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Abstract

The growth function of a graph with respect to a vertex is near
polynomial if there exists a polynomial bounding it above for infinitely
many positive integers. In the paper vertex-symmetric undirected
graphs and vertex-symmetric directed graphs with coinciding in- and
out-degrees are described in the case their growth functions are near
polynomial.
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1. Let Γ be a directed graph with vertex set V (Γ) and edge set E(Γ) ⊆
(V (Γ)×V (Γ))\diag(V (Γ)×V (Γ)) (in this paper we consider graphs without
loops or multiple edges). For an edge (x, y) of Γ, x is the initial vertex and
y is the terminal vertex of (x, y). For x ∈ V (Γ), put Γ0(x) = {x} and,
inductively,

Γn(x) = Γn−1(x) ∪ {x′ : (x′′, x′) ∈ E(Γ) for some x′′ ∈ Γn−1(x)},

Γ−n(x) = Γ−n+1(x) ∪ {x′ : (x′, x′′) ∈ E(Γ) for some x′′ ∈ Γ−n+1(x)},

where n runs over the set of positive integers. The growth function of Γ with
respect to the vertex x is defined by RΓ,x(α) = |Γ[α](x)| for any non-negative
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real number α ([α] is the integer satisfying [α] ≤ α < [α] + 1). The graph
Γ has polynomial growth with respect to the vertex x if there exist non-
negative integers c and d such that RΓ,x(n) ≤ c · nd for all non-negative
integers n. The graph Γ has near polynomial growth with respect to the
vertex x if there exist non-negative integers c and d such that RΓ,x(ni) ≤
c · nd

i for some sequence n1 < n2 < . . . of positive integers and any positive
integer i.

For a directed graph Γ, denote by Γ̄ the underlying undirected graph
(i.e., the undirected graph with the vertex set V (Γ̄) = V (Γ) and the edge
set E(Γ̄) = {{y′, y′′} ⊆ V (Γ) : (y′, y′′) ∈ E(Γ) or (y′′, y′) ∈ E(Γ)}).

For an undirected connected graph ∆, a vertex x of ∆, and a non-
negative integer n, denote by ∆n(x) the ball of radius n with center x (with
respect to the natural metric on the vertex set). Recall, that the growth
function of ∆ with respect to the vertex x is defined by R∆,x(α) = |∆[α](x)|
for any non-negative real number α. The graph ∆ has polynomial growth if,
for x ∈ V (∆), there exist non-negative integers c and d such that R∆,x(n) ≤
c · nd for all non-negative integers n. The graph ∆ has near polynomial
growth if, for x ∈ V (∆), there exist non-negative integers c and d such that
R∆,x(ni) ≤ c · nd

i for some sequence n1 < n2 < . . . of positive integers and
any positive integer i.

Undirected connected vertex-symmetric (i.e., admitting a vertex-transi-
tive group of automorphisms) graphs with polynomial growth were described
in [1]. It was shown, in particular, that for any such graph ∆ there exists
an imprimitivity system σ of Aut(∆) on V (∆) with finite blocks such that
the group Aut(∆/σ) contains a finitely generated nilpotent subgroup of
finite index. Note that for any undirected connected vertex-symmetric graph
with polynomial growth ∆ there exists a non-negative integer d, called the
growth degree of ∆, such that 1/c · nd ≤ R∆,x(n) ≤ c · nd for x ∈ V (∆),
some positive integer c and all positive integers n (see [1]). The proof in [1]
depends on [2]. Using [3] instead of [2] in the arguments from [1] it is possible
to get a description of undirected connected vertex-symmetric graphs with
near polynomial growth, which implies that any such graph has polynomial
growth, see Theorem 1 below.

Directed graphs with vertex-transitive groups of automorphisms and
polynomial growth are interesting for the theory of dynamical systems, see,
for example, [4]. These graphs describe dynamics of generic points of inte-
grable multivalued mappings. In fact a starting point for my investigation
of such graphs was a question asked of me by A.P. Veselov (after my talk in
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the Moscow State University in the beginning of 90s) on their structure in
the case of coinciding in-degree and out-degree (in the other case the struc-
ture can be deduced from [5], see the Proposition below). Shortly after that
the question was answered in [6]. It was proved that for any such graph Γ
the underlying undirected graph Γ̄ also has polynomial growth and is known
by the above mentioned result from [1]. The proof was not published. In
the present paper it is proved that the same conclusion holds under an a
priori weaker hypothesis that Γ has near polynomial (instead of polynomial)
growth, see Theorem 2 below. The complete determination of the structure
of Γ is equivalent to the determination of orbitals of vertex- transitive groups
of automorphisms of the graph Γ̄.

2. Theorem 1. Let ∆ be an undirected connected vertex-symmetric graph
with near polynomial growth. Then ∆ has polynomial growth, and (see
[1, Theorem 1]) there exists an imprimitivity system σ of Aut(∆) on V (∆)
with finite blocks such that the group Aut(∆/σ) contains a finitely generated
nilpotent subgroup of finite index and the stabilizer in Aut(∆/σ) of a vertex
of the graph ∆/σ is finite.

Proof. Arguments from [3] for a locally finite Cayley graph of a group
can be generalized to be applied to any connected vertex-symmetric locally
finite graph ∆′ and to give an associated arcwise connected, locally con-
nected homogeneous metric space Y∆′ on which the group Aut(∆′) acts by
isometries (see [7]). Moreover, in the case of near polynomial growth of ∆′

the arguments from [3, Section 6] can be easily generalized to prove that
Y∆′ can be chosen locally compact and finite dimensional. Arguing as in [1,
p. 414], we conclude (using the solution of Hilbert’s fifth problem) that the
group of isometries of Y∆′ is a Lie group with a finite number of connected
components. For any element g from the kernel of the action of Aut(∆′)
on Y∆′ by isometries, there exists an increasing sequence t1 < t2 < . . . of
positive integers such that for a fixed vertex x of ∆′

max{d∆′(y, g(y))/ti : y ∈ (∆′)ti(x)} → 0 as i →∞

(where d∆′(., .) is the usual metric on V (∆′)).
Now Theorem 1 can be proved by a rather direct generalization of argu-

ments from [1], excluding arguments from [1, §5] which should be replaced
by the arguments given above.
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3. The following terminology concerning a directed graph Γ will be used.
A sequence (x0, . . . , xs) of vertices of Γ is a path of Γ if either s = 0 or s > 0
and, for each 0 ≤ i < s, (xi, xi+1) ∈ E(Γ) or (xi+1, xi) ∈ E(Γ). A path
(x0, . . . , xs) of Γ is a directed path if either s = 0 or s > 0 and, for each
0 ≤ i < s, (xi, xi+1) ∈ E(Γ).

Let X = (x0, . . . , xs) be a path of Γ. Then s is the length of X. Denote
by X−1 the path (xs, . . . , x0). For a path Y = (y0, . . . , yt) of Γ with xs = y0,
XY is the path (x0, . . . , xs = y0, . . . , yt). Any path of Γ can be written as
X1Y1 . . . XkYk where X1, Y

−1
1 , . . . , Xk, Y

−1
k are directed paths of Γ.

For G ≤ Aut(Γ) and x ∈ V (Γ), denote by Gx the stabilizer of x in G.
The graph Γ is vertex-symmetric if Aut(Γ) is vertex-transitive.
Denote by T the directed graph such that, firstly, T̄ is the tree with one

vertex v of degree 2 and all other vertices of degree 3, and, secondly, the
out-degree of every vertex of T is equal to 2. The graph Γ is out-hyperbolic
with respect to a vertex x if there exist an injection ϕ : V (T) → V (Γ) with
ϕ(v) = x and a positive integer t such that for any edge (v′, v′′) of T there
exists a directed path of Γ from ϕ(v′) to ϕ(v′′) of length not greater than t.
The graph Γ is in-hyperbolic with respect to a vertex x if the graph obtained
from Γ by the inversion of the direction is out-hyperbolic with respect to
the vertex x. If the graph Γ is out-hyperbolic with respect to a vertex x,
then, obviously, Γ is not a graph with near polynomial growth with respect
to the vertex x.

At last, if the graph Γ is vertex-symmetric and out-hyperbolic (in-
hyperbolic) with respect to some vertex, then it is out-hyperbolic (respec-
tively, in-hyperbolic) with respect to any vertex and is called simply out-
hyperbolic (respectively, in-hyperbolic).

Proposition. Let Γ be a directed graph for which the graph Γ̄ is connected
and locally finite, and G be a vertex-transitive group of automorphisms of Γ.
Then:
(1) If |{g(y) : g ∈ Gx}| > |{g(x) : g ∈ Gy}| for some vertices x, y of Γ

such that there exists a direct path of Γ from x to y (from y to x), then
Γ is out-hyperbolic (respectively, in-hyperbolic).

(2) If |Γn(x)| > |Γ−n(x)| for a vertex x of Γ and an integer n, then Γ is out-
hyperbolic in the case n > 0, and Γ is in-hyperbolic in the case n < 0.

(3) If Γ is not out-hyperbolic and |Γn(x)| 6= |Γ−n(x)| for a vertex x of Γ and
an integer n, then (Γ is in-hyperbolic by (2) and) |Γn′(x′)| < |Γ−n′(x′)|
for any vertex x′ of Γ and any positive integer n′.
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Proof. A proof of (1) can be derived from the proof of Theorem 2 in [5].
To prove (2) and (3), we need some properties of paired orbits. Recall that
for any vertex x of Γ and any Gx-orbit X on V (Γ) the paired Gx-orbit
on V (Γ), denoted by X∗, is defined by X∗ = {y : g(y) = x and g(x) ∈
X for some g ∈ G}. The map X 7→ X∗ is a bijection on the set of Gx-orbits
on V (Γ), and (X∗)∗ = X for any Gx-orbit. For an integer n, if X is a
Gx-orbit on Γn(x) (note that the set Γn(x) is Gx-invariant), then, obviously,
X∗ is contained in Γ−n(x). Now 1) can be reformulated in the following
way. If x is a vertex of Γ, n is a positive integer, and X is a Gx-orbit on
Γn(x) such that |X| > |X∗| (such that |X| < |X∗|), then Γ is out-hyperbolic
(respectively, in-hyperbolic). Finally, suppose that there exists a Gx-orbit
on V (Γ) such that |X| 6= |X∗|. Then, by [5, Theorem 1], the closure Ḡ of
G in the group Aut(Γ) equipped with the natural compact-open topology is
not unimodular. Since, by the connectedness of Γ̄, the group Ḡ is generated
by the compact subgroup Ḡx and all elements of Ḡ mapping the vertex x to
vertices from Γ̄1(x), it follows that the value of the modular function of Ḡ
on some element of Ḡ mapping the vertex x to some vertex y ∈ Γ̄1(x) differs
from 1. Since Gx-orbits and Ḡx-orbits on V (Γ) coinside, we get |Y | 6= |Y ∗|
where Y is the Gx-orbit containing y.

Now to prove (2) note that |Γn(x)| > |Γ−n(x)| for a vertex x of Γ and
an integer n implies |X| > |X∗| for some Gx-orbit X on Γn(x). Thus 2)
follows by the above.

Turning to (3), note that, since Γ is not out-hyperbolic, the above im-
plies |X| ≤ |X∗| for any Gx-orbit X on Γn′(x) where n′ is an arbitrary
positive integer. Now |Γn(x)| 6= |Γ−n(x)| implies that |X| < |X∗| for some
Gx-orbit X on Γ|n|(x). As it was mentioned above, it follows |Y | < |Y ∗|
for some Gx-orbit Y on Γ1(x). Thus |Γn′(x)| < |Γ−n′(x)| for any positive
integer n′, and (3) follows by vertex-transitivity of G.

4. Theorem 2. Let Γ be a directed vertex-symmetric graph with near
polynomial growth. Suppose the graph Γ̄ is connected, and |Γ1(x)| = |Γ−1(x)|
for x ∈ V (Γ). Then the graph Γ̄ has polynomial growth, and (see Theorem 1)
there exists an imprimitivity system τ of Aut(Γ) on V (Γ) with finite blocks
such that the group Aut(Γ/τ) contains a finitely generated nilpotent subgroup
of finite index and the stabilizer in Aut(Γ/τ) of a vertex of the graph Γ/τ
is finite.

Proof. Since the graph Γ is vertex-symmetric, the growth function RΓ,x is
independent of x ∈ V (Γ). We denote it by R. By hypothesis and Proposi-
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tion, there exist positive integers c and d such that

R(ni) = |Γni(x)| = |Γ−ni(x)| ≤ c · nd
i

for some sequence n1 < n2 < . . . of positive integers and any positive inte-
ger i. By Theorem 1, to prove Theorem 2 it is sufficient to show that there
exist positive integers c′ and d′ such that

|Γ̄n′i(x)| ≤ c′ · n′id
′

for some sequence n′1 < n′2 < . . . of positive integers and any positive inte-
ger i.

Following arguments are very close to ones from [8] (where, however,
they are formulated in other terms).

Fix a real number λ and a positive integer a such that

(1) 1 < λ < min{21/d, 3/2},

(2) a ≥ (logλ 2 + 2 + 4 logλ 1/(λ− 1))(logλ 2− d)−1

(note that a > 1), and put

(3) b = a · d + logλ 2 + 1 + 4 logλ 1/(λ− 1).

Without loss of generality we will suppose that

n1 ≥ 2a.

For each positive integer j, put

mj = n
1/a
j ≥ 2,

Ej = {i ∈ {1, 2, . . . , [b · log2 mj ]} : R(λi+1) > 2R(λi)},
Fj = {[logλ(mj)], [logλ(mj)] + 1, . . . , [b · log2 mj ]} \ Ej .

Then
R(λ[b·log2 mj ]+1) ≥ 2|Ej |

and, by (1)− (3),

(4) λ[b·log2 mj ]+1 ≤ nj = ma
j .
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Thus
c ·ma·d

j ≥ 2|Ej |.

Now
|Fj | ≥ [b · log2 mj ]− [logλ mj ]− |Ej |
≥ [b · log2 mj ]− [logλ mj ]− log2 c− a · d · log2 mj

≥ log2 mj(b− logλ 2− a · d− (log2 c + 1)(log2 mj)−1).

By (3), this implies that, for all sufficiently large j, say for all j ≥ j′,

|Fj | > 4 logλ 1/(λ− 1) log2 mj .

Thus, for each j ≥ j′ and for qj = [log2 mj ] + 1, there exists a subset
Kj = {k(j, 1), . . . , k(j, 2qj)} of Fj such that

k(j, 1) > logλ mj + logλ 1/(λ− 1)

and
k(j, r + 1)− k(j, r) > logλ 1/(λ− 1)

for all 1 ≤ r < 2qj . Put, in addition,

k(j, 0) = logλ mj

for each j ≥ j′.
We show that, for any j ≥ j′ and 0 ≤ r ≤ 2qj − 2, if X1Y1X2Y2 is

a path of Γ such that X1, Y
−1
1 , X2, Y

−1
2 are directed paths of Γ of length

not greater than λk(j,r), then there exists a path XY of Γ with the same
initial and terminal vertices as X1Y1X2Y2 and such that X, Y −1 are directed
paths of Γ of length not greater than λk(j,r+2). Let x′, y, x′′ be the terminal
vertices of X1, Y1, X2, respectively. If

Γ[λk(j,r+1)](x′) ∩ Γ[λk(j,r+1)](x′′) = ∅,

then
Γ[λk(j,r+1)](x′) ∪ Γ[λk(j,r+1)](x′′) ⊆ Γ[λk(j,r+1)+λk(j,r)](y)

implies

R(λk(j,r+1)+1)/R(λk(j,r+1)) > R(λk(j,r+1) + λk(j,r))/R(λk(j,r+1)) ≥ 2,
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a contradiction. Thus there exist a path Z1Z2 of Γ such that Z1 is a directed
path of Γ with the initial vertex x′ and of the length not greater than
λk(j,r+1), and Z−1

2 is a directed path of Γ with the initial vertex x′′ and of
the length not greater than λk(j,r+1). Put X = X1Z1, Y = Z2Y2. Then
the path XY of Γ has the same initial and terminal vertices as the path
X1Y1X2Y2, and X, Y −1 are directed paths of Γ of length not greater than

λk(j,r+1) + λk(j,r) < λk(j,r+1)+1 < λk(j,r+2).

Thus XY is the required path.
As a consequence we have that, for any j ≥ j′ and 0 ≤ r ≤ 2qj − 2,

if X1Y1 . . . X2kY2k is a path of Γ such that X1, Y
−1
1 , . . . , X2k, Y

−1
2k are di-

rected paths of length not greater than λk(j,r), then there exists a path
X ′

1Y
′
1 . . . X ′

kY
′
k of Γ with the same initial and terminal vertices as

X1Y1 . . . X2kY2k and such that X ′
1, Y

′
1
−1, . . . , X ′

k, Y
′
k
−1 are directed paths of

Γ of length not greater than λk(j,r+2).
Thus, for any j ≥ j′, if X1Y1 . . . XsYs, where s = 2qj , is a path of

Γ such that X1, Y
−1
1 , . . . , Xs, Y

−1
s are directed paths of length not greater

than λk(j,0) = mj , then there exists a path X ′Y ′ of Γ with the same initial
and terminal vertices as X1Y1 . . . XsYs and such that X ′

1, Y
′
1
−1 are directed

paths of Γ of length not greater than λk(j,2qj) < nj (see (4)). Since any path
of Γ of length not greater than mj = λk(j,0) can be written as X1Y1 . . . XsYs,
where s = 2qj > mj and X1, Y

−1
1 , . . . , Xs, Y

−1
s are directed paths of length

not greater than λk(j,0) = mj , it follows

Γ̄mj (x) ⊆ ∪y∈Γnj (x)Γ
−nj (y)

for all j ≥ j′. Thus

|Γ̄mj (x)| ≤ R(nj)2 ≤ c2 · n2d
j = c2 ·m2d·a

j

for all j ≥ j′. As it was noted in the beginning of the proof, the theorem
follows.

Remark 1. Let Γ be a directed vertex-symmetric graph with near poly-
nomial growth, which is not in-hyperbolic. Then |Γ1(x)| = |Γ−1(x)| for
x ∈ V (Γ) by the Proposition. Thus Theorem 2 can be applied to compo-
nents of Γ (which are isomorphic).

Remark 2. It can be deduced from Theorem 2 (modifying, for example,
arguments from [8]) that if d is the growth degree of the graph Γ̄ from
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Theorem 2, then there exists a positive integer c1 such that 1/c1 · nd ≤
|Γn(x)| = |Γ−n(x)| ≤ c1 · nd for all positive integers n.

Remark 3. In [8], it was proved that a finitely generated semigroup with
cancellations has polynomial growth if and only if its group of all left quo-
tients (exists and) contains a nilpotent subgroup of finite index. A modifi-
cation of arguments from [8] (compare the proof of Theorem 2 above) and
using [3] instead of [2] implies that here ”polynomial growth” can be replaced
by ”near polynomial growth”. (In notation from [8], S has near polynomial
growth if there exist positive integers c and d such that γ(ni) ≤ c · nd

i for
some sequence n1 < n2 < . . . of positive integers and any positive integer i.)

Remark 4. Obviously, Theorem 1 follows from Theorem 2 (applied to
the directed graph ~∆ with the vertex set V (~∆) = V (∆) and the edge set
E(~∆) = {(y′, y′′) : {y′, y′′} ∈ E(∆)}). But Theorem 1 was used in the proof
of Theorem 2.
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