integers mod 2n+1 and
A(Dn,s) = {(i, j) : j − i ∈ {1, 2, . . . , n} \ {s}}.

In this paper we prove that hc(Dn,s) ≤ 5 for n ≥ 7. The bound is
tight since equality holds when s∈{n, 2n+1

3 }.
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1. Introduction

The heterochromatic number of an r-graph H = (V, E) (hypergraph whose
edges are sets of size r) is the minimum number k such that each vertex
colouring of H using exactly k colours leaves at least one edge all whose
vertices receive different colours.

The heterochromatic number of r-graphs has been studied in several
papers including general and particular settings (see for instance [2] – [7]).
An important instance of this invariant is the heterochromatic number hc(D)
(with respect to ~C3) of a digraph D, which is the minimum integer k such
that for every partition of V (D) into k classes, there is a cyclic triangle whose
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three vertices belong to different classes. The heterochromatic number is
preserved under opposition (i.e., hc(Dop) = hc(D) where Dop denotes the
digraph obtained from D by reversing the direction of each arc of D).

Let Dn,s be the oriented graph such that V (Dn,s) is the set of integers
mod 2n + 1 and A(Dn,s) = {(i, j) : j − i ∈ {1, 2, . . . n} \ {s}}.

In this paper we prove that hc(Dn,s) ≤ 5 for n ≥ 7. The bound is tight
since equality holds when s ∈ {n, 2n+1

3 }. Related results concerning the
heterochromatic number of circulant tournaments were given in [5] and [7].

2. Preliminaries

For general concepts we refer the reader to [1]. If D is a digraph, V (D) and
A(D) (or simply A) will denote the sets of vertices and arcs of D respectively.
A vertex k-colouring of D is said to be full if it uses the k colours. We will
denote by c1, c2, . . . , ck the colours and by C1, C2, . . . ,Ck the corresponding
chromatic classes. A heterochromatic cyclic triangle (h. triangle) is a cyclic
triangle whose vertices are coloured with 3 different colours.

Along this paper we will work in the ring Z2n+1 of integers mod 2n + 1.
If J is a nonempty subset of Z2n+1 \{0} such that |{j,−j}∩J | ≤ 1 for every
j ∈ Z2n+1 \ {0} then the circulant oriented graph ~C2n+1(J) is defined by
V (~C2n+1(J)) = Z2n+1, A(~C2n+1(J)) = {(i, j) : i, j ∈ Z2n+1 and j − i ∈ J}
and C2n+1(J) is its underlying graph. In particular, ~C2n+1 = ~C2n+1({1}) is
the oriented cycle of length 2n+1 and C2n+1 is its underlying graph. Finally,
for S ⊆ In = {1, 2, . . . , n} ⊆ Z2n+1, ~C2n+1〈S〉 will denote the circulant
tournament ~C2n+1(J) where J = (In ∪ (−S)) \ S (when S = {s} we will
denote ~C2n+1〈S〉 by ~C2n+1〈s〉).

The following statement is relevant in our approach.

Remark. Given any two different elements i, j of Z2n+1, the reflection αi,j

of C2n+1 defined by αi,j(x) = i + j − x is an antiautomorphism of ~C2n+1(J)
which interchanges i and j.

Although the aim of this work is to determine a tight upper bound for
hc(Dn,s), for technical reasons we prefer dealing with ~C2n+1〈s〉; so we define
a normal triangle (n. triangle) of ~C2n+1〈s〉 to be a cyclic triangle in ~C2n+1〈s〉
avoiding the arcs of the form (i + s, i), (i.e., a cyclic triangle of Dn,s).

We will write (i ∈ C1 ∪ C2, (i, j, k, i)) to express that we may assume
that i ∈ C1 ∪ C2 because (i, j, k, i) is an heterochromatic normal triangle
(h. n. triangle) whenever i 6∈ C1 ∪ C2.
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Let (j, k) be an arc of ~C2n+1〈s〉, along the proofs we will write (j, k) ∼ s or
s ∼ (j, k) (resp. (j, k) 6∼ s or s 6∼ (j, k)) to mean that (j, k) ∈ {(i + s, i) | i ∈
Z2n+1} (resp. (j, k) 6∈ {(i + s, i) | i ∈ Z2n+1}). For a pair (j, k), we write
s 6∼ (j, k) ∈ A to mean that (j, k) ∈ A and (j, k) 6∼ s.

In what follows γn(i, j) (or simply γ(i, j)) will denote the ij-path (i, i+
1, . . . , j) (notation mod 2n + 1) in C2n+1 as well as the set of its vertices;
`(γ(i, j)) will be the length of γ(i, j), i.e., the number of edges of γ(i, j).

Two vertex colourings f and f ′ of a digraph D is said to be equivalent,
in symbols: f ≡ f ′ when there exists either an automorphism or an anti-
automorphism α of D such that f ′ = f ◦ α. Clearly ≡ is an equivalence
relation and f and f ′ use the same colours whenever f ≡ f ′.

We will need the following two lemmas.

Lemma 2.1. Let f and f ′ be vertex colourings of ~C2n+1〈s〉.
(i) If f ≡ f ′ and f leaves an h. n. triangle of ~C2n+1〈s〉 then f ′ leaves an

h. n. triangle of ~C2n+1〈s〉.
(ii) If f ′ = f ◦ αi,j, then f ′(αi,j(x)) = f(x).

Lemma 2.2. Let f be a full vertex r-colouring of C2n+1.

(i) Suppose r ≥ 4. If (1) there exist two vertices a, b ∈ V (C2n+1) with
`(γ(a, b)) = n (resp. n−1) such that a ∈ C2, b ∈ C1, C3∩γ(a, b) 6= ∅ and
C4∩γ(a, b) 6= ∅, then (2) there exist two vertices a′, b′ ∈ V (C2n+1) with
`(γ(a′, b′)) = n (resp. n−1) such that a′ ∈ Ci, b′ ∈ Cj, Ck∩γ(b′, a′) 6= ∅
and C` ∩ γ(b′, a′) 6= ∅ ({i, j, k, `} = {1, 2, 3, 4}).

(ii) If r ≥ 5, then (2) holds.

Proof. To prove (i), take c ∈ C3 ∩ γ(a, b) and d ∈ C4 ∩ γ(a, b), and suppose
that c < d (c and d considered as integers).

First consider b + n (resp. b + n − 1). Since C2 ∩ γ(b + n, b) 6= ∅,
C3 ∩ γ(b + n, b) 6= ∅ and C4 ∩ γ(b + n, b) 6= ∅ we may assume b + n (resp.
b+n−1) ∈ C1 (in other case we take a′ = b and b′ = b+n (resp. b+n−1)).
Now, since c < d we have that colours c1, c2 and c3 appear in γ(d + n, d);
so we may assume d + n ∈ C4. Finally we have that colours c4, c1 and c2

appear in γ(c+n, c) so we may assume c+n ∈ C3 and we obtain the vertices
a, b with c + n ∈ C3 ∩ γ(b, a) and d + n ∈ C4 ∩ γ(b, a) (resp. d + n − 1 and
c + n− 1).

In order to prove (ii), recall that the number of connected components of
C2n+1({s}) is the maximum common divisor of s and 2n + 1. In particular,
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C2n+1({n}) is connected and C2n+1({n − 1}) has either 1 or 3 connected
components depending on whether n 6≡ 1 or n ≡ 1mod 3. Since r = 5,
C2n+1 has a vertex i such that i and i + n (resp. i + n − 1) have different
colours. Applying (i) the proof ends.

3. An Upper Bound for hc(Dn,s).

In this section we give a tight upper bound for hc(Dn,s).

Theorem 3.1. For n ≥ 7, every full vertex 5-colouring of the circulant
tournament ~C2n+1〈s〉 leaves an h. n. triangle; in other words hc(Dn,s) ≤ 5
and equality holds whenever s ∈ {n, 2n+1

3 }.
Proof. Consider any full vertex 5-colouring and suppose that no h. n. tri-
angle is produced. We divide the proof into two cases.

Case 1. s 6= n.
Because of Lemmas 2.2(ii) and 2.1, we may assume that 0 ∈ C1 and n + 1 ∈
C2, C3 ∩ γ(0, n + 1) 6= ∅ and C4 ∩ γ(0, n + 1) 6= ∅.

Let i ∈ C3 ∩ γ(0, n + 1) and j ∈ C4 ∩ γ(0, n + 1); we may assume
that |{(n + 1, i), (i, 0)} ∩ A| = 1 and |{(n + 1, j), (j, 0)} ∩ A| = 1. If
|{(n + 1, i), (i, 0)} ∩ A| = 0, then (0, i, n + 1, 0) is an h. n. triangle and
if |{(n + 1, i), (i, 0)} ∩ A| = 2, then (0, j, n + 1, 0) is an h. n. triangle. Simi-
larly |{(n + 1, j), (j, 0)} ∩A| = 1. Moreover |{(n + 1, j), (n + 1, i)} ∩A| = 1
and |{(i, 0), (j, 0)} ∩ A| = 1. We may assume w.l.o.g. that (i, 0) ∈ A (with
(i, 0) ∼ s) and (n + 1, j) ∈ A (with (n + 1, j) ∼ s). Now observe that when
C5∩γ(0, n+1) 6= ∅, (0, k, n+1, 0) is an h. n. triangle, where k∈C5∩γ(0, n+1).
So we may assume that C5 ∩ γ(0, n + 1) = ∅ and then C5 ∩ γ(n + 1, 0) 6= ∅.

Let k ∈ C5 ∩ γ(n + 1, 0). We will analyze several possible cases.

Subcase 1.a. s 6∼ (j, k) ∈ A.
s ∼ (0, k) ∈ A. In other case (0, j, k, 0) is an h. n. triangle (s 6∼ (0, j) ∈ A as
(i, 0) ∼ s).

When (i, k) ∈ A we have (i, k) 6∼ s (because (i, 0) ∼ s), also we have
2s ≥ n + 1 (as (i, 0) ∼ s, (0, k) ∼ s and (i, k)∈A with (i, k) 6∼ s); so s > 1;
(1 ∈ C1 ∪ C2, (0, 1, n + 1, 0)) (notice 1 6= s, n 6= s) and then (i, k, 1, i) is an
h. n. triangle. When (k, i) ∈ A with (k, i) 6∼ s we have 2s < n and hence i <
j; also we observe that s ∼ (j, i) ∈ A (in other case (j, k, i, j) is an h. n. tri-
angle and s ∼ (k, n + 1) ∈ A (otherwise (k, i, n + 1, k) is an h. n. triangle;



On the Heterochromatic Number of ... 77

so we obtain: 3s = n + 1 ((n + 1, j) ∼ s, (j, i) ∼ s and (i, 0) ∼ s), 2s = n
((0, k) ∼ s and (k, n + 1) ∼ s), so s = 1 and 2n + 1 = 5 contradicting n ≥ 7.
When s ∼ (k, i) ∈ A we have j < i (because (n + 1, j) ∼ s); in this case also
we have 2s > n + 1, so s > 1 and (1 ∈ C1 ∪ C2, (0, 1, n + 1, 0)); we conclude
that (j, k, 1, j) is an h. n. triangle.

Subcase 1.b. s ∼ (j, k) ∈ A.
Since (n + 1, j) ∼ s and (j, k) ∼ s with k ∈ γ(n + 1, 0) we have 2s > n + 1
and hence i > j. Observe (k, j + 1) ∈ A (because (j, k) ∼ s < n). Now
n ∈ C1; (n ∈ C1 ∪C2, (0, n, n+1, 0)) and (n ∈ C1 ∪C5, (0, n, k, 0)). Consider
j + 1; when j + 1 = i we get the h. n. triangle (k, j + 1, n + 1, k) (Notice
that (n + 1, k) 6∼ s as (j, k) ∼ s and n + 1 6= j since (n + 1, j) ∼ s). When
j+1 6= i we obtain (j+1 ∈ C1∪C2, (0, j+1, n+1, 0)), now if j+1 ∈ C1 then
(j+1, n+1, k, j+1) is an h. n. triangle (we have observed that (n+1, k) 6∼ s)
and if j + 1 ∈ C2 then (j + 1, n, k, j + 1) is an h. n. triangle (notice that
(n, k) 6∼ s because (j, k) ∼ s and j 6= n as j < i ∈ γ(0, n + 1)

⋂
C3 and

n + 1 ∈ C2).

Subcase 1.c. (k, j) ∈ A (In this case (k, j) 6∼ s because (n + 1, j) ∼ s).
s 6= 1. If s = 1 then j = n but (k, n) 6∈ A for every k ∈ γ(n + 1, 0); so,
(n ∈ C1∪C2, (0, n, n+1, 0)) and hence (k, n) ∼ s (when (n, k) ∈ A, (k, j, n, k)
is an h. n. triangle). Now consider n − 1 if n − 1 = i then (j, i, k, j) is an
h. n. triangle and when n−1 6= i we have (n−1 ∈ C1∪C2, (0, n−1, n+1, 0)).
(observe that since (k, n) ∼ s, (n + 1, j) ∼ s and s 6∼ (k, j) ∈ A we have
2s− 1 > n + 1 ≥ 8 so s > 2) and then (k, j, n− 1, k) is an h. n. triangle.

Finally, if s = 2n+1
3 , the vertex 4-colouring defined by (0 ∈ C1, s ∈ C2, 2s ∈

C3 and x ∈ C4 for x 6∈ {0, s, 2s}) leaves no h. n. triangle and, since s 6= n,
we obtain hc(Dn,s) = 5.

Case 2. s = n.
Because of Lemmas 2.2(ii) and 2.1, we may assume that n + 2 ∈ C2, 0 ∈ C1,
C3 ∩ γ(0, n + 2) 6= ∅ and C4 ∩ γ(0, n + 2) 6= ∅.

For every x ∈ γ(3, n− 1), x ∈ C1 ∪C2. In other case (0, x, n + 2, 0) is an
h. n. triangle.

We may assume: (1) (C3 ∪ C4)∩ {1, 2} 6= ∅ (when (C3 ∪ C4)∩ {1, 2} = ∅
we obtain (C3 ∪ C4) ∩ {n, n + 1} 6= ∅ and such a colouring is equivalent to
another one satisfying (1) by Lemma 2.1(ii) where αi,j = α0,n+2). Suppose
C5∩{1, 2, n, n+1} = ∅, then C5∩γ(n+2, 0) 6= ∅, let k ∈ C5∩γ(n+2, 0) and
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let i ∈ {1, 2} ∩ (C3 ∪ C4). If k ∈ γ(n + 4, 2n− 2) or if (k = 3 and i = 1) then
(i, n− 1, k, i) is an h. n. triangle; now suppose k = n + 3 and i = 2; clearly
we may assume 1 ∈ C1∪C2 (otherwise (1, n−1, n+3, 1) is an h. n. triangle),
also we may assume n + 1 ∈ C4 (otherwise n ∈ C4 and (1, n, n + 3, 1) is an
h. n. triangle), moreover n+5 ∈ C3 ((n+5 ∈ C1∪C2∪C3, (2, n−1, n+5, 2))
and (n + 5 ∈ C3 ∪ C4, (2, n + 1, n + 5, 2))), so (2, n + 1, n + 5, 2) is an
h. n. triangle. Hence k ∈ {2n, 2n− 1} (notice that k 6= n + 2 as n + 2 ∈ C2

and k ∈ C5). If i = 2 we have (n + 1 ∈ C3 ∪ C4 ∪ C5, (i, n + 1, k, i)) (notice
that i ∈ C3∪C4 and k ∈ C5); when n+1 ∈ C5 we are done, so n+1 ∈ C3∪C4

and then (n + 1, k, 3, n + 1) is an h. n. triangle; we conclude that i = 1 and
2 6∈ C3∪C4∪C5, and so {n, n+1}∩(C3∪C4) 6= ∅; moreover, again by Lemma
2.1(ii) we may assume that n 6∈ (C3 ∪ C4 ∪ C5), 1 ∈ C3 and n + 1 ∈ C4 and
then (n + 1, k, 3, n + 1) is an h. n. triangle.

Suppose now that C5 ∩{1, 2, n, n+1} 6= ∅ it follows that there exists an
arc (a, b) with a ∈ {1, 2}, b ∈ {n, n + 1}, `(γ(a, b)) = n − 1, a ∈ Ci, b ∈ Cj

and {i, j} ∈ {3, 4, 5} without loss of generality assume 1 ∈ C3 and n ∈ C4

(the other possible cases are completly analogous). Now (n + 5 ∈ C3 ∪ C4,
(1, n, n + 5, 1)) (remember n ≥ 7) and {2, n + 1} ∩ C5 6= ∅. When 2 ∈ C5 we
get (n + 5, 2, n− 1, n + 5) an h. n. triangle and when n + 1 ∈ C5 we obtain
the h. n. triangle (n + 1, n + 5, 3, n + 1).

Finally, since the vertex 4-colouring of Dn,n defined by (0 ∈ C1, n ∈ C2, n +
1 ∈ C3 and x ∈ C4 for x 6∈ {0, n, n + 1}) leaves no h. n. triangle, we obtain
hc(Dn,n) = 5.

4. Final Comment

It can be proved that hc(Dn,s) = 4 whenever n ≥ 7 and s /∈{n, (2n + 1)/3}.
The complete determination of hc(Dn,s), which is a useful tool in studying
4-heterochromatic cycles in circulant tournaments, requires an extense proof
and will be given elsewhere.
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