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Abstract

If G is a claw-free graph of sufficiently large order n, satisfying a
degree condition σk > n+k2−4k+7 (where k is an arbitrary constant),
then G has a 2-factor with at most k − 1 components. As a second
main result, we present classes of graphs C1, . . . , C8 such that every
sufficiently large connected claw-free graph satisfying degree condition
σ6(k) > n + 19 (or, as a corollary, δ(G) > n+19

6 ) either belongs to
∪8

i=1Ci or is traceable.
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1. Introduction

We consider finite undirected graphs G = (V (G), E(G)) without loops and
multiple edges. We follow the most common terminology and notation and
for concepts not defined here we refer e.g. to [1]. For any set A ⊂ V (G)
we denote by 〈A〉G the subgraph of G induced on A and G − A stands
for 〈V (G) \ A〉. A graph G is H-free (where H is a graph), if G does not
contain an induced subgraph isomorphic to H. In the special case H =
K1,3 we say that G is claw-free. The independence number of G is denoted
by α(G) and the clique covering number of G (i.e., the minimum number
of cliques necessary for covering V (G)) by θ(G). We denote by δ(G) the
minimum degree of G and by σk(G) (k ≥ 1) the minimum degree sum over
all independent sets of k vertices in G (for k > α(G) we set σk(G) = ∞).
The circumference of G, i.e., the length of a longest cycle in G, is denoted by
c(G), and the length of a longest path in G is denoted by p(G). A graph G
of order n is hamiltonian or traceable if c(G) = n or p(G) = n, respectively.

The line graph of a graph H is denoted by L(H). If G = L(H), then
we also denote H = L−1(G) and say that H is the line graph preimage
of G (recall that for any line graph G nonisomorphic to K3, its line graph
preimage is uniquely determined).

A vertex x ∈ V (G) is said to be locally connected if its neighborhood
N(x) induces a connected graph. The closure of a claw-free graph G (intro-
duced in [12] by the first author) is defined as follows: the closure cl(G) of G
is the (unique) graph obtained by recursively completing the neighborhood
of any locally connected vertex of G, as long as this is possible. The closure
cl(G) remains a claw-free graph and its connectivity is at least equal to the
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connectivity of G. The following basic properties of the closure cl(G) were
proved in [12], [3] and [13].

Theorem A. Let G be a claw-free graph and cl(G) its closure. Then

(i) [12] there is a triangle-free graph HG such that cl(G) = L(HG),
(ii) [12] c(G) = c(cl(G)),
(iii) [3] p(G) = p(cl(G)),
(iv) [13] G has a 2-factor with at most k components if and only if cl(G)

has a 2-factor with at most k components.

Consequently, G is hamiltonian (traceable) if and only if cl(G) is hamiltonian
(traceable). If G is a claw-free graph such that G = cl(G), then we say that
G is closed. It is apparent that a claw-free graph G is closed if and only if
every vertex x ∈ V (G) is either simplicial (i.e., 〈N(x)〉G is a clique), or is
locally disconnected (i.e., 〈N(x)〉G consists of two vertex disjoint cliques).

In [12], the closure concept was used to answer an old question by show-
ing that every 7-connected claw-free graph is hamiltonian. H. Li [10] ex-
tended this result as follows.

Theorem B [10]. Every 6-connected claw-free graph with at most 34 vertices
of degree 6 is hamiltonian.

In [5], the following result on 2-factors with limited number of components
was proved.

Theorem C [5]. If G is a claw-free graph of order n and minimum degree
δ ≥ 4, then G contains a 2-factor with at most 6n

δ+2 − 1 components.

This result was improved by Gould and Jacobson [8].

Theorem D [8]. Let k ≥ 2 be an integer and let G be a claw-free graph of
order n ≥ 16k3 and minimum degree δ ≥ n

k . Then G contains a 2-factor
with at most k components.

In the first main result of this paper, Theorem 3, we give a strengthening of
this result.

A trail T (closed or not) in a graph H is said to be dominating if every
edge of H has at least one vertex on T . Harary and Nash-Williams [11]
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proved the following result, showing that hamiltonicity of a line graph is
equivalent to the existence of a dominating closed trail in its preimage.

Theorem E [11]. Let H be a graph without isolated vertices. Then L(H) is
hamiltonian if and only if either H is isomorphic to K1,r (for some r ≥ 3)
or H contains a dominating closed trail.

It is straightforward to verify the following analogue of Theorem E for trace-
ability.

Theorem F. Let H be a graph without isolated vertices. Then L(H) is
traceable if and only if either H is isomorphic to K1,r (for some r ≥ 3) or
H contains a dominating trail.

Using the closure concept in claw-free graphs [12], Favaron, Flandrin, Li and
Ryjáček [6] observed that there is a close relation between the minimum
degree sum σk(G) (or the minimum degree δ(G), respectively) of a closed
claw-free graph G and its clique covering number. These connections are
established in the following results [6].

Theorem G [6]. Let k ≥ 2 be an integer and let G be a claw-free graph of
order n such that δ(G) > 3k− 5 and σk(G) > n + k2− 2k. Then θ(cl(G)) ≤
k − 1.

Corollary H [6]. Let k ≥ 2 be an integer and let G be a claw-free graph of
order n ≥ 2k2−3k and minimum degree δ(G) > n

k +k−2. Then θ(cl(G)) ≤
k − 1.
The bounds on σk(G) (δ(G)) in the previous results are sharp (this can be
easily seen considering the cartesian product of cliques).

It was shown in [6] and [9] that these results can be slightly strengthened
under an additional assumption that G is not hamiltonian, and this result
was used to obtain degree conditions for hamiltonicity (by characterizing
the classes of all 2-connected nonhamiltonian closed claw-free graphs with
small clique covering number). In the second main result of this paper,
Theorem 6, we follow up with this study by considering analogous questions
for traceability.
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2. Main Results

We begin with a structural result that can be considered, in a sense, as a
strengthening of Theorem G.

Theorem 1. Let k ≥ 2 be an integer, let G be a claw-free graph of order n
and let κ = κ(cl(G)). Suppose that G is such that n ≥ 3k2 +k− (k+1)κ−2,
δ(G) ≥ 3k − 4 and

σk(G) > n + k2 − 4k + 2 + κ.

Then either θ(cl(G)) ≤ k − 1, or α(cl(G)) ≤ κ.

Before proving Theorem 1, we first recall the following auxiliary results that
were proved in [6].

Lemma I [6]. Let G be a closed claw-free graph of order n and {a1, a2, . . . ,
at} ⊂ V (G) an independent set. Then

(i) |N(ai) ∩N(aj)| ≤ 2, 1 ≤ i < j ≤ t,
(ii)

∑t
i=1 d(ai) ≤ n + t2 − 2t.

Lemma J [6].

(i) Any triangle-free graph H whose matching number ν(H) and vertex
covering number τ(H) satisfy ν(H) < τ(H), contains an edge xy such that
d(x) + d(y) ≤ ν(H) + τ(H).

(ii) Let G be a closed claw-free graph. If α(G) < θ(G), then δ(G) ≤ α(G) +
θ(G)− 2.

Lemma K [6]. Let G be a closed claw-free graph. Then θ(G) ≤ 2α(G).

Lemma L [6]. Let G be a closed claw-free graph of order n and connectivity
κ(G) such that 1 ≤ κ(G) < α(G) and let A = {a1, . . . , aα} be a maximum
independent set in G. Then

α∑

i=1

d(ai) ≤ n + α2 − 4α + 2 + κ(G).
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Proof of Theorem 1. If G is a counterexample to Theorem 1 such that
G satisfies the assumptions but κ < α(cl(G)) and θ(cl(G)) ≥ k, then so is
the closure cl(G). Hence we can suppose that G is closed.

If α(G) ≥ k + 1, then by Lemma I we have σk+1(G) ≤ n + (k + 1)2 −
2(k+1) = n+k2−1, implying σk(G) ≤ k

k+1(n+k2−1) ≤ n+k2−4k+2+κ

for n ≥ 3k2 + k − (k + 1)κ− 2, a contradiction. Hence α(G) ≤ k.
If α(G) ≤ k − 1, then α(G) < θ(G) and, by Lemma J and Lemma K,

δ(G) ≤ α(G) + θ(G)− 2 ≤ (k − 1) + 2(k − 1)− 2 = 3k − 5, a contradiction.
Hence we have α(G) = k. Since κ(G) < α(G), Lemma L gives σk(G) ≤

n + k2 − 4k + κ + 2, a contradiction.

From Theorem 1 we obtain the following minimum degree result.

Corollary 2. Let k ≥ 2 be an integer, let G be a claw-free graph of order
n and let κ = κ(cl(G)). Suppose that G is such that n ≥ 3k2−k−κ−2 and

δ(G) >
n + k2 − 4k + 2 + κ

k
.

Then either θ(cl(G)) ≤ k − 1, or α(cl(G)) ≤ κ.

Proof. We can again suppose that G is closed. If n ≥ 3k2 − k − κ − 2,
then obviously δ(G) > n+k2−4k+2+κ

k ≥ 3k−5 and hence δ(G) ≥ 3k−4. The
rest of the proof follows immediately from Theorem 1.

Now we can prove our first main result that gives a degree condition for the
existence of a 2-factor with limited number of components.

Theorem 3. Let k ≥ 2 be an integer, let G be a claw-free graph of order n
and let κ = κ(cl(G)). Suppose that G is such that n ≥ 3k2 +k− (k+1)κ−2,
δ(G) ≥ 3k − 4 and

σk(G) > n + k2 − 4k + 2 + κ.

Then G has a 2-factor with at most k − κ components.

Proof. If G satisfies the assumptions of the theorem but has no 2-factor
with at most k − κ components, then, since δ(G) ≤ δ(cl(G)) and by Theo-
rem A(iv), so does its closure cl(G). Since cl(G) is nonhamiltonian, by the
well-known theorem of Chvátal and Erdős (see [2]), α(cl(G)) > κ(cl(G)).
By Theorem 1, we have θ(cl(G)) ≤ k − 1.
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Let P = {K1, . . . ,Kθ} be a minimum clique covering of cl(G) such that each
of the cliques K1, . . . , Kθ is maximal. We show that each clique of P has
at least 2k − 1 vertices. This follows immediately from δ(cl(G)) ≥ 3k − 4
for those Ki’s that contain at least one simplicial vertex. Thus, suppose
that (say) K1 contains no simplicial vertex. By the minimality of P, there
is a clique K ′ with K1 ∩K ′ 6= ∅ and K ′ /∈ P (otherwise P \ {K1} is also a
clique covering of cl(G)). Since clearly every clique in cl(G) that contains a
simplicial vertex must be in P, K ′ has no simplicial vertex. By the structure
of the closure, |K1 ∩K ′| = 1.

Denote K1 ∩K ′ = {x}, |K1| = t and |K ′| = r. Then we have d(x) =
t−1+r−1 ≥ δ(cl(G)) ≥ 3k−4, implying t+r ≥ 3k−2. Since K ′ /∈ P, there
are r − 1 further cliques Ki1 , . . . , Kir−1 ∈ P having a common vertex with
K ′. By the structure of the closure, Kij 6= Ki` , j 6= `, j, ` = 1, . . . , r − 1,
implying θ ≥ r. Since θ ≤ k − 1, we have 3k − 2 ≤ t + r ≤ t + k − 1, from
which t ≥ 2k − 1.

Now, since θ ≤ k−1, each clique of P contains at least 2k−1−(k−2) =
k + 1 vertices that are in no other clique of P. Since k ≥ 2, every Ki ∈ P
contains a cycle Ci that is vertex-disjoint from all other cliques of P. Let
xi ∈ Ki, i = 1, . . . , θ be such that each xi is in no other clique of P. Since
κ = κ(cl(G)), by a well-known theorem by Dirac [4], there is a cycle C
in cl(G) containing all the vertices x1, . . . , xκ. Let C be the collection of
those of the cycles Cκ+1, . . . , Cθ, which are vertex-disjoint with C. Then the
collection of cycles {C}∪C can be easily extended to a 2-factor of cl(G) with
at most k − κ components. The result then follows by Theorem A(iv).

Corollary 4. Let k ≥ 4 be an integer and G be a connected claw-free graph
of order n ≥ 3k2 − 3, δ(G) ≥ 3k − 4 and

σk(G) > n + k2 − 4k + 7.

Then G has a 2-factor with at most k − 1 components.

Proof. We can again suppose that G is closed. If κ(cl(G)) ≥ 6, then
G has a required 2-factor since G is hamiltonian by Theorem B (note that
δ(G) ≥ 3k − 4 ≥ 8). Hence suppose 1 ≤ κ(cl(G)) ≤ 5. Then we have
n ≥ 3k2− 3 ≥ 3k2− (k +1)κ+2 since κ ≥ 1 and σk(G) > n+ k2− 4k +7 ≥
n + k2 − 4k + κ + 2 since κ ≤ 5. Then G has a 2-factor with at most k − 1
components by Theorem 3.
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Remark. It would be possible to formulate minimum degree results corre-
sponding to Theorem 3 and Corollary 4. Details are left to the reader.

Next we turn our attention to traceability. Let Ci, i = 1, . . . , 8, be the class
of all spanning subgraphs of the graphs Gi, i = 1, . . . , 8, shown in Figure 1
(where the circular and elliptical parts represent cliques of arbitrary order).
Using a technique similar to that of [6], we can prove the following result.

Theorem 5. Let G be a connected closed claw-free graph with clique covering
number θ ≤ 5. Then either G ∈ ∪8

i=1Ci, or G is traceable.

Proof of Theorem 5 is lengthy and it is therefore postponed to Section 3.
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Ci is the class of all spanning subgraphs of Gi, i = 1, . . . , 8.

Figure 1

Combining Theorem 5 and Theorem 1, we can now obtain the following
theorem, which is the second main result of this paper.

Theorem 6. Let G be a connected claw-free graph of order n ≥ 112 −
7κ(cl(G)) such that δ(G) ≥ 14 and

σ6(G) > n + 14 + κ(cl(G)).

Then either cl(G) ∈ ∪8
i=1Ci, or G is traceable.
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Proof. If G is a nontraceable graph satisfying the asumptions of the the-
orem, then clearly so is cl(G). Thus, suppose that G is closed. By a well-
known consequence of a theorem by Chvátal and Erdős [2] (see e.g. [7],
Part I, Corollary 4.17), nontraceability of G implies α(G) > κ + 1. From
Theorem 1 (for k = 6) we then obtain θ(G) ≤ 5. The rest of the proof
follows from Theorem 5.

Corollary 7. Let G be a connected claw-free graph of order n ≥ 105 such
that δ(G) ≥ 14 and

σ6(G) > n + 19.

Then either cl(G) ∈ ∪8
i=1Ci, or G is traceable.

Proof. We can again suppose that G is closed. If G is nontraceable, then
Theorem B implies 1 ≤ κ(G) ≤ 5. Rest of the proof follows immediately
from Theorem 6.

Corollary 8. Let G be a connected claw-free graph of order n ≥ 105 with
minimum degree

δ(G) >
n + 19

6
.

Then either cl(G) ∈ ∪8
i=1Ci, or G is traceable.

3. Proof of Theorem 5

We basically follow the terminology and notation introduced in [6] and [9].
Let Gθ be the class of all connected nontraceable closed claw-free graphs with
clique covering number θ. By Theorem A, every G ∈ Gθ is the line graph of
some (unique) triangle-free graph H. Let D1(H) be the set of all degree 1
vertices of H and put H ′ = H −D1(H). Set Hθ = {L−1(G)| G ∈ Gθ} and
H′θ = {H −D1(H)| H ∈ Hθ}.

In every G ∈ Gθ choose a fixed minimum clique covering PG = {B1, . . . ,
Bθ} of G such that each clique Bi is maximal. Since PG is minimum, every
Bi contains at least one proper vertex, i.e., a vertex belonging to no other
clique of PG. The centers B1, . . . , Bθ of the stars of H = L−1(G) that
correspond to the cliques of G will be called the black vertices of H. The
other vertices of H are called white. The set of black (white) vertices of H
is denoted by B(H) (W (H)), respectively. Since B(H) is a vertex covering
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of H (i.e., every edge of H has at least one vertex in B(H)), the set W (H)
is independent.

It is easy to see that for any G ∈ Gθ, any graph obtained from G by
adding/removing simplicial vertices to/from cliques of PG also belongs to
Gθ as long as (in the case of removal) at least one simplicial vertex in the
clique remains (while the removal of the last simplicial vertex of a clique
can turn G into a traceable graph). Hence we can without loss of generality
denote for any H ′ ∈ H′θ by L(H) the graph obtained from the line graph of
H ′ by adding one simplicial vertex to every clique corresponding to a black
vertex of H ′.

Let G1, G2 ∈ Gθ. We say that G1 is an ss-subgraph of G2, if G1 is
isomorphic to a spanning subgraph of a graph, which is obtained from G2

by adding an appropriate number of simplicial vertices to some cliques of
PG2 , and that G1 is a proper ss-subgraph of G2 if G1 is an ss-subgraph of
G2 and G1, G2 are nonisomorphic. In the following we present a method for
finding a subset Fθ ⊂ H′θ such that

(i) every G ∈ Gθ is an ss-subgraph of L(F ) for some F ∈ Fθ,
(ii) for any F1, F2 ∈ Fθ, L(F1) is not an ss-subgraph of L(F2).

By the previous observations, the class Gθ is fully characterized by Fθ.
If, for some H ∈ Hθ, the corresponding H ′ ∈ H′θ has a black trail

(abbreviated BT), i.e., a trail containing all black vertices of H ′, then clearly
H has a dominating trail. Since, by Theorem F, no H ∈ Hθ has a dominating
trail, no H ′ ∈ H′θ has a BT.

For a trail T in H ′ ∈ H′θ we denote by bla(T ) the black length of T , i.e.,
the number of black vertices of H ′ that are on T , and by cro(T ) the number
of “crossings” of T , i.e., the number of vertices of H ′ that are visited by T
at least twice.

Two vertices of H ′ are said to be related if they are adjacent or if they
are both black and have a common white neighbor. If T is a (fixed) trail in
H ′ and x, y are vertices of H ′, then we say that x, y are T̄ -related (denoted
x ∼ y) if xy ∈ E(H ′) \ E(T ) or x and y have a white common neighbor
outside T .

Let now H ′ ∈ H′θ, and let T be a trail in H ′ such that

(i) bla(T ) is maximum,
(ii) subject to (i), cro(T ) is minimum,
(iii) subject to (i) and (ii), the length of T is minimum.
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Then T has two black vertices of degree 1. We will always denote by
b1, . . . , bk the black vertices of T labelled along T , and by wi the white
successor of bi on T , if it exists. Note that, since T is a trail, possibly
bi = bj or wi = wj for some i 6= j. If bi ∼ bj , then the (possible) white
common neighbor of bi, bj outside T will be denoted by wij .

Case θ = 3.
Let B = {b1, b2, b3}. Then, clearly, bla(T ) = 2, cro(T ) = 0 and T =
b1(w1)b2. Since H ′ is connected and the set {b1, b2, b3} is dominating, b3

is T̄ -related to some vertex of T . Clearly both b3 ∼ b1 and b3 ∼ b2 imply
traceability of L(H ′), hence b3 ∼ w1, implying b3w1 ∈ E(H ′). The exis-
tence of any further relation implies traceability of L(H ′), hence V (H ′) =
{b1, b2, b3, w1} and E(H ′) = {w1b1, w1b2, w1b3}, implying L(H ′) ∈ C1.

Case θ = 4.
Let B = {b1, b2, b3, b4}. Then obviously 2 ≤ bla(T ) ≤ 3 and cro(T ) = 0, i.e.,
T is a path. We have two subcases.

Subcase bla(T ) = 3.
Then T = b1(w1)b2(w2)b3. Suppose first that b4 is T̄ -related to some black
vertex. Then necessarily b4 ∼ b2. If b4 ∼ x for some x ∈ {b1, (w1), b3, (w2)},
then we immediately have a trail T ′ with bla(T ′) = 4. Similarly, b1 ∼ b2

yields T ′ = b3(w2)b2(w1)b1(w12)b2(w24)b4, b1 ∼ w2 gives T ′ = b3w2b1(w1)
b2(w24)b4, and for b1 ∼ b3 we have T ′ = b3(w13)b1(w1)b2(w24)b4. By sym-
metry and since H ′ is triangle-free, these are all possibilities. Hence there
are no further T̄ -relations, implying L(H ′) ∈ C1.

Hence b4 is related to white vertices only. If both b4 ∼ w1 and b4 ∼ w2,
then H ′ contains no more relations, implying L(H ′) ∈ C2. If (by symmetry)
b4 ∼ w1 and b4 6∼ w2, then the only possible additional relation that does
not create a trail T ′ with bla(T ) = 4 is b1 ∼ w2. Then for b1 6∼w2 we have
L(H ′) ∈ C1 and for b1 ∼ w2 we have L(H ′) ∈ C4.

Subcase bla(T ) = 2.
Then T = b1(w1)b2. Then immediately b3 ∼ w1 and b4 ∼ w1. If b3 ∼ b4,
then L(H ′) is traceable; hence b3 6∼b4, implying L(H ′) ∈ C2.

Case θ = 5.
Let B = {b1, b2, b3, b4, b5}. We have obviously 2 ≤ bla(T ) ≤ 4. If 2 ≤
bla(T ) ≤ 3, then cro(T ) = 0 (since H ′ is triangle-free), for bla(T ) = 4
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we have 0 ≤ cro(T ) ≤ 1. We will denote these subcases by k/`, where
k = bla(T ) and ` = cro(T ). Thus, we have subcases 4/0, 4/1, 3/0 and
2/0. The subcase 4/1 splits into two subcases 4/1w and 4/1b according to
whether the vertex visited twice by T is white or black, respectively. We
consider these subcases separately.

Subcase 4/0.
Then T = b1(w1)b2(w2)b3(w3)b4 is a path. It is straightforward to check that
b5 can be T̄ -related to at most one black vetex of T (for otherwise L(H ′) is
traceable). Thus, we have two possibilities.

Subcase 4/0-1. b5 is T̄ -related to exactly one black vertex of T .
By symmetry, we can suppose b5 ∼ b2. We distinguish two subcases.

Subcase 4/0-1-1. b5 is T̄ -related to some white vertex on T .
Then the only possibility that does not imply L(H ′) is traceable is b5 ∼ w3.
Then it is straightforward to check that any further T̄ -relation between
vertices of T implies L(H ′) is traceable, but then L(H ′) ∈ C4.

Subcase 4/0-1-2. b2 is the only T̄ -relation of b5 on T .
We consider possible T̄ -relations between vertices of T .

If b1 ∼ w3, then we are in a situation symmetric to the subcase 4/0-1-1
and hence L(H ′) ∈ C4. All the other relations of b1 on T imply L(H ′) is
traceable. Hence we can assume b1 has no T̄ -relation on T . Now, if also b4

has no T̄ -relation on T , then we have L(H ′) ∈ C1. Hence we can suppose
b4 ∼ x for some x ∈ V (T ). If x ∈ {b1, w1, b2}, then L(H ′) is traceable.
Hence x ∈ {w2, b3}. Now, if there is no T̄ -relation y ∼ z for any y ∈ {w1, b2},
z ∈ {w2, b3, w3, b4}, then we have L(H ′) ∈ C1. It is straightforward to check
that all such relations y ∼ z imply L(H ′) is traceable.

Subcase 4/0-2. b5 is T̄ -related only to white vertices on T .
In this subcase, we have three further possibilities.

Subcase 4/0-2-1. b5 is T̄ -related to w1, w2 and w3.
Then there is no further T̄ -relation on T and L(H ′) ∈ C6.
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Subcase 4/0-2-2. b5 is T̄ -related to two white vertices on T .
By symmetry, we can suppose that b5 ∼ w1 and either b5 ∼ w2 or b5 ∼ w3.

Let first b5 ∼ w2. If no vertices on T are T̄ -related, then L(H ′) ∈ C4

(with b3, (w3), b4 in one clique of L(H ′)). Hence suppose there is a T̄ -relation
between some vertices of T . Clearly b1 6∼b2, b1 6∼w2, b1 6∼b3, b1 6∼b4, w1 6∼b3,
w1 6∼b4, b2 6∼b3, b2 6∼b4 and w2 6∼b4, since any of these relations implies L(H ′)
is traceable. It remains to consider the possibilities b1 ∼ w3, b2 ∼ w3 and
b3 ∼ b4.

If b1 ∼ w3, then both b2 6∼w3 and b3 6∼b4 (otherwise L(H ′) is traceable),
and then L(H ′) ∈ C5; if b2 ∼ w3, then b1 6∼w3 and b3 6∼b4, implying L(H ′) ∈
C6; and if b3 ∼ b4, then similarly b1 6∼w3, b2 6∼w3 and L(H ′) ∈ C4 (in which
b3, b4 and their common neighbors are in one clique).

Hence suppose b5 ∼ w3. Similarly as before, no T̄ -relation between
vertices of T implies L(H ′) ∈ C4 with b2, (w2), b3 in one clique. Thus, suppose
some vertices of T are T̄ -related. Immediately b1 6∼b2, b1 6∼b3, b1 6∼w3, b1 6∼b4

and w1 6∼b3, since any of these relations implies L(H ′) is traceable. By
symmetry, it remains to consider the possibilities b1 ∼ w2 and b2 ∼ b3. If
b1 ∼ w2, then b2 6∼b3 (otherwise L(H ′) is traceable), implying L(H ′) ∈ C5; if
b2 ∼ b3, then similarly b1 6∼w2 and L(H ′) ∈ C4 (with b2, b3 and their common
neighbors in one clique).

Subcase 4/0-2-3. b5 is T̄ -related to exactly one white vertex on T .
By symmetry, either b5 ∼ w1 or b5 ∼ w2.

Let first b5 ∼ w1. If b1 is not T̄ -related to any of b2, w2, b3, w3, b4, then
L(H ′) ∈ C1 (with b2, b3 and b4 in one clique). The relations b1 ∼ b2 and
b1 ∼ b4 immediately imply traceability. Hence b1 is T̄ -related to w2, b3

or w3.
If b1 ∼ b3 and, at the same time, b1 ∼ w2 or b1 ∼ w3, then L(H ′)

is traceable, and if b1 ∼ w2 and b1 ∼ w3, then we are in Subcase 4/0-2-1
(where b1 plays the role of b5). Hence b1 is T̄ -related to exactly one of b3,
w2, w3.

If b1 ∼ b3, then any additional relation implies L(H ′) is traceable, and
hence we have L(H ′) ∈ C4.

If b1 ∼ w2, then for b2 ∼ w3 we are in Subcase 4/0-2-1 (where b2 plays
the role of b5) and L(H ′) ∈ C6. Any other additional relation except b3 ∼ b4
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implies L(H ′) is traceable. If b3 ∼ b4, or if there is no additional relation,
we have L(H ′) ∈ C4 (with b3, b4 in one clique).

If b1 ∼ w3, then any additional relation except for b2 ∼ b3 or w2 ∼ b4

implies L(H ′) is traceable. For w2 ∼ b4 we have L(H ′) ∈ C5, and if b2 ∼ b3

or if there is no additional relation, then L(H ′) ∈ C4 (with b2 and b3 in one
clique).

Let now b5 ∼ w2. First observe that there is no T̄ -relation containing w2

since H ′ is triangle-free and both w2 ∼ b1 and w2 ∼ b4 imply traceability.
Secondly, if there is no T̄ -relation x ∼ y with x ∈ {b1, w1, b2} and y ∈
{b3, w3, b4}, then L(H ′) ∈ C1. Since b1 ∼ b3 and b1 ∼ b4 imply traceability,
by symmetry, we have b2 ∼ b3, w1 ∼ b3 or b1 ∼ w3. We consider these
possibilities separately.

If b2 ∼ b3, then there is no additional T̄ -relation containing b1 (or sym-
metrically b4), for otherwise L(H ′) is traceable. This implies L(H ′) ∈ C1.

If w1 ∼ b3, then similarly L(H ′) ∈ C1, unless there is an additional
T̄ -relation containing b1 or b4. The only such relations that do not imply
traceability are b1 ∼ w3 or b3 ∼ b4, but then L(H ′) ∈ C6 or L(H ′) ∈ C4,
respectively.

Finally, if b1 ∼ w3, then we already know there is no further relation,
and we have L(H ′) ∈ C4.

Subcase 4/1w.
Recall that in this subcase T visits twice one white vertex. Choose the no-
tation such that T = b1w1b2w2b3w1b4. Clearly, b5 6∼b1, b5 6∼b4 and b5 cannot
be T̄ -related to both b2, b3 (since in each of these cases L(H ′) is traceable).
Thus, b5 is T̄ -related to at most one black vertex on T . There are two
subcases.

Subcase 4/1w-1. b5 is T̄ -related to one black vertex on T .
By symmetry, let b5 ∼ b2. Then L(H ′) ∈ C1 (with w1, b2, w2, b3 in one
clique), since any additional T̄ -relation involving any of b1, b4, b5 implies
L(H ′) is traceable.

Subcase 4/1w-2. b5 is T̄ -related only to white vertices.
In this subcase, we distinguish three further possibilities.

Subcase 4/1w-2-1. b5 ∼ w1, b5 ∼ w2.
Then there is no other relation and L(H ′) ∈ C7.
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Subcase 4/1w-2-2. b5 ∼ w1, b5 6∼w2.
If there is no other relation involving any of b1, b2, then we have L(H ′) ∈ C1

(with b2, b3 and their common neighbors in one clique). It is straightforward
to check that any further T̄ -relation involving b1 or b4 gives L(H ′) ∈ C8 (if
some of b1, b2 is T̄ -related to w2), or traceability of L(H ′).

Subcase 4/1w-2-3. b5 ∼ w2, b5 6∼w1.
Then L(H ′) ∈ C1 (with w1, b2, w2, b3 in one clique) and any T̄ -relation be-
tween any of b2, w2, b3 and the rest implies traceability of L(H ′).

Subcase 4/1b.
Choose the notation such that the vertex b2 is visited twice by T , i.e., T =
b1(w1)b2w2b3w3b2(w4)b4. Similarly as before, b5 is T̄ -related to at most one
black vertex on T , and neither to b1 nor to b4. We distinguish three subcases.

Subcase 4/1b-1. b5 ∼ b2, b5 6∼b3.
In this case b2 is the only T̄ -relation of b5 on T (since any other relation
implies traceability). Now L(H ′) ∈ C2 and any other T̄ -relation between
vertices of T gives L(H ′) ∈ C1 or traceability. We distinguish three possibil-
ities.

Subcase 4/1b-2. b5 ∼ b3, b5 6∼b2.
In this subcase immediately L(H ′) ∈ C1 with {b2, w2, b3, w3} in one clique
and any relation joining a vertex from this set to the rest gives traceability.

Subcase 4/1b-3. b5 is T̄ -related only to white vertices.
Then b5 can have T̄ -relations in at most one of the sets {w1, w4}, {w2, w3}
(otherwise L(H ′) is traceable). We have two further possibilities.

Subcase 4/1b-3-1. b5 ∼ w1.
For b5 6∼w4 we have L(H ′) ∈ C1, and for b5 ∼ w4 we have L(H ′) ∈ C4 (with
b2, w2, b3, w3 in one clique).

Subcase 4/1b-3-2. b5 ∼ w2.
If b5 6∼w3, then L(H ′) ∈ C1 (with b2, w2, b3, w3 in one clique), and if b5 ∼ w3,
then L(H ′) ∈ C8.

Subcase 3/0.
Let T = b1(w1)b2(w2)b3.



70 D. Fronček, Z. Ryjáček and Z. Skupień

Subcase 3/0-1. b4 ∼ b5.
If b4 or b5 is T̄ -related to any vertex on T , then we have a path T ′ with
bla(T ′) ≥ 4, except for the case if w45 = w24 = w25. In this case, L(H ′) ∈ C2.

Subcase 3/0-2. b4 6∼b5.
If b4 has two relations on T , then the only possibility that does not create
a trail T ′ with bla(T ′) ≥ 4 is b4 ∼ w1, b4 ∼ w2, but then, for any T̄ -relation
of b5 on T we again have a trail T ′ with bla(T ′) ≥ 4. Hence both b4 and
b5 have one T̄ -relation on T . Then it is straightforward to check that in all
nontraceable cases we have L(H ′) ∈ C2 or L(H ′) ∈ C1.

Subcase 2/0.
Let T = b1(w1)b2. If any two of b3, b4, b5 are T̄ -related, we have a trail T ′

with bla(T ′) ≥ 3. Hence b3 ∼ w1, b4 ∼ w1, b5 ∼ w1, implying L(H ′) ∈ C3.
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ihre Unterteilungen, Math. Nachr. 22 (1960) 61–85.

[5] R. Faudree, O. Favaron, E. Flandrin, H. Li and Z. Liu, On 2-factors in claw-
free graphs, Discrete Math. 206 (1999) 131–137.

[6] O. Favaron, E. Flandrin, H. Li and Z. Ryjáček, Clique covering and degree
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