HAMILTON CYCLES IN SPLIT GRAPHS WITH LARGE MINIMUM DEGREE

Ngo Dac Tan
Institute of Mathematics
18 Hoang Quoc Viet Road, 10307 Hanoi, Vietnam
e-mail: ndtan@math.ac.vn
and
Le Xuan Hung
Provincial Office of Education and Training
Tuyen Quang, Vietnam

Abstract

A graph G is called a split graph if the vertex-set V of G can be partitioned into two subsets V_{1} and V_{2} such that the subgraphs of G induced by V_{1} and V_{2} are empty and complete, respectively. In this paper, we characterize hamiltonian graphs in the class of split graphs with minimum degree δ at least $\left|V_{1}\right|-2$.

Keywords: Hamilton cycle, split graph, bipartite graph.
2000 Mathematics Subject Classification: 05C45, 05C75.

1. Introduction

All graphs considered in this paper are finite undirected graphs without loops or multiple edges. If G is a graph, then $V(G)$ and $E(G)$ (or V and E in short) will denote its vertex-set and its edge-set, respectively. The set of all neighbours of a subset $S \subseteq V(G)$ is denoted by $N_{G}(S)$ (or $N(S)$ in short). For a vertex $v \in V(G)$, the degree of v, denoted by $\operatorname{deg}(v)$, is $\left|N_{G}(v)\right|$. The minimum degree of a graph $G=(V, E)$, denoted by $\delta(G)$ or δ in short, is the number $\min \{\operatorname{deg}(v) \mid v \in V\}$. The subgraph of G
induced by $W \subseteq V(G)$ is denoted by $G[W]$. Unless otherwise indicated, our graph-theoretic terminology will follow [1].

One of the fundamental problems in graph theory is the hamiltonian problem. Although this is an old one, the amount of papers dealing with this subject does not decrease nowadays (see [3], [8], [11]). Most of these works give sufficient conditions for the existence of a Hamilton cycle in graphs. Only a few of them deal with necessary ones. The history of development of the problem shows that there is a very little hope that an useful and simple characterization of all hamiltonian graphs exists. However, this does not exclude the availability of such a characterization of hamiltonian graphs in some particular classes of graphs, e.g., in [14] hamiltonian self-complementary graphs have been characterized by Rao and in [10] hamiltonian threshold graphs have been characterized by Harary and Peled.

A graph $G=(V, E)$ is called a split graph if there exists a partition $V=V_{1} \cup V_{2}$ such that $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ are empty and complete graphs, respectively. We will denote such a graph by $S\left(V_{1} \cup V_{2}, E\right)$. The notion of split graphs was introduced in [6] by Foldes and Hammer. These graphs have been paid attention because of their connection with many combinatorial problems (see [5], [7], [13]).

In this paper, we consider the hamiltonian problem for split graphs. It is clear that if $\left|V_{1}\right|>\left|V_{2}\right|$ then a split graph $G=S\left(V_{1} \cup V_{2}, E\right)$ has no Hamilton cycles. So without loss of generality we may consider the hamiltonian problem only for split graphs $G=S\left(V_{1} \cup V_{2}, E\right)$ with $\left|V_{1}\right| \leq\left|V_{2}\right|$. The main result here is Theorem 1 below. The condition for the existence of a Hamilton cycle in a split graph obtained here is similar to Hall's condition for the existence of a complete matching in a bipartite graph [9].

Theorem 1. Let $G=S\left(V_{1} \cup V_{2}, E\right)$ be a split graph with $\left|V_{1}\right|=m \leq n=\left|V_{2}\right|$ and the minimum degree $\delta(G) \geq m-2$. Then G has a Hamilton cycle if and only if $|N(S)|>|S|$ for any $\emptyset \neq S \subseteq V_{1}$ with $m-2 \leq|S| \leq \min \{m, n-1\}$, except the following graphs for which the sufficiency does not hold:
(i) $m=3<n$ and G is the graph G_{n}^{3},
(ii) $m=4<n$ and G is a spanning subgraph of D_{n}^{4} or G_{n}^{4},
(iii) $m=4 \leq n$ and $G-u$ is the graph G_{n}^{3} for some $u \in V_{1}$,
(iv) $m=5<n$ and G is the graph F_{n}^{5} or a spanning subgraph of G_{n}^{5},
(v) $6 \leq m<n$ and G is a spanning subgraph of G_{n}^{m}.

The graphs G_{n}^{m}, D_{n}^{4} and F_{n}^{5} will be defined in Section 2. It will be also proved there that these graphs are split graphs $S\left(V_{1} \cup V_{2}, E\right)$ satisfying $\left|V_{1}\right|=m<n=\left|V_{2}\right|, \delta(G) \geq m-2$ and $|N(S)|>|S|$ for any $\emptyset \neq S \subseteq V_{1}$ with $|S| \geq m-2$, but they have no Hamilton cycles. Every graph in (iii) also has no Hamilton cycles.

We note that there are in literature some papers dealing with the hamiltonian problem for split graphs [2], [12]. But the conditions obtained there for the existence of a Hamilton cycle in split graphs are only necessary, but not sufficient. In [2] the authors also asked if the conditions obtained there can be sharpened to a necessary and sufficient one.

From Theorem 1 we have the following corollary.

Corollary 2. Let $G=B\left(V_{1} \cup V_{2}, E\right)$ be a bipartite graph with bipartition $V=V_{1} \cup V_{2}$, where $\left|V_{1}\right|=m \leq n=\left|V_{2}\right|$ and $\delta\left(V_{1}\right)=\min \{\operatorname{deg}(v) \mid v \in$ $\left.V_{1}\right\} \geq m-2$. Then G has a Hamilton cycle if and only if $m=n$ and $|N(S)|>|S|$ for any $\emptyset \neq S \subseteq V_{1}$ with $|S|=m-2$ or $m-1$, unless $m=4$ and $G-u$ is the graph $B G_{4}^{3}$ for some $u \in V_{1}$.

The graph $B G_{4}^{3}$ is obtained from G_{4}^{3} by deleting all edges, the both endvertices of which are in V_{2}. The sufficiency does not hold for these exceptional graphs.

Thus, we have got in this paper a characterization of hamiltonian split graphs $G=S\left(V_{1} \cup V_{2}, E\right)$ with $\delta(G) \geq\left|V_{1}\right|-2$. We note that although many sufficient conditions for the existence of a Hamilton cycle in a graph are known (see [3]), almost all they involve the order $|V|$ of G and all they are not necessary. Meanwhile, our condition is also necessary and involves only the cardinality $\left|V_{1}\right|$ of the subset V_{1}. Therefore, it is not a consequence of former conditions.

2. Preliminaries

Let C be a cycle in a graph $G=(V, E)$. By \vec{C} we denote the cycle C with a given orientation, and by \overleftarrow{C} the cycle C with the reverse orientation. If $u, v \in V(C)$, then $u \vec{C} v$ denotes the consecutive vertices of C from u to v in the direction specified by \vec{C}. The same vertices in the reverse order are given by $v \overleftarrow{C} u$. We will consider $u \vec{C} v$ and $v \overleftarrow{C} u$ both as paths and as vertex sets. If $u \in V(C)$, then u^{+}denotes the successor of u on \vec{C}, and u^{-}denotes
its predecessor. Similar notation as described above for cycles is used for paths.

If $W \subseteq V(G)$ and $v \in W$, then v is called a W-vertex. Also, by $N_{G, W}(u)$ or $N_{W}(u)$ in short we denote the set $W \cap N_{G}(u)$.

Lemma 3. If a split graph $G=S\left(V_{1} \cup V_{2}, E\right)$ has a Hamilton cycle, then $|N(S)|>|S|$ for any $\emptyset \neq S \subseteq V_{1}$ with $|S| \leq \min \{m, n-1\}$.

Proof. Suppose that $G=S\left(V_{1} \cup V_{2}, E\right)$ has a Hamilton cycle C. Let $u_{1}, \ldots, u_{k}(1 \leq k \leq \min \{m, n-1\})$ be the vertices of $\emptyset \neq S \subseteq V_{1}$, occurring on \vec{C} in the order of their indices. It is not difficult to see that $u_{i}^{+} \neq u_{j}^{+}$if $i \neq j$. Since $|S|=k<n$, there exists $i \in\{1, \ldots, k\}$ such that there are at least two V_{2}-vertices in $u_{i}^{+} \vec{C} u_{i+1}^{-}($indices $\bmod k)$. Therefore, $u_{i}^{+} \neq u_{i+1}^{-}$. So $N(S) \supseteq\left\{u_{i}^{+}, \ldots, u_{k}^{+}, u_{i+1}^{-}\right\}$and $|N(S)| \geq k+1>k=|S|$.

Lemma 4. Let $G=S\left(V_{1} \cup V_{2}, E\right)$ be a split graph with $\left|V_{1}\right|<\left|V_{2}\right|$. Then G has a Hamilton cycle if and only if $\left|N_{G}\left(V_{1}\right)\right|>\left|V_{1}\right|$ and the subgraph $G^{\prime}=G\left[V_{1} \cup N_{G}\left(V_{1}\right)\right]$ has a Hamilton cycle.

Proof. Suppose that G has a Hamilton cycle C. By Lemma 3, $\left|N_{G}\left(V_{1}\right)\right|>$ $\left|V_{1}\right|$. If $v \in V_{2}-N_{G}\left(V_{1}\right)$, then both v^{-}and v^{+}are in V_{2}. So $v^{-} v^{+} \in E(G-v)$. This means that $C^{\prime}=C-v+v^{-} v^{+}$is a Hamilton cycle of $G-v$. By backward induction on $\left|V_{2}-N_{G}\left(V_{1}\right)\right|$ we can show that G^{\prime} has a Hamilton cycle.

Conversely, let $\left|N_{G}\left(V_{1}\right)\right|>\left|V_{1}\right|$ and $G^{\prime}=G\left[V_{1} \cup N_{G}\left(V_{1}\right)\right]$ have a Hamilton cycle C^{\prime}. Futher, let $V_{2}-N_{G}\left(V_{1}\right)=\left\{y_{1}, \ldots, y_{l}\right\}$. Since $\left|N_{G}\left(V_{1}\right)\right|>\left|V_{1}\right|$, there exists $v \in N_{G}\left(V_{1}\right)$ such that both v and v^{+}(with respect to C^{\prime}) are in $N_{G}\left(V_{1}\right) \subseteq V_{2}$. It follows that $C=v y_{1} \ldots y_{l} v^{+} \vec{C}^{\prime} v$ is a Hamilton cycle of G.

In Table 1 we define the split graphs G_{n}^{m}, D_{n}^{4} and F_{n}^{5}. The conditions that m and n must be satisfied for the corresponding graph are indicated in parentheses under its name in Column 1. The subsets V_{1} and V_{2} of the vertex-set V for each of these graphs are indicated in Column 2. Finally, in Column 3, we present the edges of the corresponding graph.

Lemma 5. (a) Let $G=S\left(V_{1} \cup V_{2}, E\right)$ with $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$ be one of the split graphs G_{n}^{m}, D_{n}^{4} and F_{n}^{5}. Then $m<n, \delta(G) \geq m-2$ and $|N(S)|>|S|$ for any $\emptyset \neq S \subseteq V_{1}$ with $|S| \geq m-2$, but G has no Hamilton cycles.
(b) Every graph $G=S\left(V_{1} \cup V_{2}, E\right)$, for which $G-u$ is the graph G_{n}^{3} for some $u \in V_{1}$, also has no Hamilton cycles.

Table 1. The graphs G_{n}^{m}, D_{n}^{4} and F_{n}^{5}.

The graph $G=(V, E)$	The vertex-set $V=V_{1} \cup V_{2}$	The edge-set $E=E_{1} \cup E_{2} \cup E_{3}$
$\begin{aligned} & G_{n}^{m} \\ & (3 \leq m<n) \end{aligned}$	$\begin{aligned} V_{1} & =\left\{u_{1}, \ldots, u_{m}\right\}, \\ V_{2} & =\left\{v_{1}, \ldots, v_{n}\right\} . \end{aligned}$	$\begin{aligned} & E_{1}=\left\{u_{1} v_{1}, u_{2} v_{2}, u_{3} v_{3}\right\}, \\ & E_{2}=\left\{u_{i} v_{j} \mid i=1, \ldots, m ;\right. \\ & \quad j=4, \ldots, m+1\}, \\ & E_{3}=\left\{v_{i} v_{j} \mid i \neq j ; i, j=1, \ldots, n\right\} . \end{aligned}$
$\begin{aligned} & D_{n}^{4} \\ & (4<n) \end{aligned}$	$\begin{aligned} & V_{1}=\left\{u_{1}, \ldots, u_{4}\right\}, \\ & V_{2}=\left\{v_{1}, \ldots, v_{n}\right\} . \end{aligned}$	$\begin{gathered} E_{1}=\left\{u_{1} v_{2}, u_{2} v_{1}, u_{i} v_{i} \mid\right. \\ i=1,2,3,4\}, \\ E_{2}=\left\{u_{i} v_{5} \mid i=1,2,3,4\right\}, \\ E_{3}=\left\{v_{i} v_{j} \mid i \neq j ; i, j=1, \ldots, n\right\} . \end{gathered}$
$\begin{aligned} & \hline F_{n}^{5} \\ & (6<n) \end{aligned}$	$\begin{aligned} V_{1} & =\left\{u_{1}, \ldots, u_{5}\right\}, \\ V_{2} & =\left\{v_{1}, \ldots, v_{n}\right\} . \end{aligned}$	$\begin{aligned} & E_{1}=\left\{u_{i} v_{i} \mid i=1, \ldots, 5\right\}, \\ & E_{2}=\left\{u_{i} v_{j} \mid i=1, \ldots, 5 ; j=6,7\right\}, \\ & E_{3}=\left\{v_{i} v_{j} \mid i \neq j ; i, j=1, \ldots, n\right\} . \end{aligned}$

Proof. (a) It is not difficult to verify that for each of these graphs the inequalities $m<n, \delta(G) \geq m-2$ and $|N(S)|>|S|$ for any $\emptyset \neq S \subseteq V_{1}$ with $|S| \geq m-2$ are true.

Suppose that $G=G_{n}^{m}$ has a Hamilton cycle C. Set $R=\left\{v_{4}, \ldots, v_{m+1}\right\}$, where v_{4}, \ldots, v_{m+1} occur on \vec{C} in the order of their indices. Then $G-R$ can be covered by $m-2=|R|$ vertex-disjoint paths $P_{1}=v_{4}^{+} \vec{C} v_{5}^{-}, P_{2}=$ $v_{5}^{+} \vec{C} v_{6}^{-}, \ldots, P_{m-2}=v_{m+1}^{+} \vec{C} v_{4}^{-}$. On the other hand, it is not difficult to see that $G-R$ need at least $m-1$ vertex-disjoint paths to cover it, a contradiction.

The proofs of the fact that D_{n}^{4} and F_{n}^{5} are non-hamiltonian are left to the reader.
(b) Let G have a Hamilton cycle C. Then both u^{-}and u^{+}are in V_{2}. So $u^{-} u^{+} \in E(G-u)$ and therefore $C^{\prime}=u^{-} u^{+} \vec{C} u^{-}$is a Hamilton cycle of $G-u$, contradicting the fact that G_{n}^{3} is non-hamiltonian by (a).
By Lemma 4, we assume from now on that all considered split graphs $S\left(V_{1} \cup V_{2}, E\right)$ have $N\left(V_{1}\right)=V_{2}$.

Lemma 6. Let $G=S\left(V_{1} \cup V_{2}, E\right)$ with $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$ be a maximal non-hamiltonian split graph with $\delta(G) \geq m-k(0 \leq k \leq m)$. Then for any $v \in V_{2}$, either $\left|N_{V_{1}}(v)\right| \leq k$ or $\left|N_{V_{1}}(v)\right|=m$.

Proof. Suppose that there exists $v \in V_{2}$ such that $k<\left|N_{V_{1}}(v)\right|<m$. Since $\left|N_{V_{1}}(v)\right|<m$, there exists $u \in V_{1}$ such that $u v \notin E$. Therefore, $G+u v$ has a Hamilton cycle C, which must contain the edge $u v$ because G is maximal non-hamiltonian. Without loss of generality we may assume $u^{-}=v$. Let x_{1}, \ldots, x_{t} be the neighbours in G of u, occurring on $u \vec{C} v$ in the order of their indices. Then $t \geq m-k$ by the assumption and x_{i}^{-}is not adjacent to v in G for every $i=1, \ldots, t$ because otherwise, $C^{\prime}=u \vec{C} x_{i}^{-} v \overleftarrow{C} x_{i} u$ is a Hamilton cycle of G, a contradiction. So $x_{1}^{-}, \ldots, x_{t}^{-}$are in V_{1} because all V_{2}-vertices are adjacent to v. Hence, $\left|N_{V_{1}}(v)\right| \leq m-t \leq m-(m-k)=k$, contradicting $\left|N_{V_{1}}(v)\right|>k$.

Proposition 7. Let $G=S\left(V_{1} \cup V_{2}, E\right)$ be a split graph with $\left|V_{1}\right|<\left|V_{2}\right|$ and $\left|N_{V_{1}}(v)\right| \leq 2$ for each $v \in V_{2}$. Then G has a Hamilton cycle if and only if $|N(S)|>|S|$ for any $\emptyset \neq S \subseteq V_{1}$.

Proof. The necessity follows from Lemma 3. Now we prove the sufficiency by induction on $\left|V_{1}\right|$. If $\left|V_{1}\right|=1$, then G trivially has a Hamilton cycle. Suppose that the sufficiency has been proved when $\left|V_{1}\right|<t$ and G is a split graph such that $\left|V_{1}\right|=t<\left|V_{2}\right|,\left|N_{V_{1}}(v)\right| \leq 2$ for any $v \in V_{2}$ and $|N(S)|>|S|$ for any $\emptyset \neq S \subseteq V_{1}$. By the induction hypothesis, for any $u \in V_{1}$, the graph $G_{u}=G-u$ has a Hamilton cycle C.

First assume that there exists $v_{1} \in V_{2}$ such that $\left|N_{V_{1}}\left(v_{1}\right)\right|=1$, say $N_{V_{1}}\left(v_{1}\right)=\{u\}$. Since $\left|N_{G}(u)\right|>|\{u\}|=1$, there exists $v_{2} \in N(u)$ with $v_{2} \neq v_{1}$. If $v_{1}^{+}=v_{2}$, then $C^{\prime}=v_{1} u v_{2} \vec{C} v_{1}$ is a Hamilton cycle of G. So we assume that $v_{1}^{+} \neq v_{2}$. Since $N_{V_{1}}\left(v_{1}\right)=\{u\},\left|N_{V_{1}}\left(v_{2}\right)\right| \leq 2$ and $v_{2} \in N(u)$, either both v_{1}^{-}and v_{2}^{-}or both v_{1}^{+}and v_{2}^{+}are in V_{2}, say v_{1}^{+}and v_{2}^{+}. Then $C^{\prime}=v_{1} u v_{2} \overleftarrow{C} v_{1}^{+} v_{2}^{+} \vec{C} v_{1}$ is a Hamilton cycle of G

Now assume that for any $v \in V_{2},\left|N_{V_{1}}(v)\right|=2$. If for any $u \in V_{1},|N(u)| \leq 2$, then

$$
2\left|V_{1}\right| \geq \sum_{u \in V_{1}}|N(u)|=\sum_{v \in V_{2}}\left|N_{V_{1}}(v)\right|=2\left|V_{2}\right|
$$

contradicting $\left|V_{1}\right|<\left|V_{2}\right|$. Thus, there exists $u \in V_{1}$ such that $\left|N_{G}(u)\right| \geq 3$. Let $v_{1}, v_{2}, v_{3} \in N(u)$. Since $\left|N_{V_{1}}\left(v_{i}\right)\right|=2$ for each $i=1,2,3$, either $\left\{v_{1}^{-}, v_{2}^{-}, v_{3}^{-}\right\}$or $\left\{v_{1}^{+}, v_{2}^{+}, v_{3}^{+}\right\}$contains two V_{2}-vertices, say v_{1}^{+}and v_{2}^{+}. If $v_{1}^{+}=v_{2}$, then $C^{\prime}=v_{1} u v_{2} \vec{C} v_{1}$ is a Hamilton cycle of G. Otherwise, $C^{\prime}=v_{1} u v_{2} \overleftarrow{C} v_{1}^{+} v_{2}^{+} \vec{C} v_{1}$ is a Hamilton cycle of G.

Proposition 8. Let $G=S\left(V_{1} \cup V_{2}, E\right)$ be a split graph with $\left|V_{1}\right|<\left|V_{2}\right|$ and $\delta(G) \geq\left|V_{1}\right|$. Then G has a Hamilton cycle if and only if $\left|N\left(V_{1}\right)\right|>\left|V_{1}\right|$.

Proof. The necessity follows from Lemma 3. Now we prove the sufficiency. It is not difficult to verify that $|V(G)| \geq 3, \alpha(G)=\left|V_{1}\right| \leq \kappa(G)$, where $\alpha(G)$ and $\kappa(G)$ are the independence number and the connectivity of G, respectively. By [4] G has a Hamilton cycle.

A graph G is called to have the property (\bullet) if the following conditions are satisfied:

1. G is a split graph $S\left(V_{1} \cup V_{2}, E\right)$ with $m=\left|V_{1}\right|<\left|V_{2}\right|=n$ and $\delta(G) \geq$ $\left|V_{1}\right|-k$ where $1 \leq k \leq 2$;
2. G is a maximal non-hamiltonian, but for any $u \in V_{1}$ the graph $G_{u}=$ $G-u$, which is the split graph $S\left(W_{1} \cup V_{2}, E_{u}\right)$ with $W_{1}=V_{1}-u$, $E_{u}=E-\left\{u v \in E \mid v \in V_{2}\right\}$, has a Hamilton cycle C;
3. For any $\emptyset \neq S \subseteq V_{1}$ with $|S| \geq m-k,|N(S)|>|S|$;
4. G has a V_{1}-vertex u such that u has a neighbour v_{1} with $v_{1}^{+} \in V_{2}$ and a neighbour v_{2} with $v_{2}^{-} \in V_{2}$ (with respect to C). The vertex v_{1} may coincide with v_{2}.

We note that if the vertices $v_{1} \neq v_{2}$, then $v_{2} \notin\left\{v_{1}^{-}, v_{1}^{+}\right\}$because otherwise $C^{\prime}=v_{1} u v_{2} \vec{C} v_{1}$ or $C^{\prime}=v_{2} u v_{1} \vec{C} v_{2}$ is a Hamilton cycle of G, a contradiction.

Let G be a graph with the property (\bullet) and u, v_{1} and v_{2} be the vertices of G chosen as in its definition above. Set

$$
B_{i}=\left\{v \in V_{2}| | N_{V_{1}}(v) \mid=i\right\}
$$

$$
A_{i}=\bigcup_{v \in B_{i}} N_{V_{1}}(v) .
$$

Many assertions below can be proved easily by contradiction. So we omit their detailed proofs and give in parentheses only a Hamilton cycle C^{\prime} of G if we assume the contrary.

Claim 2.1. $B_{m} \neq \emptyset$.
(C^{\prime} exists by Lemma 6 and Proposition 7 if $B_{m}=\emptyset$.)
Claim 2.2. v_{1}^{+}and v_{2}^{-}are not in B_{m}.
$\left(C^{\prime}=v_{1} u v_{1}^{+} \vec{C} v_{1}\right.$ if $\left.v_{1}^{+} \in B_{m}.\right)$
Claim 2.3. For any $x \in B_{m}, x^{+}$and x^{-}are in W_{1}.
$\left(C^{\prime}=v_{1} u x \overleftarrow{C} v_{1}^{+} x^{+} \vec{C} v_{1}\right.$ if $\left.x^{+} \in V_{2}.\right)$
By Claim 2.1 and Claim 2.3 there exists a positive integer t such that C possesses t disjoint paths $P_{1}=x_{1} \vec{C} y_{1}, \ldots, P_{t}=x_{t} \vec{C} y_{t}$, which occur in $v_{1}^{+} \vec{C} v_{1}^{-}$in the order of their indices and have the following properties:
(a) Vertices of W_{1} and B_{m} occur alternatively in P_{i} for every $i=1, \ldots, t$,
(b) The endvertices x_{i} and y_{i} of P_{i} are in W_{1} for every $i=1, \ldots, t$,
(c) x_{i}^{-}and y_{i}^{+}are not in B_{m} for every $i=1, \ldots, t$,
(d) Every vertex of B_{m} is in one of P_{1}, \ldots, P_{t}.

Let l_{i} be the number of B_{m}-vertices in P_{i}. Then it is clear that the number of W_{1}-vertices in P_{i} is $l_{i}+1$. By (d), $l_{1}+\ldots+l_{t}=\left|B_{m}\right|$. So in total, the number of W_{1}-vertices in all paths P_{1}, \ldots, P_{t} is $\left|B_{m}\right|+t$. It follows that $\left|B_{m}\right|+t \leq\left|W_{1}\right|=m-1$. Thus, we have proved the following.

Claim 2.4. $\left|B_{m}\right| \leq m-1-t$.
Set $Q_{1}=v_{1}^{+} \vec{C} v_{2}^{-}$and $Q_{2}=v_{2}^{+} \vec{C} v_{1}^{-}$. Thus, if $v_{1}=v_{2}$, then $Q_{1}=Q_{2}$. But if $v_{1} \neq v_{2}$, then Q_{1} and Q_{2} are disjoint and each of them has at least one vertex because $v_{2} \notin\left\{v_{1}^{-}, v_{1}^{+}\right\}$as we have noted before. Let among P_{1}, \ldots, P_{t} there be l paths in $Q_{1}(0 \leq l \leq t)$. Since P_{1}, \ldots, P_{t} occur in $v_{1}^{+} \vec{C} v_{1}^{-}$in the order of their indices, these l paths in Q_{1} are P_{1}, \ldots, P_{l}. Then the following assertions are also true.

Claim 2.5. All W_{1}-neighbours of v_{1}^{+}and v_{2}^{-}are in Q_{1}.
$\left(C^{\prime}=v_{1} u v_{2} \vec{C} u_{1} v_{1}^{+} \vec{C} v_{2}^{-} u_{1}^{+} \vec{C} v_{1}\right.$ if u_{1} is a W_{1}-neighbour in Q_{2} of v_{1}^{+}.)
Claim 2.6. If among P_{1}, \ldots, P_{t} there are $l \geq 1$ paths in Q_{1} and w is a W_{1}-neighbour in some P_{i} of v_{1}^{+}(resp. v_{2}^{-}), then $w=x_{1}$ (resp. $w=y_{l}$).
Suppose the otherwise that $w \neq x_{1}$. If $w^{-} \in B_{m}$, then $C^{\prime}=v_{1} u w^{-} \overleftarrow{C} v_{1}^{+} w \vec{C} v_{1}$ is a Hamilton cycle of G, a contradiction. So $w^{-} \notin B_{m}$. It follows $w=x_{i}$ for some $i \geq 2$. Then $C^{\prime}=v_{1} u x_{1}^{+} \overleftarrow{C} v_{1}^{+} x_{i} \overleftarrow{C} x_{1}^{++} x_{i}^{+} \vec{C} v_{1}$ is a Hamilton cycle of G because both x_{1}^{+}and x_{i}^{+}are in B_{m}, a contradiction again. By symmetry, we can show the assertion for v_{2}^{-}.

Claim 2.7. If among P_{1}, \ldots, P_{t} there are $l \geq 1$ paths in Q_{1} and v_{1}^{+}(resp. v_{2}^{-}) has a W_{1}-neighbour in some P_{i}, then $v_{1}^{++} \in W_{1}$ (resp. $v_{2}^{--} \in W_{1}$).

Suppose the otherwise that $v_{1}^{++} \in V_{2}$. Let w be a W_{1}-neighbour of v_{1}^{+}in P_{i}. By Claim 2.6, $w=x_{1}$. Therefore, $C^{\prime}=v_{1} u x_{1}^{+} \vec{C} v_{2}^{-} v_{1}^{+} x_{1} \overleftarrow{C} v_{1}^{++} v_{2} \vec{C} v_{1}$ is a Hamilton cycle of G, a contradiction. By symmetry, we can show the assertion for v_{2}^{-}.

Proposition 9. Let $G=S\left(V_{1} \cup V_{2}, E\right)$ be a split graph with $m=\left|V_{1}\right|<$ $\left|V_{2}\right|=n$ and $\delta(G) \geq m-1$. Then G has a Hamilton cycle if and only if $|N(S)|>|S|$ for any $\emptyset \neq S \subseteq V_{1}$ with $|S| \geq m-1$, except the graph G_{n}^{3} for which the sufficiency does not hold.

Proof. The necessity follows from Lemma 3. Now, we prove the sufficiency. Let $G=S\left(V_{1} \cup V_{2}, E\right)$ be a maximal non-hamiltonian split graph satisfying $|N(S)|>|S|$ for any $\emptyset \neq S \subseteq V_{1}$ with $|S| \geq m-1$. By Lemma $6, B_{2}=$ $B_{3}=\cdots=B_{m-1}=\emptyset$. Set $A=V_{1} \backslash A_{1}$.

For any $u \in V_{1}$ denote by G_{u} the graph $G-u$. Thus, $G_{u}=S\left(W_{1} \cup\right.$ $\left.V_{2}, E_{u}\right)$ with $W_{1}=V_{1}-u$. By Proposition 8, G_{u} has a Hamilton cycle C. The following assertions are easily proved by contradiction. (We again indicate in parentheses a Hamilton cycle C^{\prime} of G if we assume the contrary.)

Claim 2.8. $B_{1} \neq \emptyset$.
(C^{\prime} exists by Proposition 8 if $B_{1}=\emptyset$.)
Claim 2.9. Each $u \in A_{1}$ has only one B_{1}-neighbour.
$\left(C^{\prime}=v_{1} u v_{2} \overleftarrow{C} v_{1}^{+} v_{2}^{+} \vec{C} v_{1}\right.$ if v_{1} and v_{2} are two different B_{1}-neighbours of u.)
Let $u \in A_{1}$ and v be the B_{1}-neighbour of u. Then both v^{-}and v^{+}are in V_{2}. Thus G is a graph having the property (\bullet) with $k=1$. By Claim 2.1 $B_{m} \neq \emptyset$. By Claim 2.9, all neighbours of u but v are in B_{m}. It follows that $\left|B_{m}\right|=|N(u)|-1 \geq(m-1)-1=m-2$. Together with Claim 2.4 we have $m-2 \leq\left|B_{m}\right| \leq m-1-t$, where t is the number of paths $P_{i}=x_{i} \vec{C} y_{i}$ defined for a graph with property ((\bullet) as above. So $\left|B_{m}\right|=m-2, t=1$ because t is a positive integer. Therefore, the number of W_{1}-vertices in $P_{1}=x_{1} \vec{C} y_{1}$ is $m-1=\left|W_{1}\right|$. This means that all vertices of W_{1} are in P_{1}. So if $R=y_{1}^{+} \vec{C} x_{1}^{-}$, then $V(R)=B_{1}$. By Claim 2.2 both v^{-}and v^{+}are in B_{1}. Hence, all v^{-}, v and v^{+}are in R. Let w be the unique W_{1}-neighbour of v^{+}, then $w=x_{1}=v^{++}$by Claim 2.6 and Claim 2.7. By symmetry, if w is the unique W_{1}-neighbour of v^{-}, then $w=y_{1}=v^{--}$. This means that $v^{+}=x_{1}^{-}$and $v^{-}=y_{1}^{+}$and therefore $R=v^{-} v v^{+}$with all v^{-}, v, v^{+}in B_{1}. Since $\left|B_{m}\right|=m-2$ and $\delta(G) \geq m-1$, the set A must be empty. Thus, $B_{1}=\left\{v^{-}, v, v^{+}\right\}, A=\emptyset$. Using Claim 2.9 it is not difficult to see that G must be G_{4}^{3}.

3. Proof of the Results

First we prove the following two propositions 10 and 11.
Proposition 10. Let $G=S\left(V_{1} \cup V_{2}, E\right)$ be a split graph with $m=\left|V_{1}\right|<$ $\left|V_{2}\right|=n$ and $\delta(G) \geq m-2$. Then G has a Hamilton cycle if and only if $|N(S)|>|S|$ for any $\emptyset \neq S \subseteq V_{1}$ with $|S| \geq m-2$, except the following graphs for which the sufficiency does not hold :
(i) $m=3$ and G is the graph G_{n}^{3},
(ii) $m=4$ and G is a spanning subgraph of D_{n}^{4} or G_{n}^{4},
(iii) $m=4$ and $G-u$ is the graph G_{n}^{3} for some $u \in V_{1}$,
(iv) $m=5$ and G is the graph F_{n}^{5} or a spanning subgraph of G_{n}^{5},
(v) $m \geq 6$ and G is a spanning subgraph of G_{n}^{m}.

Proof. The necessity follows from Lemma 3. Now, we prove the sufficiency. If $m=1$ or 2 , then by Proposition $7, G$ has a Hamilton cycle. For any $3 \leq m<n$, let $G=S\left(V_{1} \cup V_{2}, E\right)$ be a maximal non-hamiltonian split graph satisfying $\delta(G) \geq m-2$ and $|N(S)|>|S|$ for any $\emptyset \neq S \subseteq V_{1}$ with $|S| \geq$ $m-2$. By Lemma $6, B_{3}=B_{4}=\cdots=B_{m-1}=\emptyset$. Set $A=V_{1} \backslash\left(A_{1} \cup A_{2}\right)$.

For any $u \in V_{1}$, denote by G_{u} the graph $G-u=S\left(W_{1} \cup V_{2}, E_{u}\right)$, where $W_{1}=V_{1}-u$. By Proposition 9, either $\left|W_{1}\right|=m-1=3$ and G_{u} is the graph G_{4}^{3} or G_{u} has a Hamilton cycle. In the former case, G is a graph in (iii). So we assume from now on that

Claim 3.1. For any $u \in V_{1}, G_{u}$ has a Hamilton cycle C with a fixed orientation \vec{C}.

Below we omit the detailed proofs of many assertions which can be easily proved by contradiction. In these cases, as before, we indicate in parentheses a Hamilton cycle C^{\prime} of G if we assume the contrary.

Claim 3.2. Each $u \in A_{1}$ has only one B_{1}-neighbour.
$\left(C^{\prime}=v_{1} u v_{2} \overleftarrow{C} v_{1}^{+} v_{2}^{+} \vec{C} v_{1}\right.$ if v_{1} and v_{2} are two different B_{1}-neighbours of u.)
Claim 3.3. $A_{1} \cap A_{2}=\emptyset$.
Suppose the otherwise that $u \in A_{1} \cap A_{2}$. Let v_{1} and v_{2} be a B_{1}-neighbour and a B_{2}-neighbour of u, respectively. Then v_{1}^{-}and v_{1}^{+}are in V_{2} and at least one of v_{2}^{-}and v_{2}^{+}is in V_{2}, say v_{2}^{+}. So $C^{\prime}=v_{1} u v_{2} \overleftarrow{C} v_{1}^{+} v_{2}^{+} \vec{C} v_{1}$ is a Hamilton cycle of G, a contradiction.

Claim 3.4. Each $u \in A_{2}$ has at most two B_{2}-neighbours.
Suppose the otherwise that some $u \in A_{2}$ has three B_{2}-neighbours v_{1}, v_{2} and v_{3}. Then either $\left\{v_{1}^{-}, v_{2}^{-}, v_{3}^{-}\right\}$or $\left\{v_{1}^{+}, v_{2}^{+}, v_{3}^{+}\right\}$has at least two vertices in V_{2}, say $v_{1}^{+} \in V_{2}$ and $v_{2}^{+} \in V_{2}$. Then $C^{\prime}=v_{1} u v_{2} \overleftarrow{C} v_{1}^{+} v_{2}^{+} \vec{C} v_{1}$ is a Hamilton cycle of G, a contradiction.

Claim 3.5. At least one of B_{1} and B_{2} is not empty.
(C^{\prime} exists by Proposition 8 if both B_{1} and B_{2} are empty.)
Now we consider separately two cases.
Case 1. $B_{1} \neq \emptyset$.
Let $v \in B_{1}$ and u be the V_{1}-neighbour of v. By Claim 3.1, G_{u} has a Hamilton cycle C with a fixed orientation \vec{C}. Since $v \in B_{1}$, both v^{-}and v^{+}are in V_{2}. Thus, G is a graph having the property (\bullet) with $k=2$.
(Here $v_{1}=v_{2}=v$ and therefore $Q_{1}=v_{1}^{+} \vec{C} v_{2}^{-}=v_{2}^{+} \vec{C} v_{1}^{-}=Q_{2}$.) By Claim 3.2 and Claim 3.3, all neighbours of u but v are in B_{m}. It follows that $\left|B_{m}\right|=|N(u)|-1 \geq(m-2)-1=m-3$. Together with Claim 2.4 we have $m-3 \leq\left|B_{m}\right| \leq m-1-t$, where t is the number of paths $P_{i}=x_{i} \vec{C} y_{i}$ defined for a graph with the property (\bullet) as in Section 2. So $\left|B_{m}\right|=m-2$ or $m-3$ because t is a positive integer.

If $\left|B_{m}\right|=m-2$, then $t=1$ and the number of W_{1}-vertices in P_{1} is $m-1=\left|W_{1}\right|$. It follows that all vertices of W_{1} are in P_{1}. So if $R=y_{1}^{+} \vec{C} x_{1}^{-}$, then $V(R)=B_{1} \cup B_{2}$. In particular, v^{-}, v and v^{+}are in R by Claim 2.2. Let w be a W_{1} - neighbour of v^{+}. Then w is in P_{1}. By Claim 2.6, $w=x_{1}$ and therefore $v^{+} \in B_{1}$. By Claim 2.7, $v^{+}=x_{1}^{-}$. By symmetry, $v^{-} \in B_{1}$ and $v^{-}=y_{1}^{+}$. Therefore, $R=v^{-} v v^{+}$with all v^{-}, v and v^{+}in B_{1} and $B_{2}=\emptyset$. Using Claim 3.2 it is not difficult to see that G is G_{n}^{m} in this subcase.

If $\left|B_{m}\right|=m-3$, then $t=1$ or 2 and $A=\emptyset$ because $\delta(G) \geq m-2$.
First assume that $\left|B_{m}\right|=m-3, t=1$ and $A=\emptyset$. Then P_{1} contains $m-2 W_{1}$-vertices. Therefore, $R=y_{1}^{+} \vec{C} x_{1}^{-}$contains exactly one W_{1}-vertex, say u_{1}. All the other vertices of R are in $B_{1} \cup B_{2}$. By symmetry, without loss of generality we may assume that u_{1} is in $v^{++} \vec{C} x_{1}^{-}$. From Claim 3.2, Claim 3.3 and the fact that both u_{1}^{-}and u_{1}^{+}are in R, we see that $u_{1} \in A_{2}$. If $v^{+} \neq u_{1}^{-}$, then v^{+}is not adjacent to u_{1} because otherwise u_{1} has three neighbours in $B_{1} \cup B_{2}$, contradicting Claim 3.3 and Claim 3.4. Thus v^{+} has a W_{1}-neighbour in P_{1}. Now by Claim $2.7, v^{++} \in W_{1}$, contradicting the fact that there are no W_{1}-vertices in $v^{+} \vec{C} u_{1}^{-}$. Thus $v^{+}=u_{1}^{-}$. So $v^{+} \in B_{2}$ and v^{+}has another W_{1}-neighbour in P_{1}, namely, x_{1} by Claim 2.6. Now if $u_{1}^{+} \neq x_{1}^{-}$, then $C^{\prime}=v u x_{1}^{+} \vec{C} v^{-} x_{1}^{-} x_{1} v^{+} \vec{C} x_{1}^{--} v$ is a Hamilton cycle of G, a contradiction. It follows that $u_{1}^{+}=x_{1}^{-}$. Further, consider v^{-}. If w is a W_{1}-neighbour of v^{-}, then $w \neq u_{1}$ because otherwise u_{1} has three neighbours in $B_{1} \cup B_{2}$. So w is in P_{1}. By Claim 2.6 and Claim 2.7, $v^{-}=y_{1}^{+}$ and $v^{-} \in B_{1}$. Thus, $R=v^{-} v v^{+} u_{1} x_{1}^{-}, B_{1}=\left\{v^{-}, v\right\}, B_{2}=\left\{v^{+}, x_{1}^{-}\right\}$, $N_{W_{1}}\left(v^{+}\right)=N_{W_{1}}\left(x_{1}^{-}\right)=\left\{u_{1}, x_{1}\right\}$ and $A=\emptyset$. Using Claims 3.2-3.4, it is not difficult to see that G is D_{5}^{4} in this subcase.

Now assume that $\left|B_{m}\right|=m-3, t=2$ and $A=\emptyset$. Since the total number of W_{1}-vertices in P_{1} and P_{2} is $m-1=\left|W_{1}\right|$, every vertex of W_{1} is in P_{1} or P_{2}. Set $R_{1}=y_{1}^{+} \vec{C} x_{2}^{-}$and $R_{2}=y_{2}^{+} \vec{C} x_{1}^{-}$. Then R_{1} has at least one vertex, R_{2} contains v^{-}, v, v^{+}and $V\left(R_{1} \cup R_{2}\right)=B_{1} \cup B_{2}$. It follows that all W_{1}-neighbours of v^{+}are in P_{1} or P_{2}. So by Claim 2.6 , the only W_{1-} neighbour of v^{+}is x_{1}. This means that $v^{+} \in B_{1}$. By Claim 2.7, $v^{+}=x_{1}^{-}$.

By symmetry, we can show that $v^{-} \in B_{1}$ and $v^{-}=y_{2}^{+}$. Thus, $R_{2}=v^{-} v v^{+}$ with all v^{-}, v, v^{+}in B_{1}.

Consider R_{1}. If $y_{1}^{++} \notin R_{1}$, then $y_{1}^{+}=x_{2}^{-}$and $R_{1}=y_{1}^{+}$. So $y_{1}^{+} \in B_{2}$. Thus, $B_{1}=\left\{v^{-}, v, v^{+}\right\}, B_{2}=\left\{y_{1}^{+}\right\}$and $A=\emptyset$. Since $y_{1}^{+} \in B_{2}, y_{1}^{+} u, y_{1}^{+} x_{1}$ and $y_{1}^{+} y_{2}$ are not edges of G. From this, Claim 3.2 and Claim 3.3 it is not difficult to see that G is a proper spanning subgraph of G_{6}^{5}, contradicting the choise of G because G_{6}^{5} is non-hamiltonian by Lemma 5 . Thus $y_{1}^{++} \in R_{1}$. If $y_{1}^{++} \neq x_{2}^{-}$, then y_{1}^{++}has a W_{1}-neighbour u_{1}. By symmetry, without loss of generality we may assume that u_{1} is in P_{1}. If $u_{1} \neq y_{1}$, then $C^{\prime}=$ $v u u_{1}^{+} \vec{C} y_{1}^{++} u_{1} \overleftarrow{C} v^{+} y_{1}^{+++} \vec{C} v$ is a Hamilton cycle of G. If $u_{1}=y_{1}$, then $C^{\prime}=v u y_{1}^{-} \overleftarrow{C} v^{+} y_{1}^{+} y_{1} y_{1}^{++} \overleftarrow{C} v$ is a Hamilton cycle of G. These contradictions show that $y_{1}^{++}=x_{2}^{-}$and therefore $R_{1}=y_{1}^{+} x_{2}^{-}$. If $y_{1}^{+} \in B_{2}$, then y_{1}^{+}has a W_{1}-neighbour $u_{1} \neq y_{1}$. If u_{1} is in P_{1}, then $C^{\prime}=v u u_{1}^{+} \vec{C} y_{1}^{+} u_{1} \overleftarrow{C} v^{+} x_{2}^{-} \vec{C} v$ is a Hamilton cycle of G, a contradiction. If u_{1} is in P_{2}, then $u_{1} \neq y_{2}$ because otherwise $y_{2} \in A_{2}$ and therefore $v^{-} \in B_{2}$, contradicting the fact that $v^{-} \in B_{1}$ as shown in the preceding paragraph. It follows that $u_{1}^{+} \in B_{m}$ and $C^{\prime}=v u u_{1}^{+} \vec{C} v^{-} x_{2}^{-} \vec{C} u_{1} y_{1}^{+} \overleftarrow{C} v$ is a Hamilton cycle of G, a contradiction. So $y_{1}^{+} \in B_{1}$. Similarly, $x_{2}^{-} \in B_{1}$. Thus, $B_{1}=\left\{v^{-}, v, v^{+}, y_{1}^{+}, x_{2}^{-}\right\}, B_{2}=\emptyset$ and $A=\emptyset$. Using Claim 3.2 it is not difficult to show that G is F_{7}^{5} in this subcase.

Case 2. $B_{1}=\emptyset$.
By Claim 3.5, $B_{2} \neq \emptyset$. Then $A_{2} \neq \emptyset$. Let $u \in A_{2}$ and C be a Hamilton cycle of G_{u}. We again divide this case into two subcases.

Subcase 2.1 . Every A_{2}-vertex has exactly one B_{2}-neighbour.
Let v be the only B_{2}-neighbour of u. Then at least one of v^{-}and v^{+}is in V_{2}, say v^{+}. Then v^{+}must be in B_{2} and therefore it has a W_{1}-neighbour u_{1} such that $u_{1}^{-} \neq v^{+}$. If $u_{1}^{-} \in B_{m}$, then $C^{\prime}=v u u_{1}^{-} \overleftarrow{C} v^{+} u_{1} \vec{C} v$ is a Hamilton cycle of G, a contradiction. So $u_{1}^{-} \in B_{2}$. It follows that u_{1} is an A_{2}-vertex which has two B_{2}-neighbours, namely, v^{+}and u_{1}^{-}. This contradicts the assumption of this subcase. Thus, Subcase 2.1 cannot occur.

Subcase 2.2. There exists an A_{2}-vertex u such that u has two B_{2} neighbours v_{1} and v_{2}.
Since v_{1} has only one W_{1}-neighbour in G_{u}, one of v_{1}^{-}and v_{1}^{+}is in V_{2}. Similarly, one of v_{2}^{-}and v_{2}^{+}is in V_{2}. The following assertions are easily proved by contradiction.

Claim 3.6. $v_{1}^{+} \neq v_{2}$ and $v_{2}^{+} \neq v_{1}$.
($C^{\prime}=v_{1} u v_{2} \vec{C} v_{1}$ if $v_{1}^{+}=v_{2}$.)
Claim 3.7. v_{1}^{+}is not adjacent to v_{2}^{+}and v_{1}^{-}is not adjacent to v_{2}^{-}.
$\left(C^{\prime}=v_{1} u v_{2} \overleftarrow{C} v_{1}^{+} v_{2}^{+} \vec{C} v_{1}\right.$ if v_{1}^{+}is adjacent to $\left.v_{2}^{+}.\right)$
In particular, v_{1}^{+}and v_{2}^{+}(resp. v_{1}^{-}and v_{2}^{-}) cannot be in V_{2} simultaneously. It follows that either v_{1}^{+}and v_{2}^{-}are in V_{2} or v_{1}^{-}and v_{2}^{+}are in V_{2}. For definiteness, assume that v_{1}^{+}and v_{2}^{-}are in V_{2}. Then v_{1}^{-}and v_{2}^{+}must be in W_{1}. Thus G has the property (\bullet) with $k=2$. Set $Q_{1}=v_{1}^{+} \vec{C} v_{2}^{-}$and $Q_{2}=v_{2}^{+} \vec{C} v_{1}^{-}$. If $v_{1}^{+}=v_{2}^{-}$, then $Q_{1}=v_{1}^{+}$. So Q_{1} contains no W_{1}-vertices. Therefore, all W_{1}-neighbours of v_{1}^{+}are in Q_{2}, contradicting Claim 2.5. Thus,

Claim 3.8. $v_{1}^{+} \neq v_{2}^{-}$.
By Claim 3.4, all neighbours of u but v_{1} and v_{2} are in B_{m}. So we have $\left|B_{m}\right|=|N(u)|-2 \geq(m-2)-2=m-4$. Together with Claim 2.4 we have $m-4 \leq\left|B_{m}\right| \leq m-1-t$, where t is the number of paths $P_{i}=x_{i} \vec{C} y_{i}$ defined for a graph with the property (\bullet) as in Section 2. It follows that the ordered pair $\left(\left|B_{m}\right|, t\right)$ is equal to one of $(m-2,1),(m-3,1),(m-3,2)$, $(m-4,1),(m-4,2)$ and $(m-4,3)$.

If $\left(\left|B_{m}\right|, t\right)$ is one of $(m-2,1),(m-3,2)$ and $(m-4,3)$, then the number of W_{1}-vertices in $P_{1} \cup \ldots \cup P_{t}$ is $m-1=\left|W_{1}\right|$. So all W_{1}-vertices are in $P_{1} \cup \ldots \cup P_{t}$. By Claim 2.5 and Claim 2.6, v_{1}^{+}has at most one W_{1}-neighbour, contradicting $v_{1}^{+} \in B_{2}$.

If $\left(\left|B_{m}\right|, t\right)$ is one of $(m-3,1)$ and $(m-4,2)$, then the number of W_{1-} vertices in $P_{1} \cup \ldots \cup P_{t}$ is $m-2$ and there is exactly one W_{1}-vertex outside $P_{1} \cup \ldots \cup P_{t}$, say u_{1}. If u_{1} is in Q_{2} or u_{1} is in Q_{1} but all P_{1}, \ldots, P_{t} are in Q_{2}, then again by Claim 2.5 and Claim $2.6 v_{1}^{+}$has at most one W_{1}-neighbour, contradicting $v_{1}^{+} \in B_{2}$. If u_{1} and some P_{i} are in Q_{1}, then at least one of inequalities $v_{1}^{+} \neq u_{1}^{-}$and $u_{1}^{+} \neq v_{2}^{-}$is true. By symmetry, without loss of generality we may assume that $u_{1}^{+} \neq v_{2}^{-}$. If v_{2}^{-}is adjacent to u_{1}, then u_{1} has three B_{2}-neighbours, namely, u_{1}^{-}, u_{1}^{+}and v_{2}^{-}. This contradicts Claim 3.4. It follows by Claim 2.5 and Claim 2.6 that v_{2}^{-}has only one W_{1}-neighbour, contradicting $v_{2}^{-} \in B_{2}$.

If $\left(\left|B_{m}\right|, t\right)$ is $(m-4,1)$, then the number of W_{1}-vertices in P_{1} is $m-3$ and there are exactly two W_{1}-vertices outside P_{1}, say u_{1} and u_{2}. If P_{1} is in
Q_{2} and $\left\{v_{1}^{-}, v_{2}^{+}\right\} \nsubseteq V\left(P_{1}\right)$, then Q_{1} has at most one W_{1}-vertex. By Claim 2.5, v_{1}^{+}has at most one W_{1}-neighbour, a contradiction. If P_{1} is in Q_{2} and $\left\{v_{1}^{-}, v_{2}^{+}\right\} \subseteq V\left(P_{1}\right)$, then both u_{1} and u_{2} are in Q_{1}. For definiteness without loss of generality we may assume that u_{1} is in $v_{1}^{+} \vec{C} u_{2}^{-}$. Then $u_{1}^{+} \neq v_{2}^{-}$. If v_{2}^{-}is adjacent to u_{1}, then u_{1} has three B_{2}-neighbours, namely, u_{1}^{-}, u_{1}^{+} and v_{2}^{-}. This contradicts Claim 3.4. It follows that v_{2}^{-}has at most one W_{1}-neighbour by Claim 2.5, contradicting again $v_{2}^{-} \in B_{2}$. Finally, let P_{1} be in Q_{1}. Then at most one W_{1}-vertex from $\left\{u_{1}, u_{2}\right\}$ may be in Q_{1} because v_{1}^{-}and v_{2}^{+}are in W_{1}. If none of u_{1} and u_{2} is in Q_{1}, then by Claim 2.5 and Claim 2.6, v_{1}^{+}has only one W_{1}-neighbour, contradicting $v_{1}^{+} \in B_{2}$. If there is one W_{1}-vertex from $\left\{u_{1}, u_{2}\right\}$ in Q_{1}, then by arguments similar to those for the last situation in the preceding paragraph we can get a contradiction.

Thus, Subcase 2.2 also cannot occur.
Proposition 11. Let $G=S\left(V_{1} \cup V_{2}, E\right)$ be a split graph with $\left|V_{1}\right|=\left|V_{2}\right|=m$ and $\delta(G) \geq m-2$. Then G has a Hamilton cycle if and only if $|N(S)|>|S|$ for any $\emptyset \neq S \subseteq V_{1}$ with $|S|=m-2$ or $m-1$, unless $m=4$ and $G-u$ is the graph G_{4}^{3} for some $u \in V_{1}$.

Proof. The necessity follows from Lemma 3. Now we prove the sufficiency. Let $G=S\left(V_{1} \cup V_{2}, E\right)$ be a maximal non-hamiltonian split graph satisfying $\left|V_{1}\right|=\left|V_{2}\right|=m, \delta(G) \geq m-2$ and $|N(S)|>|S|$ for any $\emptyset \neq S \subseteq V_{1}$ with $|S|=m-2$ or $m-1$. By Lemma $6, B_{3}=B_{4}=\ldots=B_{m-1}=\emptyset$. The following assertions are true.

Claim 3.9. $B_{1}=\emptyset$.
Suppose the otherwise that $B_{1} \neq \emptyset$. Let $v \in B_{1}$ and $N_{V_{1}}(v)=\{u\}$. Then $\left|N_{G}\left(V_{1}-u\right)\right| \leq\left|V_{2}-v\right|=\left|V_{2}\right|-1=\left|V_{1}\right|-1=\left|V_{1}-u\right|$, contradicting $\left|N_{G}\left(V_{1}-u\right)\right|>\left|V_{1}-u\right|$.

Claim 3.10. $B_{2} \neq \emptyset$.
Suppose the otherwise that $B_{2}=\emptyset$. Since B_{1} is also empty by Claim 3.9, we have $V_{2}=B_{m}$. Therefore, G contains the complete bipartite graph $K_{m, m}$ with the bipartition $V=V_{1} \cup V_{2}$. So G has a Hamilton cycle, a contradiction.

For any $u \in V_{1}$, by Proposition $9, G_{u}=G-u=S\left(W_{1} \cup V_{2}, E_{u}\right)$ where $W_{1}=V_{1}-u$ has a Hamilton cycle C, unless $\left|W_{1}\right|=m-1=3$ and G_{u} is the graph G_{4}^{3}.

First assume that for any $u \in V_{1}$ the graph G_{u} has a Hamilton cycle C with a fixed orientation \vec{C}. Let w_{1}, \ldots, w_{m-1} be the vertices of W_{1}, occurring on \vec{C} in the order of their indices. Since $\left|V_{2}\right|=m$, it is not difficult to see that the following assertion is true.

Claim 3.11. There exists exactly one of $T_{1}=w_{1} \vec{C} w_{2}, \ldots \ldots, T_{m-1}=$ $w_{m-1} \vec{C} w_{1}$, which contains exactly two V_{2}-vertices. Each of the others T_{i} contains exactly one V_{2}-vertex.

Now we consider separately two cases.
Case 1. There exists $u \in A_{2}$ which has two different B_{2}-neighbours v_{1} and v_{2}.
Then $v_{1}^{+} \neq v_{2}$ because otherwise $C^{\prime}=v_{1} u v_{2} \vec{C} v_{1}$ is a Hamilton cycle of G. Since v_{1} (resp. v_{2}) has only one W_{1}-neighbour, one of v_{1}^{-}and v_{1}^{+}(resp. v_{2}^{-}and v_{2}^{+}) is in V_{2}. For definiteness, without loss of generality we may $\underset{\leftarrow}{\operatorname{assume}}$ that $v_{1}^{+} \in V_{2}$. Then v_{2}^{+}cannot be in V_{2} because otherwise $C^{\prime}=$ $v_{1} u v_{2} \overleftarrow{C} v_{1}^{+} v_{2}^{+} \vec{C} v_{1}$ is a Hamilton cycle of G, a contradiction. So $v_{2}^{-} \in V_{2}$. If $v_{1}^{+} \vec{C} v_{2}^{-}$has no W_{1}-vertices, then $v_{1} \vec{C} v_{2}$ has at least three V_{2}-vertices. This contradicts Claim 3.11 because $v_{1} \vec{C} v_{2}$ must be contained in some T_{i}. If $v_{1}^{+} \vec{C} v_{2}^{-}$has a W_{1}-vertex, then $v_{1}^{+} \neq v_{2}^{-}$and there exist two different T_{i} and T_{j} such that T_{i} contains $\left\{v_{1}, v_{1}^{+}\right\}$and T_{j} contains $\left\{v_{2}^{-}, v_{2}\right\}$. This contradicts Claim 3.11 again.

Case 2 . Every A_{2}-vertex has exactly one B_{2}-neighbour.
By arguments similar to those used for Subcase 2.1 of Proposition 10, we can get a contradiction in this case. So Case 2 also cannot occur.
Thus, there exists $u \in V_{1}$ such that G_{u} does not have a Hamilton cycle. So $\left|W_{1}\right|=m-1=3 \Leftrightarrow m=4$ and G_{u} is G_{4}^{3}.

Proof of Theorem 1. The necessity follows from Lemma 3 and the sufficiency follows from Propositions 10 and 11.

Proof of Corollary 2. If a bipartite graph $G=B\left(V_{1} \cup V_{2}, E\right)$ with $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$ has a Hamilton cycle C, then vertices of V_{1} and V_{2} occur on C alternatively. It follows that m must be equal to n. So we may assume further that $\left|V_{1}\right|=\left|V_{2}\right|=m$. Let $G^{\prime}=S\left(V_{1} \cup V_{2}, E^{\prime}\right)$ be the split graph obtained from G by adding to E all edges joining any two different
vertices of V_{2}. It is not difficult to show that G has a Hamilton cycle if and only if G^{\prime} does. Now Corollary 2 follows from Proposition 11.

Acknowledgement

We would like to express our sincere thanks to the referees for many valuable comments and useful suggestions without which we cannot get this final version of the paper.

References

[1] M. Behzad and G. Chartrand, Introduction to the theory of graphs (Allyn and Bacon, Boston, 1971).
[2] R.E. Burkard and P.L. Hammer, A note on hamiltonian split graphs, J. Combin. Theory 28 (1980) 245-248.
[3] V. Chvatal, New directions in hamiltonian graph theory, in: New directions in the theory of graphs (Proc. Third Ann Arbor Conf. Graph Theory, Univ. Michigan, Ann Arbor, Mich., 1971), pp. 65-95, Acad. Press, NY 1973.
[4] V. Chvatal and P. Erdös, A note on hamiltonian circiuts, Discrete Math. 2 (1972) 111-113.
[5] V. Chvatal and P.L. Hammer, Aggregation of inequalities in integer programming, Ann. Discrete Math. 1 (1977) 145-162.
[6] S. Foldes, P.L. Hammer, Split graphs, in: Proceedings of the Eighth Southeastern conference on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La., 1977), 311-315. Congressus Numerantium, No XIX, Utilitas Math., Winnipeg, Man., 1977.
[7] S. Foldes and P.L. Hammer, On a class of matroid-producing graphs, in: Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely 1976) Vol. 1, 331-352, Colloq. Math. Soc. Janós Bolyai, 18 (North-Holland, AmsterdamNew York, 1978).
[8] R.J. Gould, Updating the hamiltonian problem, a survey, J. Graph Theory 15 (1991) 121-157.
[9] P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935) 26-30.
[10] F. Harary and U. Peled, Hamiltonian threshold graphs, Discrete Appl. Math. 16 (1987) 11-15.
[11] B. Jackson and O. Ordaz, Chvatal-Erdös conditions for paths and cycles in graphs and digraphs, a survey, Discrete Math. 84 (1990) 241-254.
[12] J. Peemöller, Necessary conditions for hamiltonian split graphs, Discrete Math. 54 (1985) 39-47.
[13] U.N. Peled, Regular Boolean functions and their polytope, Chapter VI (Ph. D. Thesis, Univ. of Waterloo, Dep. Combin. and Optimization, 1975).
[14] S.B. Rao, Solution of the hamiltonian problem for self-complementary graphs, J. Combin. Theory (B) 27 (1979) 13-41.

Received 13 February 2001
Revised 2 October 2002

