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Abstract

A graph G is called a split graph if the vertex-set V of G can be
partitioned into two subsets V1 and V2 such that the subgraphs of G
induced by V1 and V2 are empty and complete, respectively. In this
paper, we characterize hamiltonian graphs in the class of split graphs
with minimum degree δ at least |V1| − 2.
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1. Introduction

All graphs considered in this paper are finite undirected graphs without
loops or multiple edges. If G is a graph, then V (G) and E(G) (or V and
E in short) will denote its vertex-set and its edge-set, respectively. The
set of all neighbours of a subset S ⊆ V (G) is denoted by NG(S) (or N(S)
in short). For a vertex v ∈ V (G), the degree of v, denoted by deg(v), is
|NG(v)|. The minimum degree of a graph G = (V, E), denoted by δ(G)
or δ in short, is the number min{deg(v) | v ∈ V }. The subgraph of G
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induced by W ⊆ V (G) is denoted by G[W ]. Unless otherwise indicated, our
graph-theoretic terminology will follow [1].

One of the fundamental problems in graph theory is the hamiltonian
problem. Although this is an old one, the amount of papers dealing with
this subject does not decrease nowadays (see [3], [8], [11]). Most of these
works give sufficient conditions for the existence of a Hamilton cycle in
graphs. Only a few of them deal with necessary ones. The history of de-
velopment of the problem shows that there is a very little hope that an
useful and simple characterization of all hamiltonian graphs exists. How-
ever, this does not exclude the availability of such a characterization of
hamiltonian graphs in some particular classes of graphs, e.g., in [14] hamil-
tonian self-complementary graphs have been characterized by Rao and in
[10] hamiltonian threshold graphs have been characterized by Harary and
Peled.

A graph G = (V, E) is called a split graph if there exists a partition
V = V1 ∪ V2 such that G[V1] and G[V2] are empty and complete graphs,
respectively. We will denote such a graph by S(V1 ∪ V2, E). The notion of
split graphs was introduced in [6] by Foldes and Hammer. These graphs have
been paid attention because of their connection with many combinatorial
problems (see [5], [7], [13]).

In this paper, we consider the hamiltonian problem for split graphs.
It is clear that if |V1| > |V2| then a split graph G = S(V1 ∪ V2, E) has
no Hamilton cycles. So without loss of generality we may consider the
hamiltonian problem only for split graphs G = S(V1∪V2, E) with |V1| ≤ |V2|.
The main result here is Theorem 1 below. The condition for the existence of
a Hamilton cycle in a split graph obtained here is similar to Hall’s condition
for the existence of a complete matching in a bipartite graph [9].

Theorem 1. Let G = S(V1∪V2, E) be a split graph with |V1| = m ≤ n = |V2|
and the minimum degree δ(G) ≥ m−2. Then G has a Hamilton cycle if and
only if |N(S)| > |S| for any ∅ 6= S ⊆ V1 with m− 2 ≤ |S| ≤ min{m,n− 1},
except the following graphs for which the sufficiency does not hold:

(i) m = 3 < n and G is the graph G3
n,

(ii) m = 4 < n and G is a spanning subgraph of D4
n or G4

n,
(iii) m = 4 ≤ n and G− u is the graph G3

n for some u ∈ V1,
(iv) m = 5 < n and G is the graph F 5

n or a spanning subgraph of G5
n,

(v) 6 ≤ m < n and G is a spanning subgraph of Gm
n .
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The graphs Gm
n , D4

n and F 5
n will be defined in Section 2. It will be also

proved there that these graphs are split graphs S(V1 ∪ V2, E) satisfying
|V1| = m < n = |V2|, δ(G) ≥ m − 2 and |N(S)| > |S| for any ∅ 6= S ⊆ V1

with |S| ≥ m − 2, but they have no Hamilton cycles. Every graph in (iii)
also has no Hamilton cycles.

We note that there are in literature some papers dealing with the hamil-
tonian problem for split graphs [2], [12]. But the conditions obtained there
for the existence of a Hamilton cycle in split graphs are only necessary, but
not sufficient. In [2] the authors also asked if the conditions obtained there
can be sharpened to a necessary and sufficient one.

From Theorem 1 we have the following corollary.

Corollary 2. Let G = B(V1 ∪ V2, E) be a bipartite graph with bipartition
V = V1 ∪ V2, where |V1| = m ≤ n = |V2| and δ(V1) = min{deg(v) | v ∈
V1} ≥ m − 2. Then G has a Hamilton cycle if and only if m = n and
|N(S)| > |S| for any ∅ 6= S ⊆ V1 with |S| = m− 2 or m− 1, unless m = 4
and G− u is the graph BG3

4 for some u ∈ V1.

The graph BG3
4 is obtained from G3

4 by deleting all edges, the both endver-
tices of which are in V2. The sufficiency does not hold for these exceptional
graphs.

Thus, we have got in this paper a characterization of hamiltonian split
graphs G = S(V1 ∪ V2, E) with δ(G) ≥ |V1| − 2. We note that although
many sufficient conditions for the existence of a Hamilton cycle in a graph
are known (see [3]), almost all they involve the order |V | of G and all they
are not necessary. Meanwhile, our condition is also necessary and involves
only the cardinality |V1| of the subset V1. Therefore, it is not a consequence
of former conditions.

2. Preliminaries

Let C be a cycle in a graph G = (V, E). By
−→
C we denote the cycle C with

a given orientation, and by
←−
C the cycle C with the reverse orientation. If

u, v ∈ V (C), then u
−→
C v denotes the consecutive vertices of C from u to v

in the direction specified by
−→
C . The same vertices in the reverse order are

given by v
←−
C u. We will consider u

−→
C v and v

←−
C u both as paths and as vertex

sets. If u ∈ V (C), then u+ denotes the successor of u on
−→
C , and u− denotes
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its predecessor. Similar notation as described above for cycles is used for
paths.

If W ⊆ V (G) and v ∈ W , then v is called a W -vertex. Also, by NG,W (u)
or NW (u) in short we denote the set W ∩NG(u).

Lemma 3. If a split graph G = S(V1 ∪ V2, E) has a Hamilton cycle, then
|N(S)| > |S| for any ∅ 6= S ⊆ V1 with |S| ≤ min{m,n− 1}.

Proof. Suppose that G = S(V1 ∪ V2, E) has a Hamilton cycle C. Let
u1, . . . , uk (1 ≤ k ≤ min{m, n− 1}) be the vertices of ∅ 6= S ⊆ V1, occurring
on
−→
C in the order of their indices. It is not difficult to see that u+

i 6= u+
j if

i 6= j. Since |S| = k < n, there exists i ∈ {1, . . . , k} such that there are at
least two V2-vertices in u+

i

−→
C u−i+1(indices mod k). Therefore, u+

i 6= u−i+1. So
N(S) ⊇ {u+

i , . . . , u+
k , u−i+1} and |N(S)| ≥ k + 1 > k = |S|.

Lemma 4. Let G = S(V1 ∪ V2, E) be a split graph with |V1| < |V2|. Then
G has a Hamilton cycle if and only if |NG(V1)| > |V1| and the subgraph
G′ = G[V1 ∪NG(V1)] has a Hamilton cycle.

Proof. Suppose that G has a Hamilton cycle C. By Lemma 3, |NG(V1)| >
|V1|. If v ∈ V2−NG(V1), then both v− and v+ are in V2. So v−v+ ∈ E(G−v).
This means that C ′ = C−v+v−v+ is a Hamilton cycle of G−v. By backward
induction on |V2 −NG(V1)| we can show that G′ has a Hamilton cycle.

Conversely, let |NG(V1)| > |V1| and G′ = G[V1 ∪NG(V1)] have a Hamil-
ton cycle C ′. Futher, let V2−NG(V1) = {y1, . . . , yl}. Since |NG(V1)| > |V1|,
there exists v ∈ NG(V1) such that both v and v+ (with respect to C ′) are in
NG(V1) ⊆ V2. It follows that C = vy1 . . . ylv

+−→C ′v is a Hamilton cycle of G.

In Table 1 we define the split graphs Gm
n , D4

n and F 5
n . The conditions

that m and n must be satisfied for the corresponding graph are indicated
in parentheses under its name in Column 1. The subsets V1 and V2 of the
vertex-set V for each of these graphs are indicated in Column 2. Finally, in
Column 3, we present the edges of the corresponding graph.

Lemma 5. (a) Let G = S(V1 ∪ V2, E) with |V1| = m and |V2| = n be one
of the split graphs Gm

n , D4
n and F 5

n . Then m < n, δ(G) ≥ m − 2 and
|N(S)| > |S| for any ∅ 6= S ⊆ V1 with |S| ≥ m− 2, but G has no Hamilton
cycles.
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(b) Every graph G = S(V1 ∪ V2, E), for which G − u is the graph G3
n for

some u ∈ V1, also has no Hamilton cycles.

Table 1. The graphs Gm
n , D4

n and F 5
n .

The graph The vertex-set The edge-set

G = (V, E) V = V1 ∪ V2 E = E1 ∪ E2 ∪ E3

Gm
n V1 = {u1, . . . , um}, E1 = {u1v1, u2v2, u3v3},

(3 ≤ m < n) V2 = {v1, . . . , vn}. E2 = {uivj | i = 1, . . . , m;

j = 4, . . . , m + 1},
E3 = {vivj | i 6= j; i, j = 1, . . . , n}.

D4
n V1 = {u1, . . . , u4}, E1 = {u1v2, u2v1, uivi |

i = 1, 2, 3, 4},
(4 < n) V2 = {v1, . . . , vn}. E2 = {uiv5 | i = 1, 2, 3, 4},

E3 = {vivj | i 6= j; i, j = 1, . . . , n}.
F 5

n V1 = {u1, . . . , u5}, E1 = {uivi | i = 1, . . . , 5},
(6 < n) V2 = {v1, . . . , vn}. E2 = {uivj | i = 1, . . . , 5; j = 6, 7},

E3 = {vivj | i 6= j; i, j = 1, . . . , n}.

Proof. (a) It is not difficult to verify that for each of these graphs the
inequalities m < n, δ(G) ≥ m− 2 and |N(S)| > |S| for any ∅ 6= S ⊆ V1 with
|S| ≥ m− 2 are true.

Suppose that G = Gm
n has a Hamilton cycle C. Set R = {v4, . . . , vm+1},

where v4, . . . , vm+1 occur on
−→
C in the order of their indices. Then G − R

can be covered by m − 2 = |R| vertex-disjoint paths P1 = v+
4

−→
C v−5 , P2 =

v+
5

−→
C v−6 ,...,Pm−2 = v+

m+1

−→
C v−4 . On the other hand, it is not difficult to

see that G − R need at least m − 1 vertex-disjoint paths to cover it, a
contradiction.

The proofs of the fact that D4
n and F 5

n are non-hamiltonian are left to
the reader.
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(b) Let G have a Hamilton cycle C. Then both u− and u+ are in V2.
So u−u+ ∈ E(G− u) and therefore C ′ = u−u+−→C u− is a Hamilton cycle of
G− u, contradicting the fact that G3

n is non-hamiltonian by (a).

By Lemma 4, we assume from now on that all considered split graphs
S(V1 ∪ V2, E) have N(V1) = V2.

Lemma 6. Let G = S(V1 ∪V2, E) with |V1| = m and |V2| = n be a maximal
non-hamiltonian split graph with δ(G) ≥ m− k (0 ≤ k ≤ m). Then for any
v ∈ V2, either |NV1(v)| ≤ k or |NV1(v)| = m.

Proof. Suppose that there exists v ∈ V2 such that k < |NV1(v)| < m. Since
|NV1(v)| < m, there exists u ∈ V1 such that uv /∈ E. Therefore, G + uv has
a Hamilton cycle C, which must contain the edge uv because G is maximal
non-hamiltonian. Without loss of generality we may assume u− = v. Let
x1, . . . , xt be the neighbours in G of u, occurring on u

−→
C v in the order of

their indices. Then t ≥ m − k by the assumption and x−i is not adjacent
to v in G for every i = 1, . . . , t because otherwise, C ′ = u

−→
C x−i v

←−
C xiu is a

Hamilton cycle of G, a contradiction. So x−1 , . . . , x−t are in V1 because all
V2-vertices are adjacent to v. Hence, |NV1(v)| ≤ m− t ≤ m− (m− k) = k,
contradicting |NV1(v)| > k.

Proposition 7. Let G = S(V1 ∪ V2, E) be a split graph with |V1| < |V2| and
|NV1(v)| ≤ 2 for each v ∈ V2. Then G has a Hamilton cycle if and only if
|N(S)| > |S| for any ∅ 6= S ⊆ V1.

Proof. The necessity follows from Lemma 3. Now we prove the sufficiency
by induction on |V1|. If |V1| = 1, then G trivially has a Hamilton cycle.
Suppose that the sufficiency has been proved when |V1| < t and G is a split
graph such that |V1| = t < |V2|, |NV1(v)| ≤ 2 for any v ∈ V2 and |N(S)| > |S|
for any ∅ 6= S ⊆ V1. By the induction hypothesis, for any u ∈ V1, the graph
Gu = G− u has a Hamilton cycle C.

First assume that there exists v1 ∈ V2 such that |NV1(v1)| = 1, say
NV1(v1) = {u}. Since |NG(u)| > |{u}| = 1, there exists v2 ∈ N(u) with
v2 6= v1. If v+

1 = v2, then C ′ = v1uv2
−→
C v1 is a Hamilton cycle of G. So we

assume that v+
1 6= v2. Since NV1(v1) = {u}, |NV1(v2)| ≤ 2 and v2 ∈ N(u),

either both v−1 and v−2 or both v+
1 and v+

2 are in V2, say v+
1 and v+

2 . Then
C ′ = v1uv2

←−
C v+

1 v+
2

−→
C v1 is a Hamilton cycle of G.
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Now assume that for any v ∈ V2, |NV1(v)| = 2. If for any u ∈ V1, |N(u)| ≤ 2,
then

2|V1| ≥
∑

u∈V1

|N(u)| =
∑

v∈V2

|NV1(v)| = 2|V2|,

contradicting |V1| < |V2|. Thus, there exists u ∈ V1 such that |NG(u)| ≥ 3.
Let v1, v2, v3 ∈ N(u). Since |NV1(vi)| = 2 for each i = 1, 2, 3, either
{v−1 , v−2 , v−3 } or {v+

1 , v+
2 , v+

3 } contains two V2-vertices, say v+
1 and v+

2 . If
v+
1 = v2, then C ′ = v1uv2

−→
C v1 is a Hamilton cycle of G. Otherwise,

C ′ = v1uv2
←−
C v+

1 v+
2

−→
C v1 is a Hamilton cycle of G.

Proposition 8. Let G = S(V1 ∪ V2, E) be a split graph with |V1| < |V2| and
δ(G) ≥ |V1|. Then G has a Hamilton cycle if and only if |N(V1)| > |V1|.

Proof. The necessity follows from Lemma 3. Now we prove the sufficiency.
It is not difficult to verify that |V (G)| ≥ 3, α(G) = |V1| ≤ κ(G), where
α(G) and κ(G) are the independence number and the connectivity of G,
respectively. By [4] G has a Hamilton cycle.

A graph G is called to have the property (•) if the following conditions are
satisfied:

1. G is a split graph S(V1 ∪ V2, E) with m = |V1| < |V2| = n and δ(G) ≥
|V1| − k where 1 ≤ k ≤ 2;

2. G is a maximal non-hamiltonian, but for any u ∈ V1 the graph Gu =
G − u, which is the split graph S(W1 ∪ V2, Eu) with W1 = V1 − u,
Eu = E − {uv ∈ E | v ∈ V2}, has a Hamilton cycle C;

3. For any ∅ 6= S ⊆ V1 with |S| ≥ m− k, |N(S)| > |S|;
4. G has a V1-vertex u such that u has a neighbour v1 with v+

1 ∈ V2 and
a neighbour v2 with v−2 ∈ V2 (with respect to C). The vertex v1 may
coincide with v2.

We note that if the vertices v1 6= v2, then v2 /∈ {v−1 , v+
1 } because otherwise

C ′ = v1uv2
−→
C v1 or C ′ = v2uv1

−→
C v2 is a Hamilton cycle of G, a contradiction.

Let G be a graph with the property (•) and u, v1 and v2 be the vertices
of G chosen as in its definition above. Set

Bi = {v ∈ V2 | |NV1(v)| = i},



30 N.D. Tan and L.X. Hung

Ai =
⋃

v∈Bi

NV1(v).

Many assertions below can be proved easily by contradiction. So we omit
their detailed proofs and give in parentheses only a Hamilton cycle C ′ of G
if we assume the contrary.

Claim 2.1. Bm 6= ∅.

(C ′ exists by Lemma 6 and Proposition 7 if Bm = ∅.)

Claim 2.2. v+
1 and v−2 are not in Bm.

(C ′ = v1uv+
1

−→
C v1 if v+

1 ∈ Bm.)

Claim 2.3. For any x ∈ Bm, x+ and x− are in W1.

(C ′ = v1ux
←−
C v+

1 x+−→C v1 if x+ ∈ V2.)

By Claim 2.1 and Claim 2.3 there exists a positive integer t such that C

possesses t disjoint paths P1 = x1
−→
C y1, . . . , Pt = xt

−→
C yt, which occur in

v+
1

−→
C v−1 in the order of their indices and have the following properties:

(a) Vertices of W1 and Bm occur alternatively in Pi for every i = 1, . . . , t,
(b) The endvertices xi and yi of Pi are in W1 for every i = 1, . . . , t,
(c) x−i and y+

i are not in Bm for every i = 1, . . . , t,
(d) Every vertex of Bm is in one of P1, . . . , Pt.

Let li be the number of Bm-vertices in Pi. Then it is clear that the number
of W1-vertices in Pi is li + 1. By (d), l1 + . . . + lt = |Bm|. So in total, the
number of W1-vertices in all paths P1, . . . , Pt is |Bm| + t. It follows that
|Bm|+ t ≤ |W1| = m− 1. Thus, we have proved the following.

Claim 2.4. |Bm| ≤ m− 1− t.

Set Q1 = v+
1

−→
C v−2 and Q2 = v+

2

−→
C v−1 . Thus, if v1 = v2, then Q1 = Q2. But

if v1 6= v2, then Q1 and Q2 are disjoint and each of them has at least one
vertex because v2 /∈ {v−1 , v+

1 } as we have noted before. Let among P1, . . . , Pt

there be l paths in Q1 (0 ≤ l ≤ t). Since P1, . . . , Pt occur in v+
1

−→
C v−1 in the

order of their indices, these l paths in Q1 are P1, . . . , Pl. Then the following
assertions are also true.
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Claim 2.5. All W1-neighbours of v+
1 and v−2 are in Q1.

(C ′ = v1uv2
−→
C u1v

+
1

−→
C v−2 u+

1

−→
C v1 if u1 is a W1-neighbour in Q2 of v+

1 .)

Claim 2.6. If among P1, . . . , Pt there are l ≥ 1 paths in Q1 and w is a
W1-neighbour in some Pi of v+

1 (resp. v−2 ), then w = x1 (resp. w = yl).

Suppose the otherwise that w 6= x1. If w−∈ Bm, then C ′= v1uw−
←−
C v+

1 w
−→
C v1

is a Hamilton cycle of G, a contradiction. So w− /∈ Bm. It follows w = xi for
some i ≥ 2. Then C ′ = v1ux+

1

←−
C v+

1 xi
←−
C x++

1 x+
i

−→
C v1 is a Hamilton cycle of G

because both x+
1 and x+

i are in Bm, a contradiction again. By symmetry,
we can show the assertion for v−2 .

Claim 2.7. If among P1, . . . , Pt there are l ≥ 1 paths in Q1 and v+
1 (resp.

v−2 ) has a W1-neighbour in some Pi, then v++
1 ∈ W1 (resp. v−−2 ∈ W1).

Suppose the otherwise that v++
1 ∈ V2. Let w be a W1-neighbour of v+

1 in
Pi. By Claim 2.6, w = x1. Therefore, C ′ = v1ux+

1

−→
C v−2 v+

1 x1
←−
C v++

1 v2
−→
C v1

is a Hamilton cycle of G, a contradiction. By symmetry, we can show the
assertion for v−2 .

Proposition 9. Let G = S(V1 ∪ V2, E) be a split graph with m = |V1| <
|V2| = n and δ(G) ≥ m − 1. Then G has a Hamilton cycle if and only if
|N(S)| > |S| for any ∅ 6= S ⊆ V1 with |S| ≥ m− 1, except the graph G3

n for
which the sufficiency does not hold.

Proof. The necessity follows from Lemma 3. Now, we prove the sufficiency.
Let G = S(V1 ∪ V2, E) be a maximal non-hamiltonian split graph satisfying
|N(S)| > |S| for any ∅ 6= S ⊆ V1 with |S| ≥ m − 1. By Lemma 6, B2 =
B3 = · · · = Bm−1 = ∅. Set A = V1 \A1.

For any u ∈ V1 denote by Gu the graph G − u. Thus, Gu = S(W1 ∪
V2, Eu) with W1 = V1 − u. By Proposition 8, Gu has a Hamilton cycle
C. The following assertions are easily proved by contradiction. (We again
indicate in parentheses a Hamilton cycle C ′ of G if we assume the contrary.)

Claim 2.8. B1 6= ∅.

(C ′ exists by Proposition 8 if B1 = ∅.)

Claim 2.9. Each u ∈ A1 has only one B1-neighbour.
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(C ′ = v1uv2
←−
C v+

1 v+
2

−→
C v1 if v1 and v2 are two different B1-neighbours of u.)

Let u ∈ A1 and v be the B1-neighbour of u. Then both v− and v+ are in
V2. Thus G is a graph having the property (•) with k = 1. By Claim 2.1
Bm 6= ∅. By Claim 2.9, all neighbours of u but v are in Bm. It follows that
|Bm| = |N(u)| − 1 ≥ (m − 1) − 1 = m − 2. Together with Claim 2.4 we
have m− 2 ≤ |Bm| ≤ m− 1− t, where t is the number of paths Pi = xi

−→
C yi

defined for a graph with property (•) as above. So |Bm| = m − 2, t = 1
because t is a positive integer. Therefore, the number of W1-vertices in
P1 = x1

−→
C y1 is m− 1 = |W1|. This means that all vertices of W1 are in P1.

So if R = y+
1

−→
C x−1 , then V (R) = B1. By Claim 2.2 both v− and v+ are in

B1. Hence, all v−, v and v+ are in R. Let w be the unique W1-neighbour
of v+, then w = x1 = v++ by Claim 2.6 and Claim 2.7. By symmetry, if
w is the unique W1-neighbour of v−, then w = y1 = v−−. This means that
v+ = x−1 and v− = y+

1 and therefore R = v−vv+ with all v−, v, v+ in B1.
Since |Bm| = m − 2 and δ(G) ≥ m − 1, the set A must be empty. Thus,
B1 = {v−, v, v+}, A = ∅. Using Claim 2.9 it is not difficult to see that G
must be G3

4.

3. Proof of the Results

First we prove the following two propositions 10 and 11.

Proposition 10. Let G = S(V1 ∪ V2, E) be a split graph with m = |V1| <
|V2| = n and δ(G) ≥ m − 2. Then G has a Hamilton cycle if and only if
|N(S)| > |S| for any ∅ 6= S ⊆ V1 with |S| ≥ m − 2, except the following
graphs for which the sufficiency does not hold :

(i) m = 3 and G is the graph G3
n,

(ii) m = 4 and G is a spanning subgraph of D4
n or G4

n,
(iii) m = 4 and G− u is the graph G3

n for some u ∈ V1,
(iv) m = 5 and G is the graph F 5

n or a spanning subgraph of G5
n,

(v) m ≥ 6 and G is a spanning subgraph of Gm
n .

Proof. The necessity follows from Lemma 3. Now, we prove the sufficiency.
If m = 1 or 2, then by Proposition 7, G has a Hamilton cycle. For any
3 ≤ m < n, let G = S(V1∪V2, E) be a maximal non-hamiltonian split graph
satisfying δ(G) ≥ m − 2 and |N(S)| > |S| for any ∅ 6= S ⊆ V1 with |S| ≥
m− 2. By Lemma 6, B3 = B4 = · · · = Bm−1 = ∅. Set A = V1 \ (A1 ∪A2).
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For any u ∈ V1, denote by Gu the graph G − u = S(W1 ∪ V2, Eu), where
W1 = V1 − u. By Proposition 9, either |W1| = m − 1 = 3 and Gu is the
graph G3

4 or Gu has a Hamilton cycle. In the former case, G is a graph in
(iii). So we assume from now on that

Claim 3.1. For any u ∈ V1, Gu has a Hamilton cycle C with a fixed orien-
tation

−→
C .

Below we omit the detailed proofs of many assertions which can be easily
proved by contradiction. In these cases, as before, we indicate in parentheses
a Hamilton cycle C ′ of G if we assume the contrary.

Claim 3.2. Each u ∈ A1 has only one B1-neighbour.

(C ′ = v1uv2
←−
C v+

1 v+
2

−→
C v1 if v1 and v2 are two different B1-neighbours of u.)

Claim 3.3. A1 ∩A2 = ∅.

Suppose the otherwise that u ∈ A1 ∩ A2. Let v1 and v2 be a B1-neighbour
and a B2-neighbour of u, respectively. Then v−1 and v+

1 are in V2 and at
least one of v−2 and v+

2 is in V2, say v+
2 . So C ′ = v1uv2

←−
C v+

1 v+
2

−→
C v1 is a

Hamilton cycle of G, a contradiction.

Claim 3.4. Each u ∈ A2 has at most two B2-neighbours.

Suppose the otherwise that some u ∈ A2 has three B2-neighbours v1, v2 and
v3. Then either {v−1 , v−2 , v−3 } or {v+

1 , v+
2 , v+

3 } has at least two vertices in V2,
say v+

1 ∈ V2 and v+
2 ∈ V2. Then C ′ = v1uv2

←−
C v+

1 v+
2

−→
C v1 is a Hamilton cycle

of G, a contradiction.

Claim 3.5. At least one of B1 and B2 is not empty.

(C ′ exists by Proposition 8 if both B1 and B2 are empty.)

Now we consider separately two cases.

Case 1. B1 6= ∅.
Let v ∈ B1 and u be the V1-neighbour of v. By Claim 3.1, Gu has a
Hamilton cycle C with a fixed orientation

−→
C . Since v ∈ B1, both v− and

v+ are in V2. Thus, G is a graph having the property (•) with k = 2.
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(Here v1 = v2 = v and therefore Q1 = v+
1

−→
C v−2 = v+

2

−→
C v−1 = Q2.) By Claim

3.2 and Claim 3.3, all neighbours of u but v are in Bm. It follows that
|Bm| = |N(u)| − 1 ≥ (m − 2) − 1 = m − 3. Together with Claim 2.4 we
have m− 3 ≤ |Bm| ≤ m− 1− t, where t is the number of paths Pi = xi

−→
C yi

defined for a graph with the property (•) as in Section 2. So |Bm| = m− 2
or m− 3 because t is a positive integer.

If |Bm| = m − 2, then t = 1 and the number of W1-vertices in P1 is
m−1 = |W1|. It follows that all vertices of W1 are in P1. So if R = y+

1

−→
C x−1 ,

then V (R) = B1 ∪ B2. In particular, v−, v and v+ are in R by Claim 2.2.
Let w be a W1- neighbour of v+. Then w is in P1. By Claim 2.6, w = x1

and therefore v+ ∈ B1. By Claim 2.7, v+ = x−1 . By symmetry, v− ∈ B1 and
v− = y+

1 . Therefore, R = v−vv+ with all v−, v and v+ in B1 and B2 = ∅.
Using Claim 3.2 it is not difficult to see that G is Gm

n in this subcase.
If |Bm| = m− 3, then t = 1 or 2 and A = ∅ because δ(G) ≥ m− 2.
First assume that |Bm| = m − 3, t = 1 and A = ∅. Then P1 contains

m− 2 W1-vertices. Therefore, R = y+
1

−→
C x−1 contains exactly one W1-vertex,

say u1. All the other vertices of R are in B1 ∪ B2. By symmetry, without
loss of generality we may assume that u1 is in v++−→C x−1 . From Claim 3.2,
Claim 3.3 and the fact that both u−1 and u+

1 are in R, we see that u1 ∈ A2.
If v+ 6= u−1 , then v+ is not adjacent to u1 because otherwise u1 has three
neighbours in B1 ∪ B2, contradicting Claim 3.3 and Claim 3.4. Thus v+

has a W1-neighbour in P1. Now by Claim 2.7, v++ ∈ W1, contradicting the
fact that there are no W1-vertices in v+−→C u−1 . Thus v+ = u−1 . So v+ ∈ B2

and v+ has another W1-neighbour in P1, namely, x1 by Claim 2.6. Now
if u+

1 6= x−1 , then C ′ = vux+
1

−→
C v−x−1 x1v

+−→C x−−1 v is a Hamilton cycle of
G, a contradiction. It follows that u+

1 = x−1 . Further, consider v−. If
w is a W1-neighbour of v−, then w 6= u1 because otherwise u1 has three
neighbours in B1∪B2. So w is in P1. By Claim 2.6 and Claim 2.7, v− = y+

1

and v− ∈ B1. Thus, R = v−vv+u1x
−
1 , B1 = {v−, v}, B2 = {v+, x−1 },

NW1(v
+) = NW1(x

−
1 ) = {u1, x1} and A = ∅. Using Claims 3.2–3.4, it is not

difficult to see that G is D4
5 in this subcase.

Now assume that |Bm| = m − 3, t = 2 and A = ∅. Since the total
number of W1-vertices in P1 and P2 is m− 1 = |W1|, every vertex of W1 is
in P1 or P2. Set R1 = y+

1

−→
C x−2 and R2 = y+

2

−→
C x−1 . Then R1 has at least

one vertex, R2 contains v−, v, v+ and V (R1∪R2) = B1∪B2. It follows that
all W1-neighbours of v+ are in P1 or P2. So by Claim 2.6, the only W1-
neighbour of v+ is x1. This means that v+ ∈ B1. By Claim 2.7, v+ = x−1 .
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By symmetry, we can show that v− ∈ B1 and v− = y+
2 . Thus, R2 = v−vv+

with all v−, v, v+ in B1.
Consider R1. If y++

1 /∈ R1, then y+
1 = x−2 and R1 = y+

1 . So y+
1 ∈ B2.

Thus, B1 = {v−, v, v+}, B2 = {y+
1 } and A = ∅. Since y+

1 ∈ B2, y+
1 u, y+

1 x1

and y+
1 y2 are not edges of G. From this, Claim 3.2 and Claim 3.3 it is not

difficult to see that G is a proper spanning subgraph of G5
6, contradicting the

choise of G because G5
6 is non-hamiltonian by Lemma 5. Thus y++

1 ∈ R1.
If y++

1 6= x−2 , then y++
1 has a W1-neighbour u1. By symmetry, without

loss of generality we may assume that u1 is in P1. If u1 6= y1, then C ′ =
vuu+

1

−→
C y++

1 u1
←−
C v+y+++

1

−→
C v is a Hamilton cycle of G. If u1 = y1, then

C ′ = vuy−1
←−
C v+y+

1 y1y
++
1

←−
C v is a Hamilton cycle of G. These contradictions

show that y++
1 = x−2 and therefore R1 = y+

1 x−2 . If y+
1 ∈ B2, then y+

1 has
a W1-neighbour u1 6= y1. If u1 is in P1, then C ′ = vuu+

1

−→
C y+

1 u1
←−
C v+x−2

−→
C v

is a Hamilton cycle of G, a contradiction. If u1 is in P2, then u1 6= y2

because otherwise y2 ∈ A2 and therefore v− ∈ B2, contradicting the fact
that v− ∈ B1 as shown in the preceding paragraph. It follows that u+

1 ∈ Bm

and C ′ = vuu+
1

−→
C v−x−2

−→
C u1y

+
1

←−
C v is a Hamilton cycle of G, a contradiction.

So y+
1 ∈ B1. Similarly, x−2 ∈ B1. Thus, B1 = {v−, v, v+, y+

1 , x−2 }, B2 = ∅
and A = ∅. Using Claim 3.2 it is not difficult to show that G is F 5

7 in
this subcase.

Case 2. B1 = ∅.
By Claim 3.5, B2 6= ∅. Then A2 6= ∅. Let u ∈ A2 and C be a Hamilton cycle
of Gu. We again divide this case into two subcases.

Subcase 2.1. Every A2-vertex has exactly one B2-neighbour.
Let v be the only B2-neighbour of u. Then at least one of v− and v+ is in
V2, say v+. Then v+ must be in B2 and therefore it has a W1-neighbour u1

such that u−1 6= v+. If u−1 ∈ Bm, then C ′ = vuu−1
←−
C v+u1

−→
C v is a Hamilton

cycle of G, a contradiction. So u−1 ∈ B2. It follows that u1 is an A2-vertex
which has two B2-neighbours, namely, v+ and u−1 . This contradicts the
assumption of this subcase. Thus, Subcase 2.1 cannot occur.

Subcase 2.2. There exists an A2-vertex u such that u has two B2-
neighbours v1 and v2.
Since v1 has only one W1-neighbour in Gu, one of v−1 and v+

1 is in V2.
Similarly, one of v−2 and v+

2 is in V2. The following assertions are easily
proved by contradiction.
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Claim 3.6. v+
1 6= v2 and v+

2 6= v1.

(C ′ = v1uv2
−→
C v1 if v+

1 = v2.)

Claim 3.7. v+
1 is not adjacent to v+

2 and v−1 is not adjacent to v−2 .

(C ′ = v1uv2
←−
C v+

1 v+
2

−→
C v1 if v+

1 is adjacent to v+
2 .)

In particular, v+
1 and v+

2 (resp. v−1 and v−2 ) cannot be in V2 simultaneously.
It follows that either v+

1 and v−2 are in V2 or v−1 and v+
2 are in V2. For

definiteness, assume that v+
1 and v−2 are in V2. Then v−1 and v+

2 must be
in W1. Thus G has the property (•) with k = 2. Set Q1 = v+

1

−→
C v−2 and

Q2 = v+
2

−→
C v−1 . If v+

1 = v−2 , then Q1 = v+
1 . So Q1 contains no W1-vertices.

Therefore, all W1-neighbours of v+
1 are in Q2, contradicting Claim 2.5. Thus,

Claim 3.8. v+
1 6= v−2 .

By Claim 3.4, all neighbours of u but v1 and v2 are in Bm. So we have
|Bm| = |N(u)| − 2 ≥ (m − 2) − 2 = m − 4. Together with Claim 2.4 we
have m− 4 ≤ |Bm| ≤ m− 1− t, where t is the number of paths Pi = xi

−→
C yi

defined for a graph with the property (•) as in Section 2. It follows that the
ordered pair (|Bm|, t) is equal to one of (m − 2, 1), (m − 3, 1), (m − 3, 2),
(m− 4, 1), (m− 4, 2) and (m− 4, 3).

If (|Bm|, t) is one of (m−2, 1), (m−3, 2) and (m−4, 3), then the number
of W1-vertices in P1 ∪ . . . ∪ Pt is m − 1 = |W1|. So all W1-vertices are in
P1∪ . . .∪Pt. By Claim 2.5 and Claim 2.6, v+

1 has at most one W1-neighbour,
contradicting v+

1 ∈ B2.
If (|Bm|, t) is one of (m− 3, 1) and (m− 4, 2), then the number of W1-

vertices in P1 ∪ . . .∪ Pt is m− 2 and there is exactly one W1-vertex outside
P1∪ . . .∪Pt, say u1. If u1 is in Q2 or u1 is in Q1 but all P1, . . . , Pt are in Q2,
then again by Claim 2.5 and Claim 2.6 v+

1 has at most one W1-neighbour,
contradicting v+

1 ∈ B2. If u1 and some Pi are in Q1, then at least one of
inequalities v+

1 6= u−1 and u+
1 6= v−2 is true. By symmetry, without loss of

generality we may assume that u+
1 6= v−2 . If v−2 is adjacent to u1, then u1 has

three B2-neighbours, namely, u−1 , u+
1 and v−2 . This contradicts Claim 3.4.

It follows by Claim 2.5 and Claim 2.6 that v−2 has only one W1-neighbour,
contradicting v−2 ∈ B2.

If (|Bm|, t) is (m− 4, 1), then the number of W1-vertices in P1 is m− 3
and there are exactly two W1-vertices outside P1, say u1 and u2. If P1 is in
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Q2 and {v−1 , v+
2 } 6⊆ V (P1), then Q1 has at most one W1-vertex. By Claim

2.5, v+
1 has at most one W1-neighbour, a contradiction. If P1 is in Q2 and

{v−1 , v+
2 } ⊆ V (P1), then both u1 and u2 are in Q1. For definiteness without

loss of generality we may assume that u1 is in v+
1

−→
C u−2 . Then u+

1 6= v−2 .
If v−2 is adjacent to u1, then u1 has three B2-neighbours, namely, u−1 , u+

1

and v−2 . This contradicts Claim 3.4. It follows that v−2 has at most one
W1-neighbour by Claim 2.5, contradicting again v−2 ∈ B2. Finally, let P1

be in Q1. Then at most one W1-vertex from {u1, u2} may be in Q1 because
v−1 and v+

2 are in W1. If none of u1 and u2 is in Q1, then by Claim 2.5 and
Claim 2.6, v+

1 has only one W1-neighbour, contradicting v+
1 ∈ B2. If there

is one W1-vertex from {u1, u2} in Q1, then by arguments similar to those
for the last situation in the preceding paragraph we can get a contradiction.

Thus, Subcase 2.2 also cannot occur.

Proposition 11. Let G = S(V1∪V2, E) be a split graph with |V1| = |V2| = m
and δ(G) ≥ m−2. Then G has a Hamilton cycle if and only if |N(S)| > |S|
for any ∅ 6= S ⊆ V1 with |S| = m− 2 or m− 1, unless m = 4 and G− u is
the graph G3

4 for some u ∈ V1.

Proof. The necessity follows from Lemma 3. Now we prove the sufficiency.
Let G = S(V1 ∪ V2, E) be a maximal non-hamiltonian split graph satisfying
|V1| = |V2| = m, δ(G) ≥ m − 2 and |N(S)| > |S| for any ∅ 6= S ⊆ V1 with
|S| = m − 2 or m − 1. By Lemma 6, B3 = B4 = . . . = Bm−1 = ∅. The
following assertions are true.

Claim 3.9. B1 = ∅.

Suppose the otherwise that B1 6= ∅. Let v ∈ B1 and NV1(v) = {u}. Then
|NG(V1 − u)| ≤ |V2 − v| = |V2| − 1 = |V1| − 1 = |V1 − u|, contradicting
|NG(V1 − u)| > |V1 − u|.

Claim 3.10. B2 6= ∅.

Suppose the otherwise that B2 = ∅. Since B1 is also empty by Claim 3.9, we
have V2 = Bm. Therefore, G contains the complete bipartite graph Km,m

with the bipartition V = V1∪V2. So G has a Hamilton cycle, a contradiction.
For any u ∈ V1, by Proposition 9, Gu = G− u = S(W1 ∪ V2, Eu) where

W1 = V1 − u has a Hamilton cycle C, unless |W1| = m − 1 = 3 and Gu is
the graph G3

4.
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First assume that for any u ∈ V1 the graph Gu has a Hamilton cycle C with
a fixed orientation

−→
C . Let w1, . . . , wm−1 be the vertices of W1, occurring on−→

C in the order of their indices. Since |V2| = m, it is not difficult to see that
the following assertion is true.

Claim 3.11. There exists exactly one of T1 = w1
−→
C w2, . . . . . . , Tm−1 =

wm−1
−→
C w1, which contains exactly two V2-vertices. Each of the others Ti

contains exactly one V2-vertex.

Now we consider separately two cases.

Case 1. There exists u ∈ A2 which has two different B2-neighbours v1

and v2.
Then v+

1 6= v2 because otherwise C ′ = v1uv2
−→
C v1 is a Hamilton cycle of G.

Since v1 (resp. v2) has only one W1-neighbour, one of v−1 and v+
1 (resp.

v−2 and v+
2 ) is in V2. For definiteness, without loss of generality we may

assume that v+
1 ∈ V2. Then v+

2 cannot be in V2 because otherwise C ′ =
v1uv2

←−
C v+

1 v+
2

−→
C v1 is a Hamilton cycle of G, a contradiction. So v−2 ∈ V2. If

v+
1

−→
C v−2 has no W1-vertices, then v1

−→
C v2 has at least three V2-vertices. This

contradicts Claim 3.11 because v1
−→
C v2 must be contained in some Ti. If

v+
1

−→
C v−2 has a W1-vertex, then v+

1 6= v−2 and there exist two different Ti and
Tj such that Ti contains {v1, v

+
1 } and Tj contains {v−2 , v2}. This contradicts

Claim 3.11 again.

Case 2. Every A2-vertex has exactly one B2-neighbour.
By arguments similar to those used for Subcase 2.1 of Proposition 10, we
can get a contradiction in this case. So Case 2 also cannot occur.
Thus, there exists u ∈ V1 such that Gu does not have a Hamilton cycle. So
|W1| = m− 1 = 3 ⇔ m = 4 and Gu is G3

4.

Proof of Theorem 1. The necessity follows from Lemma 3 and the
sufficiency follows from Propositions 10 and 11.

Proof of Corollary 2. If a bipartite graph G = B(V1 ∪ V2, E) with
|V1| = m and |V2| = n has a Hamilton cycle C, then vertices of V1 and V2

occur on C alternatively. It follows that m must be equal to n. So we may
assume further that |V1| = |V2| = m. Let G′ = S(V1 ∪ V2, E

′) be the split
graph obtained from G by adding to E all edges joining any two different
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vertices of V2. It is not difficult to show that G has a Hamilton cycle if and
only if G′ does. Now Corollary 2 follows from Proposition 11.
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