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Abstract

For a connected graph G of diameter d and an integer k with 1 ≤
k ≤ d, a radio k-coloring of G is an assignment c of colors (positive
integers) to the vertices of G such that

d(u, v) + |c(u)− c(v)| ≥ 1 + k

for every two distinct vertices u and v of G, where d(u, v) is the distance
between u and v. The value rck(c) of a radio k-coloring c of G is
the maximum color assigned to a vertex of G. The radio k-chromatic
number rck(G) of G is the minimum value of rck(c) taken over all radio
k-colorings c of G. In this paper, radio k-colorings of paths are studied.
For the path Pn of order n ≥ 9 and n odd, a new improved bound for
rcn−2(Pn) is presented. For n ≥ 4, it is shown that rcn−3(Pn) ≤
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(
n−2

2

)
+ 2. Upper and lower bounds are also presented for rck(Pn) in

terms of k when 1 ≤ k ≤ n−1. The upper bound is shown to be sharp
when 1 ≤ k ≤ 4 and n is sufficiently large.
Keywords: radio k-coloring, radio k-chromatic number.
2000 Mathematics Subject Classification: 05C12, 05C15, 05C78.

1. Introduction to Radio k-Colorings of Graphs

In the United States, the Federal Communications Commission (FCC) re-
quires (see [8]) that two FM radio stations that are located sufficiently close
to each other broadcast on channels that are sufficiently far apart. The
problem of obtaining an optimal assignment of channels for a specified set
of radio stations according to some prescribed restrictions on the distances
between the stations as well as other factors is referred to as the Channel
Assignment Problem. This problem has been modeled mathematically in a
variety of ways. All of the papers [1–7], for example, deal with this topic.
In particular, this problem led to the introduction of radio k-colorings of
graphs in [2].

Specifically, for a connected graph G of diameter d and an integer k
with 1 ≤ k ≤ d, a radio k-coloring of G is an assignment c of colors (positive
integers) to the vertices of G such that

d(u, v) + |c(u)− c(v)| ≥ 1 + k

for every two distinct vertices u and v of G. The value rck(c) of a radio k-
coloring c of G is the maximum color assigned to a vertex of G. The radio k-
chromatic number rck(G) of G is min{rck(c)} taken over all radio k-colorings
c of G. A radio k-coloring c of a connected graph G with rck(c) = rck(G)
is called a minimum radio k-coloring of G. The study of this concept has
been primarily restricted to extreme values of k, namely, those in the set
{1, 2, d − 1, d}. The parameter rc1(G) is the standard chromatic number
χ(G) of a graph G. Consequently, radio k-colorings provide a generalization
of ordinary colorings of graphs. The radio d-chromatic number was studied
in [1, 2] and was also called the radio number of G. Radio d-colorings were
also referred to as radio labelings. Thus in a radio labeling of a connected
graph of diameter d, the labels (colors) assigned to adjacent vertices must
differ by at least d, the labels assigned to two vertices whose distance is 2
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must differ by at least d− 1, and so on, up to vertices whose distance is d,
that is, antipodal vertices, whose labels are only required to be different.

According to FCC regulations, however, if the distance between two
radio stations is sufficiently great, then there is no restriction on the channels
on which they can broadcast. Applying this to radio k-colorings of graphs,
we see, from a practical point of view, that it is useful to study such colorings
for integers k with 3 ≤ k ≤ d−2 as well. Consequently, it is most appropriate
to consider classes of graphs having arbitrarily large diameters. Probably the
simplest class with this property are the paths. Thus in this paper we study
radio k-colorings of the paths Pn of order n, where 1 ≤ k ≤ n− 1, where we
see that even for this class of graphs, the problem is highly nontrivial. In
Section 2 we consider the case k = n− 2, in Section 3 we study k = n− 3,
and in Section 4 we develop upper bounds for rck(Pn), where 2 ≤ k ≤ n−4,
in terms of k.

The next two observations from [2] concerning graphs in general will be
useful to us and are therefore stated here as well.

Observation 1.1. Let G be a connected graph with diameter d and let k be
an integer such that 1 ≤ k ≤ d. If c is a minimum radio k-coloring of G
with rck(c) = `, then

(a) there exist vertices u and v such that c(u) = 1 and c(v) = `,
(b) for each integer `′ > `, there exists a radio k-coloring c′ of G with

rck(c′) = `′.

For a radio k-coloring c of G, the complementary coloring c of c is defined
by

c(v) = (rck(c) + 1)− c(v)

for all v ∈ V (G).

Observation 1.2. Let G be a connected graph having diameter d. If c is a
radio k-coloring of G, where 1 ≤ k ≤ d, then so too is c and rck(c) = rck(c).

There is another observation we will have cause to use.

Observation 1.3. Let G be a connected graph containing a connected sub-
graph G′, where G and G′ have diameters d and d′, respectively. If k is a
positive integer with k ≤ min(d, d′), then rck(G′) ≤ rck(G).
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Proof. Let c be a minimum radio k-coloring of G, and let u and v be
vertices in G′. Then dG(u, v) ≤ dG′(u, v). Since dG(u, v) + |c(u) − c(v)| ≥
1 + k, it follows that dG′(u, v) + |c(u) − c(v)| ≥ 1 + k. Hence c is a radio
k-coloring of G′ as well. Thus the value of c in G′ is at most the value of c
in G; that is, rck(G′) ≤ rck(G).

2. Radio Antipodal Colorings of Paths

For connected graphs G of diameter d, radio k-colorings of G were investi-
gated for k = d− 1 in [4, 3]. A radio (d− 1)-coloring of G is then a coloring
c of G for which

d(u, v) + |c(u)− c(v)| ≥ d

for every two distinct vertices u and v of G. Thus in a radio (d−1)-coloring
of G, it is possible for two vertices u and v to be colored the same, but only
if u and v are antipodal. For this reason, radio (d− 1)-colorings have been
referred to as radio antipodal colorings or, more simply, as antipodal color-
ings. The value ac(c) then of an antipodal coloring c of G is the maximum
color assigned to a vertex of G. The antipodal chromatic number ac(G) of
G is min{ac(c)}, taken over all antipodal colorings c of G. An antipodal
coloring c of G is a minimum antipodal coloring if ac(c) = ac(G).

An upper bound for the antipodal chromatic number of paths was es-
tablished in [4]. It was shown that if Pn is a path of order n, then

ac(Pn) ≤
(

n− 1
2

)
+ 1(1)

and that equality holds in (1) for 1 ≤ n ≤ 6. Moreover, it was conjectured
that equality holds in (1) for all positive integers n. We show that this
conjecture is false, at least if n is odd and n ≥ 9, by presenting an improved
upper bound for ac(Pn) when n is odd and n ≥ 9.

Theorem 2.1. If Pn is a path of odd order n ≥ 7, then

ac(Pn) ≤
(

n− 1
2

)
− n− 1

2
+ 4.
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Proof. Let n = 2p + 1, where p ≥ 3, and let P2p+1 : v1, v2, · · · , v2p+1.
Define a coloring c of P2p+1 by

c(vi) = 1 + (p− i)(n− 2) for 1 ≤ i ≤ p,

c(vp+1) =

(
n− 1

2

)
− n− 1

2
+ 4 = p(n− 2)− p + 4,

c(vp+j) = (p + 1) + (p− j)(n− 2) for 2 ≤ j ≤ p,

c(v2p+1) = (p− 1)(n− 2) + 3.

Note that c(vp) = 1, c(vp+1) = c(vp+2) + n, c(v2p) = p + 1, c(v2p+1) =
c(v1) + 2, c(v2p+1) > c(v2p), and

c(v1) > c(v2) > · · · > c(vp) and c(vp+1) > c(vp+2) > · · · > c(v2p).

For each of P9, P11, and P13, the coloring c just defined is shown in Figure 1.

28 19 10 1 44 33 24 15 6 3937

344556 23 12 1 64 51 40 29 18 7 58

22 15 8 1 28 19 12 5 24

P13 :

P11 :

P9 :

Figure 1. Antipodal colorings of P9, P11, and P13

We show that c is an antipodal coloring of P2p+1. Let u and v be distinct
vertices of P2p+1. We consider two cases.

Case 1. u 6= v2p+1 and v 6= v2p+1. If u, v ∈ {v1, v2, · · · , vp} or u, v ∈
{vp+1, vp+2, · · · , v2p}, then |c(u)− c(v)| ≥ n− 2 by the definition of c. Thus
d(u, v)+ |c(u)−c(v)| ≥ n−1 = diamPn. So assume that u ∈ {v1, v2, · · · , vp}
and v ∈ {vp+1, vp+2, · · · , v2p}. Then u = vi for some i with 1 ≤ i ≤ p. The
only possibilities for a vertex v for which |c(u)−c(v)| < n−2 are v = vp+i or
v = vp+i+1 (where the latter situation occurs only if 1 ≤ i < p). If v = vp+i,
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then d(u, v) = p and |c(u) − c(v)| = p + 2 if i = 1 and |c(u) − c(v)| = p if
2 ≤ i ≤ p; while if v = vp+i+1, then d(u, v) = p+1 and |c(u)− c(v)| = p− 1.
In either case, d(u, v) + |c(u)− c(v)| ≥ 2p = n− 1 = diamPn.

Case 2. One of u and v is v2p+1, say v = v2p+1. If u ∈ {v1, v2, · · · , vp},
then the only possibility for a vertex u for which |c(u)− c(v)| < n− 2 is v1,
in which case

d(u, v) + |c(u)− c(v)| = (n− 1) + 2 = n + 1 > diamPn.

If u ∈ {vp+1, vp+2, · · · , v2p}, then the only possibilities for a vertex u for
which |c(u) − c(v)| < n − 2 are u = vp+1 or u = vp+2. If u = vp+1, then
d(u, v) = p and |c(u)− c(v)| = p; while if u = vp+2, then d(u, v) = p− 1 and
|c(u) − c(v)| = p + 1. In either case, d(u, v) + |c(u) − c(v)| = 2p = n− 1 =
diamPn.

Hence c is a antipodal coloring of P2p+1. Since max{c(vi) : 1 ≤ i ≤
2p+1} = c(vp+1) =

(n−1
2

)− n−1
2 +4, it follows that ac(c) =

(n−1
2

)− n−1
2 +4.

Therefore, ac(Pn) ≤ (n−1
2

)− n−1
2 + 4.

For n = 7, we have ac(P7) ≤ 16, which agrees with the upper bound stated
in (1). However, when n is odd and n ≥ 9, the upper bound

(n−1
2

)− n−1
2 +4

marks an improvement over the previous upper bound of
(n−1

2

)
+ 1. We

are, however, unable to comment on the sharpness of this new bound. For
n even, though,

(n−1
2

)
+ 1 remains the best upper bound for ac(Pn) known

to us.

3. Nearly Antipodal Colorings of Paths

For a connected graph G of diameter d ≥ 3, a radio (d− 2)-coloring of G is
a radio coloring c of G for which

d(u, v) + |c(u)− c(v)| ≥ d− 1

for every two distinct vertices u and v of G. Thus in a radio (d−2)-coloring
of G, two vertices u and v are colored the same only if diamG−1 ≤ d(u, v) ≤
diamG. We refer to a radio (d−2)-coloring as a nearly radio antipodal color-
ing or, more simply, as a nearly antipodal coloring. Consequently, the value
ac′(c) of a nearly antipodal coloring c of G is the maximum color assigned
to a vertex of G. The nearly antipodal chromatic number ac′(G) of G is
min{ac′(c)} taken over all nearly antipodal colorings c of G. Therefore, if G
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is a connected graph of diameter 1 or 2, then ac′(G) = 1; while if diamG = 3,
then ac′(G) is the chromatic number of G. Thus nearly antipodal colorings
are most interesting for connected graphs of diameter 4 or more. Conse-
quently, we investigate nearly antipodal chromatic number of paths. Figure
2 shows nearly antipodal colorings of the path Pn for n = 5, 6, 7, 8, which
has diameter n − 1. These colorings show that ac′(P5) ≤ 5, ac′(P6) ≤ 7,
ac′(P7) ≤ 11, and ac′(P8) ≤ 16. In fact, there is equality in each case.

1 253 4

v1 v2 v3 v4 v5

2 7 4 1 6 3

v6v5v4v3v2v1

v1 v2 v3 v4 v5 v6 v7

1 468 3 11 9

v1 v2 v3 v4 v5 v6 v7 v8

123 7 16 1 10 5 14

P5 :

P6 :

P7 :

P8 :

Figure 2. Nearly antipodal colorings of Pn for 5 ≤ n ≤ 8

Example 3.1. ac′(P5) = 5, ac′(P6) = 7, ac′(P7) = 11, and ac′(P8) = 16.

Proof. We only verify that ac′(P5) = 5 and ac′(P6) = 7, beginning with
the first of these. Assume, to the contrary, that there is a nearly antipodal
coloring c of P5 with ac′(c) = 4. Since the complementary coloring c of c
is nearly antipodal as well, we may assume that c(v3) = 1 or c(v3) = 2.
Suppose, first, that c(v3) = 1. Then one of v2 and v4 is 3 and the other 4,
say c(v2) = 3. However, then, there is no color for v1, which is impossible.

Next we show that ac′(P6) = 7. Assume, to the contrary, that there
is a nearly antipodal coloring c of P6 with ac′(c) = 6. By symmetry and
replacing c by the complementary coloring c, if necessary, we may assume
that 1 ≤ c(v3) ≤ 3. If c(v3) ≥ 2, then v2 and v4 must be colored at least 5.
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However, d(v2, v4) = 2 and so |c(v2)−c(v4)| ≥ 2, which is impossible. Hence
c(v3) = 1. This implies that one of v2 and v4 is colored 4 and the other 6.
However, both neighbors of the vertex colored 4 must be colored 1, which is
impossible.

By similar arguments, it can be shown that ac′(P7) = 11 and
ac′(P8) = 16.

We now present an upper bound for the nearly antipodal chromatic number
of paths.

Theorem 3.2. If Pn is a path of order n ≥ 1, then

ac′(Pn) ≤
(

n− 2
2

)
+ 2.

Proof. Let Pn : v1, v2, · · · , vn. The result is immediate if 1 ≤ n ≤ 4. So
assume that n ≥ 5. We consider two cases, according to whether n is odd
or n is even.

Case 1. n is odd. Then n = 2p + 1 for some integer p ≥ 2. Define a
coloring c of P2p+1 by

c(vi) = 1 + (p− i)(n− 3) for 1 ≤ i ≤ p,

c(vp+1) =

(
n− 2

2

)
+ 2 = p(n− 4) + 3,

c(vp+j) = p + (p− j)(n− 3) for 2 ≤ j ≤ p,

c(v2p+1) =
(n− 3)2

2
+ 2.

Note that c(vp) = 1, c(vp+1) = c(vp+2) + (n − 2), c(v2p) = p, c(v2p+1) =
c(v1) + 1, c(v2p+1) > c(v2p),

c(v1) > c(v2) > · · · > c(vp), and c(vp+1) > c(vp+2) > · · · > c(v2p).

For n = 5, 7, 9, 11, the coloring of Pn is shown in Figure 3. An argument
similar to the one used in the proof of Theorem 2.1 shows that the coloring
c is a nearly antipodal coloring of Pn. Since max{c(vi) : 1 ≤ i ≤ 2p + 1}
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= c(vp+1) =
(n−2

2

)
+2, it follows that ac′(c) =

(n−2
2

)
+2. Therefore, ac′(Pn) ≤

ac′(c) =
(n−2

2

)
+ 2.

529381 21 13 3433 25 17 9

19 13 7 1 23 16 10 4 20

9 5 1 12 7 3 10

42513
P5 :

P7 :

P9 :

P11 :

Figure 3. Nearly antipodal colorings of Pn for n = 5, 7, 9, 11

Case 2. n is even. Then n = 2p for some integer p ≥ 3. Define a
coloring c of P2p by

c(vi) = 1 + (p− i)(n− 3) for 1 ≤ i ≤ p,

c(vp+j) = p + (p− 1− j)(n− 3) for 1 ≤ j ≤ p− 1,

c(v2p) = 2 + (p− 1)(n− 3) =

(
n− 2

2

)
+ 2.

Note that c(vp) = 1, c(v2p−1) = p, c(v2p−1) < c(v2p), c(v1) > c(v2) > · · · >
c(vp−1), and c(vp+1) > c(vp+2) > · · · > c(v2p−1). For n = 6, 8, 10, 12, the
coloring of Pn is shown in Figure 4.

We show that the coloring c is a nearly antipodal coloring of P2p. Let u and v
be distinct vertices of P2p. If u, v ∈ {v1, v2, · · · , vp}, then |c(u)−c(v)| ≥ n−3
by the definition of c. Thus d(u, v) + |c(u) − c(v)| ≥ n − 2 = diamPn − 1.
Let u, v ∈ {vp+1, vp+2, · · · , v2p}. If {u, v} = {vp+1, v2p}, then |c(u)− c(v)| =
p − 1 and d(u, v) = p − 1 ≥ 2, implying that d(u, v) + |c(u) − c(v)| ≥
n − 2 = diamPn − 1. If {u, v} 6= {vp+1, v2p}, then |c(u) − c(v)| ≥ n − 3
and so d(u, v) + |c(u) − c(v)| ≥ n − 2 = diamPn − 1. Thus assume that
u ∈ {v1, v2, · · · , vp} and v ∈ {vp+1, vp+2, · · · , v2p}. Then u = vi for some i
with 1 ≤ i ≤ p. We consider two subcases.
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46 37 28 19 10 1 42 33 1524 6 47

29 22 15 8 1 26 19 12 5 30

16 11 6 1 14 9 4 17

7 4 1 6 3 8

P8 :

P6 :

P10 :

P12 :

Figure 4. Nearly antipodal colorings of Pn for n = 6, 8, 10, 12

Subcase 2.1. u = v1. Then the only possibilities for a vertex v such
that |c(u) − c(v)| < n − 3 are v = vp+1 or v = v2p. If v = vp+1, then
d(u, v) = p and |c(u)− c(v)| = p− 2; while if v = v2p, then d(u, v) = 2p− 1
and |c(u)−c(v)| = 1. In either case, d(u, v)+ |c(u)−c(v)| ≥ 2p−2 = n−2 =
diamPn − 1.

Subcase 2.2. u = vi for some integer i with 2 ≤ i ≤ p. Then the only
possibilities for a vertex v such that |c(u) − c(v)| < n − 3 are v = vp+i−1

and v = vp+i. If v = vp+i−1, then d(u, v) = p− 1 and |c(u)− c(v)| = p− 1;
while if v = vp+i, then d(u, v) = p and |c(u)− c(v)| = p− 2. In either case,
d(u, v) + |c(u)− c(v)| ≥ 2p− 2 = n− 2 = diamPn − 1.

Hence the coloring c is a nearly antipodal coloring of Pn. Since
max{c(vi) : 1 ≤ i ≤ 2p + 1} = c(v2p) =

(n−2
2

)
+ 2, it follows that ac′(c) =(n−2

2

)
+ 2. Therefore, ac′(Pn) ≤ ac′(c) =

(n−2
2

)
+ 2.

4. Bounds for the Radio k-Chromatic Number of a Path

Thus far we have discussed upper bounds for rck(Pn) as a function of n when
n − 3 ≤ k ≤ n − 1. We now consider the situation when 1 ≤ k ≤ n − 1 in
general and provide bounds for rck(Pn) as a function of k, begining with a
lower bound for rck(Pn).

Theorem 4.1. For 1 ≤ k ≤ n− 1,

rck(Pn) ≥
{

k2+4
4 if k is even,

k2+3
4 if k is odd.
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Proof. Let Pn : v1, v2, . . . , vn be the path of order n ≥ 2 and let c be
a minimum radio k-coloring of Pn. Furthermore, let x1, x2, . . . , xk+1 be an
ordering of the first k + 1 vertices v1, v2, . . . , vk+1 of Pn such that

c(x1) ≤ c(x2) ≤ . . . ≤ c(xk+1).

Since c is a radio k-coloring of Pn, it follows that

|c(xi+1)− c(xi)|+ d(xi+1, xi) = c(xi+1)− c(xi) + d(xi+1, xi) ≥ k + 1

for 1 ≤ i ≤ k. Thus

k∑

i=1

[c(xi+1)− c(xi) + d(xi+1, xi)]

= c(xk+1)− c(x1) +
k∑

i=1

d(xi+1, xi) ≥ k(k + 1).

Since c(x1) ≥ 1, it follows that

c(xk+1) ≥ k(k + 1)−
k∑

i=1

d(xi+1, xi) + 1.(2)

We now obtain an upper bound for
∑k

i=1 d(xi+1, xi). Let

X = {x1, x2, . . . , xk+1} = {v1, v2, . . . , vk+1}.

There are two cases.

Case 1. k is even. Then k = 2` for some integer ` ≥ 1. Observe that
(1) d(vi, x) ≤ 2`− i + 1 for all x ∈ X and 1 ≤ i ≤ ` and (2) d(vi, x) ≤ i− 1
for all x ∈ X and ` + 1 ≤ i ≤ 2` + 1. Therefore,

k∑

i=1

d(xi+1, xi) ≤ 2[2` + (2`− 1) + . . . + (` + 1)] + `

= 2`(2` + 1)− `(` + 1) + ` = k(k + 1)− k2 + 2k

4
+

k

2

= k(k + 1)− k2

4
.
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It then follows from (2) that

rck(Pn) = rck(c) ≥ c(xk+1) ≥ k2

4
+ 1 =

k2 + 4
4

.

Case 2. k is odd. Then k = 2`− 1 for some integer ` ≥ 1. Observe that
d(vi, x) ≤ 2`− i for all x ∈ X and 1 ≤ i ≤ ` and (2) d(vi, x) ≤ i− 1 for all
x ∈ X and ` + 1 ≤ i ≤ 2`. Therefore,

k∑

i=1

d(xi+1, xi) ≤ 2[(2`− 1) + (2`− 2) + . . . + `]

= (2`− 1)2`− `(`− 1) = k(k + 1)− k2 − 1
4

,

it then follows from (2) that

rck(Pn) = rck(c) ≥ c(xk+1) ≥ k2 − 1
4

+ 1 =
k2 + 3

4

as desired.

Because of the way in which the lower bound for rck(Pn) was derived in
Theorem 4.1, it is clear that this bound cannot be sharp. However, we now
turn our attention to an upper bound for rck(Pn) in terms of k, which, as
we will see, is sharp – at least for small values of k.

Theorem 4.2. For 1 ≤ k ≤ n− 1,

rck(Pn) ≤




(k+1)2

2 if k is odd,
(k+1)2+1

2 if k is even.

Proof. Let Pn : v1, v2, . . . , vn. We consider two cases, according to whether
k is odd or k is even.

Case 1. k is odd. Then k = 2` + 1 for some integer ` ≥ 0. Define a
coloring c of Pn by

c(vi) = 1 + (i− 1)(2` + 3) for 1 ≤ i ≤ ` + 1,

c(vi) = ` + 2 + (i− `− 2)(2` + 3) for ` + 2 ≤ i ≤ 2` + 2,

c(vj) = c(vi) for j ≡ i (mod 2` + 2).
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We show that c is a radio k-coloring of Pn. Let u and v be distinct vertices of
Pn. If c(u) = c(v), then d(u, v) ≥ 2`+2 = k+1 and so |c(u)−c(v)|+d(u, v) ≥
k + 1. Suppose that c(u) 6= c(v) and that u = vp and v = vq, where say
1 ≤ p < q ≤ n. If d(u, v) ≥ k, then certainly |c(u)− c(v)|+ d(u, v) ≥ k + 1.
So we may assume that d(u, v) ≤ k − 1. In addition, we may assume from
the way that c is defined that

1 ≤ p < q ≤ k + 1 = 2` + 2 or 1 ≤ p ≤ k + 1 ≤ q ≤ 2k.

Since the arguements are similar, we will only consider the case when 1 ≤ p <
q ≤ k+1 = 2`+2. If either 1 ≤ p < q ≤ `+1 or `+2 ≤ p < q ≤ 2`+2, then
|c(u)−c(v)| ≥ 2`+3 = k+2. Otherwise, 1 ≤ p ≤ `+1 and `+2 ≤ q ≤ 2`+2.
Then

c(u)− c(v) = c(vp)− c(vq) = [1 + (p− 1)(2` + 3)]

−[` + 2 + (q − `− 2)(2` + 3)]

= −`− 1 + (2` + 3)(p− q + ` + 1).

If |c(vp)−c(vq)| ≥ 2`+1 = k, then certainly |c(vp)−c(vq)|+d(vp, vq) ≥ k+1.
Hence we may assume that |c(vp)− c(vq)| ≤ 2`. However, this implies that
either q = p + ` or q = p + ` + 1. We consider these two possibilities.

Subcase 1.1. q = p + `. Then d(vp, vq) = ` and

|c(vp)− c(vq)| = | − `− 1 + (2` + 3)(p− q + ` + 1)|
= | − `− 1 + (2` + 3)| = ` + 2.

Therefore, |c(vp)− c(vq)|+ d(vp, vq) = (` + 2) + ` = k + 1.

Subcase 1.2. q = p + ` + 1. Then d(vp, vq) = ` + 1 and

|c(vp)− c(vq)| = | − `− 1 + (2` + 3)(p− q + ` + 1)|
= | − `− 1| = ` + 1.

Therefore, |c(vp)− c(vq)|+ d(vp, vq) = (` + 1) + (` + 1) = k + 1. Hence, c is
a radio k-coloring of Pn and so
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rck(Pn) ≤ rck(c) = max{c(v`+1), c(v2`+2)} = c(v2`+2) = (` + 2) + `(2` + 3)

=
(

k − 1
2

+ 2
)

+
k − 1

2
(k + 2) =

(k + 1)2

2

Case 2. k is even. Then k = 2` for some integer ` ≥ 1. Define a coloring
c of Pn by

c(vi) = 1 + (i− 1)(2` + 2) for 1 ≤ i ≤ ` + 1,

c(vi) = ` + 2 + (i− `− 2)(2` + 2) for ` + 2 ≤ i ≤ 2` + 1,

c(vj) = c(vi) for j ≡ i (mod 2` + 1).

We show that c is a radio k-coloring of Pn. Let u and v be distinct vertices of
Pn. If c(u) = c(v), then d(u, v) ≥ 2`+2 = k+1 and so |c(u)−c(v)|+d(u, v) ≥
k + 1. Suppose that c(u) 6= c(v) and that u = vp and v = vq, where say
1 ≤ p < q ≤ n. If d(u, v) ≥ k, then certainly |c(u)− c(v)|+ d(u, v) ≥ k + 1.
So we may assume that d(u, v) ≤ k − 1 and

1 ≤ p < q ≤ k + 1 = 2` + 1 or 1 ≤ p ≤ k + 1 ≤ q ≤ 2k.

Since the arguments are similar, we will only consider the case when 1 ≤ p <
q ≤ k+1 = 2`+1. If either 1 ≤ p < q ≤ `+1 or `+2 ≤ p < q ≤ 2`+1, then
|c(u)−c(v)| ≥ 2`+2 = k+2. Otherwise, 1 ≤ p ≤ `+1 and `+2 ≤ q ≤ 2`+1.
Then

c(u)− c(v) = c(vp)− c(vq) = [1 + (p− 1)(2` + 2)]

−[` + 2 + (q − `− 2)(2` + 2)]

= −`− 1 + (2` + 2)(p− q + ` + 1).

If |c(vp)− c(vq)| ≥ 2` = k, then certainly |c(vp)− c(vq)|+ d(vp, vq) ≥ k + 1.
Hence we may assume that |c(vp) − c(vq)| ≤ 2` − 1. However, this implies
that either q = p + ` or q = p + ` + 1.

Subcase 2.1. q = p + `. Then d(vp, vq) = ` and

|c(vp)− c(vq)| = | − `− 1 + (2` + 2)(p− q + ` + 1)|
= | − `− 1 + (2` + 2)| = ` + 1.
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Subcase 2.2. q = p + ` + 1. Then d(vp, vq) = ` + 1 and

|c(vp)− c(vq)| = | − `− 1 + (2` + 2)(p− q + ` + 1)|
= | − `− 1| = ` + 1.

Thus, in either case, |c(vp) − c(vq)| = ` + 1. Since d(vp, vq) ≥ `, it follows
that

|c(vp)− c(vq)|+ d(vp, vq) ≥ (` + 1) + ` = k + 1.

Hence, c is a radio k-coloring of Pn and so

rck(Pn) ≤ rck(c) = max{c(v`+1), c(v2`+2)} = c(v`+1) = 1 + `(2` + 2)

= 1 +
k(k + 2)

2
=

(k + 1)2 + 1
2

,

as desired.

Next, we show that if n is sufficiently large, then the upper bound in Theo-
rem 4.2 is sharp for 1 ≤ k ≤ 4.

It is a simple observation that rc1(Pn) = 2 for all n ≥ 2 since rc1(G) = χ(G)
for every graph G and Pn is a nontrivial connected bipartite graph. Thus
rc1(Pn) = (1 + 1)2/2 = 2 for n ≥ 2. Therefore, equality in Theorem 4.2
holds for k = 1 and n ≥ 2.

It is also not difficult to see that rc2(P3) = rc2(P4) = 4. Let P5 :
v1, v2, v3, v4, v5. We now show that rc2(P5) = 5. By Theorem 4.2, rc2(P5) ≤
5. Assume, to the contrary, that rc2(P5) ≤ 4, and let c be a radio 2-coloring
of P5 having value 4. First, observe that none of v2, v3, or v4 is colored 2
since otherwise both neighbors of such a vertex must be colored 4, which is
impossible. By the same reasoning, none of v2, v3, or v4 is colored 3. Hence
all three vertices are colored 1 or 4. But this implies that two of these three
vertices are colored the same, which cannot occur. Thus rc2(P5) = 5, as
claimed. By Observation 1.3 and Theorem 4.2, rc2(Pn) = 5 = [(2+1)2+1]/2
for all n ≥ 5. Therefore, equality in Theorem 4.2 holds for k = 2 and n ≥ 5.

We now turn to rc3(Pn), where n > 3. First, it is routine to show that
rc3(P4) = 6 and rc3(Pn) = 7 for 5 ≤ n ≤ 7. We now consider rc3(P8). Let
P8 : v1, v2, . . . , v8. By Theorem 4.2, rc3(P8) ≤ 8. We show that rc3(P8) = 8.
Assume, to the contrary, that there a radio 3-coloring of P8 having value 7.
First, observe that no vertex vi (2 ≤ i ≤ 7) can be colored 3 since otherwise
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its neighbors can only be colored 6 or 7, which is impossible. By the same
reasoning, no vertex vi (2 ≤ i ≤ 7) can be colored 5. Now no vertex vi

(3 ≤ i ≤ 6) can be colored 6 since otherwise one of its neighbors must be
colored 3. Also, no vertex vi (3 ≤ i ≤ 6) can be colored 2 for otherwise one of
its neighbors must be colored 5. Hence the vertices v3, v4, v5, v6 can only be
colored 1, 4, or 7, implying that two of these vertices are colored the same.
Since the distance between these vertices is at most 3, this is impossible.
Thus rc3(P8) = 8, as claimed. Since rc3(P8) = 8, it follows that rc3(Pn) ≥ 8
for all n ≥ 8. By Observation 1.3 and Theorem 4.2, rc3(Pn) = 8 = (3+1)2/2
for all n ≥ 8. Therefore, equality holds in Theorem 4.2 for k = 3 and n ≥ 8.

By a case-by-case analysis, one can show that rc4(P13) = 13. It then
follows from Observation 1.3 and Theorem 4.2 that rc4(Pn) = [(4 + 1)2 +
1]/2 = 13 for n ≥ 13. Therefore, equality holds in Theorem 4.2 for k = 4
and n ≥ 13.

Based on the observations that we have just made about rck(Pn) for
1 ≤ k ≤ 4, one might think that we have equality in Theorem 4.2 for all k
with 1 ≤ k ≤ k − 1. However, such is not the case.

For k = n− 1, a radio k-coloring of Pn is a radio labeling and an upper
bound for rcn−1(Pn) = rn(Pn) was established in [2].

Theorem A. For every integer n ≥ 1,

rn(Pn) ≤




(n−1
2

)
+ n

2 + 1 if n is even,

(n
2

)
+ 1 if n is odd.

If n is sufficiently large, then the upper bound for rcn−1(Pn) in Theorem A
is strictly smaller than that in Theorem 4.2. Furthermore, if n is sufficiently
large, then the upper bounds for rck(Pn) when k = n − 2 and k = n − 3,
respectively, in Theorems 2.1 and 3.2 are strictly smaller than that in The-
orem 4.2 as well.
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