ON THE HETEROCHROMATIC NUMBER OF CIRCULANT DIGRAPHS

Hortensia Galeana-SÁnchez and Víctor Neumann-Lara
Instituto de Matemáticas, UNAM
Universidad Nacional Autónoma de México
Ciudad Universitaria
04510, México, D.F., MÉXICO

Abstract

The heterochromatic number $h c(D)$ of a digraph D, is the minimum integer k such that for every partition of $V(D)$ into k classes, there is a cyclic triangle whose three vertices belong to different classes.

For any two integers s and n with $1 \leq s \leq n$, let $D_{n, s}$ be the oriented graph such that $V\left(D_{n, s}\right)$ is the set of integers $\bmod 2 n+1$ and $A\left(D_{n, s}\right)=\{(i, j): j-i \in\{1,2, \ldots, n\} \backslash\{s\}\}$.

In this paper we prove that $h c\left(D_{n, s}\right) \leq 5$ for $n \geq 7$. The bound is tight since equality holds when $s \in\left\{n, \frac{2 n+1}{3}\right\}$.

Keywords: circulant tournament, vertex colouring, heterochromatic number, heterochromatic triangle.
2000 Mathematic Subject Classification: 05C20, 05C15.

1. Introduction

The heterochromatic number of an r-graph $H=(V, E)$ (hypergraph whose edges are sets of size r) is the minimum number k such that each vertex colouring of H using exactly k colours leaves at least one edge all whose vertices receive different colours.

The heterochromatic number of r-graphs has been studied in several papers including general and particular settings (see for instance $[2]-[7]$). An important instance of this invariant is the heterochromatic number hc (D) (with respect to \vec{C}_{3}) of a digraph D, which is the minimum integer k such that for every partition of $V(D)$ into k classes, there is a cyclic triangle whose
three vertices belong to different classes. The heterochromatic number is preserved under opposition (i.e., $h c\left(D^{o p}\right)=h c(D)$ where $D^{o p}$ denotes the digraph obtained from D by reversing the direction of each arc of D).

Let $D_{n, s}$ be the oriented graph such that $V\left(D_{n, s}\right)$ is the set of integers $\bmod 2 n+1$ and $A\left(D_{n, s}\right)=\{(i, j): j-i \in\{1,2, \ldots n\} \backslash\{s\}\}$.

In this paper we prove that $h c\left(D_{n, s}\right) \leq 5$ for $n \geq 7$. The bound is tight since equality holds when $s \in\left\{n, \frac{2 n+1}{3}\right\}$. Related results concerning the heterochromatic number of circulant tournaments were given in [5] and [7].

2. Preliminaries

For general concepts we refer the reader to [1]. If D is a digraph, $V(D)$ and $A(D)$ (or simply A) will denote the sets of vertices and arcs of D respectively. A vertex k-colouring of D is said to be full if it uses the k colours. We will denote by $c_{1}, c_{2}, \ldots, c_{k}$ the colours and by $\mathfrak{C}_{1}, \mathfrak{C}_{2}, \ldots, \mathfrak{C}_{k}$ the corresponding chromatic classes. A heterochromatic cyclic triangle (h. triangle) is a cyclic triangle whose vertices are coloured with 3 different colours.

Along this paper we will work in the ring $Z_{2 n+1}$ of integers $\bmod 2 n+1$. If J is a nonempty subset of $Z_{2 n+1} \backslash\{0\}$ such that $|\{j,-j\} \cap J| \leq 1$ for every $j \in Z_{2 n+1} \backslash\{0\}$ then the circulant oriented graph $\vec{C}_{2 n+1}(J)$ is defined by $V\left(\vec{C}_{2 n+1}(J)\right)=Z_{2 n+1}, A\left(\vec{C}_{2 n+1}(J)\right)=\left\{(i, j): i, j \in Z_{2 n+1}\right.$ and $\left.j-i \in J\right\}$ and $C_{2 n+1}(J)$ is its underlying graph. In particular, $\vec{C}_{2 n+1}=\vec{C}_{2 n+1}(\{1\})$ is the oriented cycle of length $2 n+1$ and $C_{2 n+1}$ is its underlying graph. Finally, for $S \subseteq I_{n}=\{1,2, \ldots, n\} \subseteq Z_{2 n+1}, \vec{C}_{2 n+1}\langle S\rangle$ will denote the circulant tournament $\vec{C}_{2 n+1}(J)$ where $J=\left(I_{n} \cup(-S)\right) \backslash S$ (when $S=\{s\}$ we will denote $\vec{C}_{2 n+1}\langle S\rangle$ by $\vec{C}_{2 n+1}\langle\langle \rangle)$.

The following statement is relevant in our approach.
Remark. Given any two different elements i, j of $Z_{2 n+1}$, the reflection $\alpha_{i, j}$ of $C_{2 n+1}$ defined by $\alpha_{i, j}(x)=i+j-x$ is an antiautomorphism of $\vec{C}_{2 n+1}(J)$ which interchanges i and j.
Although the aim of this work is to determine a tight upper bound for $h c\left(D_{n, s}\right)$, for technical reasons we prefer dealing with $\vec{C}_{2 n+1}\langle s\rangle$; so we define a normal triangle (n. triangle) of $\vec{C}_{2 n+1}\langle s\rangle$ to be a cyclic triangle in $\vec{C}_{2 n+1}\langle s\rangle$ avoiding the arcs of the form $(i+s, i)$, (i.e., a cyclic triangle of $D_{n, s}$).

We will write $\left(i \in \mathcal{C}_{1} \cup \mathfrak{C}_{2},(i, j, k, i)\right)$ to express that we may assume that $i \in \mathcal{C}_{1} \cup \mathcal{C}_{2}$ because (i, j, k, i) is an heterochromatic normal triangle (h. n. triangle) whenever $i \notin \mathfrak{C}_{1} \cup \mathfrak{C}_{2}$.

Let (j, k) be an arc of $\vec{C}_{2 n+1}\langle s\rangle$, along the proofs we will write $(j, k) \sim s$ or $s \sim(j, k)$ (resp. $(j, k) \nsim s$ or $s \nsim(j, k))$ to mean that $(j, k) \in\{(i+s, i) \mid i \in$ $\left.Z_{2 n+1}\right\}$ (resp. $\left.(j, k) \notin\left\{(i+s, i) \mid i \in Z_{2 n+1}\right\}\right)$. For a pair (j, k), we write $s \nsim(j, k) \in A$ to mean that $(j, k) \in A$ and $(j, k) \nsim s$.

In what follows $\gamma_{n}(i, j)$ (or simply $\gamma(i, j)$) will denote the $i j$-path $(i, i+$ $1, \ldots, j)$ (notation $\bmod 2 n+1$) in $C_{2 n+1}$ as well as the set of its vertices; $\ell(\gamma(i, j))$ will be the length of $\gamma(i, j)$, i.e., the number of edges of $\gamma(i, j)$.

Two vertex colourings f and f^{\prime} of a digraph D is said to be equivalent, in symbols: $f \equiv f^{\prime}$ when there exists either an automorphism or an antiautomorphism α of D such that $f^{\prime}=f \circ \alpha$. Clearly \equiv is an equivalence relation and f and f^{\prime} use the same colours whenever $f \equiv f^{\prime}$.

We will need the following two lemmas.
Lemma 2.1. Let f and f^{\prime} be vertex colourings of $\vec{C}_{2 n+1}\langle s\rangle$.
(i) If $f \equiv f^{\prime}$ and f leaves an h. n. triangle of $\vec{C}_{2 n+1}\langle s\rangle$ then f^{\prime} leaves an h. n. triangle of $\vec{C}_{2 n+1}\langle s\rangle$.
(ii) If $f^{\prime}=f \circ \alpha_{i, j}$, then $f^{\prime}\left(\alpha_{i, j}(x)\right)=f(x)$.

Lemma 2.2. Let f be a full vertex r-colouring of $C_{2 n+1}$.
(i) Suppose $r \geq 4$. If (1) there exist two vertices $a, b \in V\left(C_{2 n+1}\right)$ with $\ell(\gamma(a, b))=n($ resp. $n-1)$ such that $a \in \mathcal{C}_{2}, b \in \mathcal{C}_{1}, \mathcal{C}_{3} \cap \gamma(a, b) \neq \emptyset$ and $\mathcal{C}_{4} \cap \gamma(a, b) \neq \emptyset$, then (2) there exist two vertices $a^{\prime}, b^{\prime} \in V\left(C_{2 n+1}\right)$ with $\ell\left(\gamma\left(a^{\prime}, b^{\prime}\right)\right)=n($ resp. $n-1)$ such that $a^{\prime} \in \mathcal{C}_{i}, b^{\prime} \in \mathcal{C}_{j}, \mathcal{C}_{k} \cap \gamma\left(b^{\prime}, a^{\prime}\right) \neq \emptyset$ and $\complement_{\ell} \cap \gamma\left(b^{\prime}, a^{\prime}\right) \neq \emptyset(\{i, j, k, \ell\}=\{1,2,3,4\})$.
(ii) If $r \geq 5$, then (2) holds.

Proof. To prove (i), take $c \in \mathcal{C}_{3} \cap \gamma(a, b)$ and $d \in \mathcal{C}_{4} \cap \gamma(a, b)$, and suppose that $c<d$ (c and d considered as integers).

First consider $b+n$ (resp. $b+n-1$). Since $\mathcal{C}_{2} \cap \gamma(b+n, b) \neq \emptyset$, $\mathcal{C}_{3} \cap \gamma(b+n, b) \neq \emptyset$ and $\mathcal{C}_{4} \cap \gamma(b+n, b) \neq \emptyset$ we may assume $b+n$ (resp. $b+n-1) \in \mathcal{C}_{1}\left(\right.$ in other case we take $a^{\prime}=b$ and $b^{\prime}=b+n($ resp. $b+n-1)$). Now, since $c<d$ we have that colours c_{1}, c_{2} and c_{3} appear in $\gamma(d+n, d)$; so we may assume $d+n \in \mathcal{C}_{4}$. Finally we have that colours c_{4}, c_{1} and c_{2} appear in $\gamma(c+n, c)$ so we may assume $c+n \in \mathcal{C}_{3}$ and we obtain the vertices a, b with $c+n \in \mathcal{C}_{3} \cap \gamma(b, a)$ and $d+n \in \mathcal{C}_{4} \cap \gamma(b, a)$ (resp. $d+n-1$ and $c+n-1)$.

In order to prove (ii), recall that the number of connected components of $C_{2 n+1}(\{s\})$ is the maximum common divisor of s and $2 n+1$. In particular,
$C_{2 n+1}(\{n\})$ is connected and $C_{2 n+1}(\{n-1\})$ has either 1 or 3 connected components depending on whether $n \not \equiv 1$ or $n \equiv 1 \bmod 3$. Since $r=5$, $C_{2 n+1}$ has a vertex i such that i and $i+n$ (resp. $i+n-1$) have different colours. Applying (i) the proof ends.

3. An Upper Bound for $h_{c}\left(D_{n, s}\right)$.

In this section we give a tight upper bound for $h_{c}\left(D_{n, s}\right)$.
Theorem 3.1. For $n \geq 7$, every full vertex 5 -colouring of the circulant tournament $\vec{C}_{2 n+1}\langle s\rangle$ leaves an h. n. triangle; in other words $h c\left(D_{n, s}\right) \leq 5$ and equality holds whenever $s \in\left\{n, \frac{2 n+1}{3}\right\}$.

Proof. Consider any full vertex 5-colouring and suppose that no h. n. triangle is produced. We divide the proof into two cases.

Case 1. $s \neq n$.
Because of Lemmas 2.2(ii) and 2.1, we may assume that $0 \in \mathcal{C}_{1}$ and $n+1 \in$ $\mathcal{C}_{2}, \mathcal{C}_{3} \cap \gamma(0, n+1) \neq \emptyset$ and $\mathcal{C}_{4} \cap \gamma(0, n+1) \neq \emptyset$.

Let $i \in \mathcal{C}_{3} \cap \gamma(0, n+1)$ and $j \in \mathcal{C}_{4} \cap \gamma(0, n+1)$; we may assume that $|\{(n+1, i),(i, 0)\} \cap A|=1$ and $|\{(n+1, j),(j, 0)\} \cap A|=1$. If $|\{(n+1, i),(i, 0)\} \cap A|=0$, then $(0, i, n+1,0)$ is an h. n. triangle and if $|\{(n+1, i),(i, 0)\} \cap A|=2$, then $(0, j, n+1,0)$ is an h. n. triangle. Similarly $|\{(n+1, j),(j, 0)\} \cap A|=1$. Moreover $|\{(n+1, j),(n+1, i)\} \cap A|=1$ and $|\{(i, 0),(j, 0)\} \cap A|=1$. We may assume w.l.o.g. that $(i, 0) \in A$ (with $(i, 0) \sim s)$ and $(n+1, j) \in A$ (with $(n+1, j) \sim s)$. Now observe that when $\mathcal{C}_{5} \cap \gamma(0, n+1) \neq \emptyset,(0, k, n+1,0)$ is an h. n. triangle, where $k \in \mathcal{C}_{5} \cap \gamma(0, n+1)$. So we may assume that $\mathcal{C}_{5} \cap \gamma(0, n+1)=\emptyset$ and then $\mathcal{C}_{5} \cap \gamma(n+1,0) \neq \emptyset$.

Let $k \in \mathcal{C}_{5} \cap \gamma(n+1,0)$. We will analyze several possible cases.
Subcase 1.a. $s \nsim(j, k) \in A$.
$s \sim(0, k) \in A$. In other case $(0, j, k, 0)$ is an h. n. triangle $(s \nsim(0, j) \in A$ as $(i, 0) \sim s)$.

When $(i, k) \in A$ we have $(i, k) \nsim s$ (because $(i, 0) \sim s)$, also we have $2 s \geq n+1($ as $(i, 0) \sim s,(0, k) \sim s$ and $(i, k) \in A$ with $(i, k) \nsim s) ;$ so $s>1$; $\left(1 \in \mathcal{C}_{1} \cup \mathcal{C}_{2},(0,1, n+1,0)\right.$) (notice $\left.1 \neq s, n \neq s\right)$ and then $(i, k, 1, i)$ is an h. n. triangle. When $(k, i) \in A$ with $(k, i) \nsim s$ we have $2 s<n$ and hence $i<$ j; also we observe that $s \sim(j, i) \in A$ (in other case (j, k, i, j) is an h. n. triangle and $s \sim(k, n+1) \in A$ (otherwise $(k, i, n+1, k)$ is an h. n. triangle;
so we obtain: $3 s=n+1((n+1, j) \sim s,(j, i) \sim s$ and $(i, 0) \sim s), 2 s=n$ $((0, k) \sim s$ and $(k, n+1) \sim s)$, so $s=1$ and $2 n+1=5$ contradicting $n \geq 7$. When $s \sim(k, i) \in A$ we have $j<i$ (because $(n+1, j) \sim s)$; in this case also we have $2 s>n+1$, so $s>1$ and $\left(1 \in \mathcal{C}_{1} \cup \mathfrak{C}_{2},(0,1, n+1,0)\right.$); we conclude that $(j, k, 1, j)$ is an h. n. triangle.

Subcase 1.b. $s \sim(j, k) \in A$.
Since $(n+1, j) \sim s$ and $(j, k) \sim s$ with $k \in \gamma(n+1,0)$ we have $2 s>n+1$ and hence $i>j$. Observe $(k, j+1) \in A$ (because $(j, k) \sim s<n)$. Now $n \in \mathcal{C}_{1} ;\left(n \in \mathfrak{C}_{1} \cup \mathfrak{C}_{2},(0, n, n+1,0)\right)$ and $\left(n \in \mathcal{C}_{1} \cup \mathfrak{C}_{5},(0, n, k, 0)\right)$. Consider $j+1$; when $j+1=i$ we get the h. n. triangle $(k, j+1, n+1, k)$ (Notice that $(n+1, k) \nsim s$ as $(j, k) \sim s$ and $n+1 \neq j$ since $(n+1, j) \sim s)$. When $j+1 \neq i$ we obtain $\left(j+1 \in \mathfrak{C}_{1} \cup \mathfrak{C}_{2},(0, j+1, n+1,0)\right)$, now if $j+1 \in \mathfrak{C}_{1}$ then $(j+1, n+1, k, j+1)$ is an h. n. triangle (we have observed that $(n+1, k) \nsim s)$ and if $j+1 \in \mathcal{C}_{2}$ then $(j+1, n, k, j+1)$ is an h. n. triangle (notice that $(n, k) \nsucc s$ because $(j, k) \sim s$ and $j \neq n$ as $j<i \in \gamma(0, n+1) \bigcap \mathcal{C}_{3}$ and $\left.n+1 \in \mathcal{C}_{2}\right)$.

Subcase 1.c. $(k, j) \in A$ (In this case $(k, j) \nsim s$ because $(n+1, j) \sim s)$. $s \neq 1$. If $s=1$ then $j=n$ but $(k, n) \notin A$ for every $k \in \gamma(n+1,0)$; so, $\left(n \in \mathcal{C}_{1} \cup \mathcal{C}_{2},(0, n, n+1,0)\right)$ and hence $(k, n) \sim s($ when $(n, k) \in A,(k, j, n, k)$ is an h. n. triangle). Now consider $n-1$ if $n-1=i$ then (j, i, k, j) is an h. n. triangle and when $n-1 \neq i$ we have ($n-1 \in \mathcal{C}_{1} \cup \mathcal{C}_{2},(0, n-1, n+1,0)$). (observe that since $(k, n) \sim s,(n+1, j) \sim s$ and $s \nsim(k, j) \in A$ we have $2 s-1>n+1 \geq 8$ so $s>2)$ and then $(k, j, n-1, k)$ is an h. n. triangle.
Finally, if $s=\frac{2 n+1}{3}$, the vertex 4-colouring defined by $\left(0 \in \mathfrak{C}_{1}, s \in \mathfrak{C}_{2}, 2 s \in\right.$ \mathfrak{C}_{3} and $x \in \mathfrak{C}_{4}$ for $x \notin\{0, s, 2 s\}$) leaves no h. n. triangle and, since $s \neq n$, we obtain $h c\left(D_{n, s}\right)=5$.

Case 2. $s=n$.
Because of Lemmas 2.2(ii) and 2.1, we may assume that $n+2 \in \mathcal{C}_{2}, 0 \in \mathcal{C}_{1}$, $\mathfrak{C}_{3} \cap \gamma(0, n+2) \neq \emptyset$ and $\mathfrak{C}_{4} \cap \gamma(0, n+2) \neq \emptyset$.

For every $x \in \gamma(3, n-1), x \in \mathfrak{C}_{1} \cup \mathfrak{C}_{2}$. In other case ($0, x, n+2,0$) is an h. n. triangle.

We may assume: $(1)\left(\mathcal{C}_{3} \cup \mathfrak{C}_{4}\right) \cap\{1,2\} \neq \emptyset\left(\right.$ when $\left(\mathfrak{C}_{3} \cup \mathcal{C}_{4}\right) \cap\{1,2\}=\emptyset$ we obtain $\left(\mathcal{C}_{3} \cup \mathcal{C}_{4}\right) \cap\{n, n+1\} \neq \emptyset$ and such a colouring is equivalent to another one satisfying (1) by Lemma 2.1(ii) where $\alpha_{i, j}=\alpha_{0, n+2}$). Suppose $\mathcal{C}_{5} \cap\{1,2, n, n+1\}=\emptyset$, then $\mathcal{C}_{5} \cap \gamma(n+2,0) \neq \emptyset$, let $k \in \mathcal{C}_{5} \cap \gamma(n+2,0)$ and
let $i \in\{1,2\} \cap\left(\mathcal{C}_{3} \cup \mathcal{C}_{4}\right)$. If $k \in \gamma(n+4,2 n-2)$ or if $(k=3$ and $i=1)$ then $(i, n-1, k, i)$ is an h. n. triangle; now suppose $k=n+3$ and $i=2$; clearly we may assume $1 \in \mathcal{C}_{1} \cup \mathcal{C}_{2}$ (otherwise ($1, n-1, n+3,1$) is an h. n. triangle), also we may assume $n+1 \in \mathcal{C}_{4}$ (otherwise $n \in \mathcal{C}_{4}$ and $(1, n, n+3,1)$ is an h. n. triangle), moreover $n+5 \in \mathcal{C}_{3}\left(\left(n+5 \in \mathcal{C}_{1} \cup \mathcal{C}_{2} \cup \mathcal{C}_{3},(2, n-1, n+5,2)\right)\right.$ and $\left.\left(n+5 \in \mathcal{C}_{3} \cup \mathcal{C}_{4},(2, n+1, n+5,2)\right)\right)$, so $(2, n+1, n+5,2)$ is an h. n. triangle. Hence $k \in\{2 n, 2 n-1\}$ (notice that $k \neq n+2$ as $n+2 \in \mathcal{C}_{2}$ and $k \in \mathcal{C}_{5}$). If $i=2$ we have $\left(n+1 \in \mathcal{C}_{3} \cup \mathfrak{C}_{4} \cup \mathfrak{C}_{5},(i, n+1, k, i)\right)$ (notice that $i \in \mathcal{C}_{3} \cup \mathcal{C}_{4}$ and $k \in \mathcal{C}_{5}$); when $n+1 \in \mathcal{C}_{5}$ we are done, so $n+1 \in \mathcal{C}_{3} \cup \mathcal{C}_{4}$ and then $(n+1, k, 3, n+1)$ is an h. n. triangle; we conclude that $i=1$ and $2 \notin \mathcal{C}_{3} \cup \mathfrak{C}_{4} \cup \mathcal{C}_{5}$, and so $\{n, n+1\} \cap\left(\mathcal{C}_{3} \cup \mathcal{C}_{4}\right) \neq \emptyset$; moreover, again by Lemma 2.1(ii) we may assume that $n \notin\left(\mathcal{C}_{3} \cup \mathcal{C}_{4} \cup \mathcal{C}_{5}\right), 1 \in \mathcal{C}_{3}$ and $n+1 \in \mathcal{C}_{4}$ and then $(n+1, k, 3, n+1)$ is an h. n. triangle.

Suppose now that $\mathcal{C}_{5} \cap\{1,2, n, n+1\} \neq \emptyset$ it follows that there exists an $\operatorname{arc}(a, b)$ with $a \in\{1,2\}, b \in\{n, n+1\}, \ell(\gamma(a, b))=n-1, a \in \mathcal{C}_{i}, b \in \mathcal{C}_{j}$ and $\{i, j\} \in\{3,4,5\}$ without loss of generality assume $1 \in \mathcal{C}_{3}$ and $n \in \mathcal{C}_{4}$ (the other possible cases are completly analogous). Now $\left(n+5 \in \mathcal{C}_{3} \cup \mathcal{C}_{4}\right.$, $(1, n, n+5,1))$ (remember $n \geq 7$) and $\{2, n+1\} \cap \mathcal{C}_{5} \neq \emptyset$. When $2 \in \mathcal{C}_{5}$ we get $(n+5,2, n-1, n+5)$ an h. n. triangle and when $n+1 \in \mathcal{C}_{5}$ we obtain the h. n. triangle $(n+1, n+5,3, n+1)$.

Finally, since the vertex 4-colouring of $D_{n, n}$ defined by $\left(0 \in \mathcal{C}_{1}, n \in \mathcal{C}_{2}, n+\right.$ $1 \in \mathcal{C}_{3}$ and $x \in \mathcal{C}_{4}$ for $x \notin\{0, n, n+1\}$) leaves no h. n. triangle, we obtain $h c\left(D_{n, n}\right)=5$.

4. Final Comment

It can be proved that $h c\left(D_{n, s}\right)=4$ whenever $n \geq 7$ and $s \notin\{n,(2 n+1) / 3\}$. The complete determination of $h c\left(D_{n, s}\right)$, which is a useful tool in studying 4-heterochromatic cycles in circulant tournaments, requires an extense proof and will be given elsewhere.

Acknowledgement

We thank the referee for his useful comments which contributed to improve the final version of this paper.

References

[1] C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1973).
[2] B. Abrego, J.L. Arocha, S. Fernández Merchant and V. Neumann-Lara, Tightness problems in the plane, Discrete Math. 194 (1999) 1-11.
[3] J.L. Arocha, J. Bracho and V. Neumann-Lara, On the minimum size of tight hypergraphs, J. Graph Theory 16 (1992) 319-326.
[4] P. Erdös, M. Simonovits and V.T. Sós, Anti-Ramsey Theorems (in: Infinite and Finite Sets, Keszthely, Hungary, 1973), Colloquia Mathematica Societatis János Bolyai 10 633-643.
[5] H. Galeana-Sánchez and V. Neumann-Lara, A class of tight circulant tournaments, Discuss. Math. Graph Theory 20 (2000) 109-128.
[6] Y. Manoussakis, M. Spyratos, Zs. Tuza, M. Voigt, Minimal colorings for properly colored subgraphs, Graphs and Combinatorics 12 (1996) 345-360.
[7] V. Neumann-Lara, The acyclic disconnection of a digraph, Discrete Math. 197-198 (1999) 617-632.

