UNDIRECTED AND DIRECTED GRAPHS WITH NEAR POLYNOMIAL GROWTH

V.I. Trofimov
Institute of Mathematics and Mechanics
Russian Academy of Sciences
Ekaterinburg, Russia

To Professor Wilfried Imrich on the occasion of his 60th birthday

Abstract

The growth function of a graph with respect to a vertex is near polynomial if there exists a polynomial bounding it above for infinitely many positive integers. In the paper vertex-symmetric undirected graphs and vertex-symmetric directed graphs with coinciding in- and out-degrees are described in the case their growth functions are near polynomial.

Keywords: vertex-symmetric graph; vertex-symmetric directed graph; near polynomial growth; multivalued mapping.
2000 Mathematics Subject Classification: 05C25, 20F65, 37Bxx, 58C06.

1. Let Γ be a directed graph with vertex set $V(\Gamma)$ and edge set $E(\Gamma) \subseteq$ $(V(\Gamma) \times V(\Gamma)) \backslash \operatorname{diag}(V(\Gamma) \times V(\Gamma))$ (in this paper we consider graphs without loops or multiple edges). For an edge (x, y) of Γ, x is the initial vertex and y is the terminal vertex of (x, y). For $x \in V(\Gamma)$, put $\Gamma^{0}(x)=\{x\}$ and, inductively,

$$
\begin{gathered}
\Gamma^{n}(x)=\Gamma^{n-1}(x) \cup\left\{x^{\prime}:\left(x^{\prime \prime}, x^{\prime}\right) \in E(\Gamma) \text { for some } x^{\prime \prime} \in \Gamma^{n-1}(x)\right\}, \\
\Gamma^{-n}(x)=\Gamma^{-n+1}(x) \cup\left\{x^{\prime}:\left(x^{\prime}, x^{\prime \prime}\right) \in E(\Gamma) \text { for some } x^{\prime \prime} \in \Gamma^{-n+1}(x)\right\},
\end{gathered}
$$

where n runs over the set of positive integers. The growth function of Γ with respect to the vertex x is defined by $R_{\Gamma, x}(\alpha)=\left|\Gamma^{[\alpha]}(x)\right|$ for any non-negative
real number α ($[\alpha]$ is the integer satisfying $[\alpha] \leq \alpha<[\alpha]+1$). The graph Γ has polynomial growth with respect to the vertex x if there exist nonnegative integers c and d such that $R_{\Gamma, x}(n) \leq c \cdot n^{d}$ for all non-negative integers n. The graph Γ has near polynomial growth with respect to the vertex x if there exist non-negative integers c and d such that $R_{\Gamma, x}\left(n_{i}\right) \leq$ $c \cdot n_{i}^{d}$ for some sequence $n_{1}<n_{2}<\ldots$ of positive integers and any positive integer i.

For a directed graph Γ, denote by $\bar{\Gamma}$ the underlying undirected graph (i.e., the undirected graph with the vertex set $V(\bar{\Gamma})=V(\Gamma)$ and the edge set $E(\bar{\Gamma})=\left\{\left\{y^{\prime}, y^{\prime \prime}\right\} \subseteq V(\Gamma):\left(y^{\prime}, y^{\prime \prime}\right) \in E(\Gamma)\right.$ or $\left.\left.\left(y^{\prime \prime}, y^{\prime}\right) \in E(\Gamma)\right\}\right)$.

For an undirected connected graph Δ, a vertex x of Δ, and a nonnegative integer n, denote by $\Delta^{n}(x)$ the ball of radius n with center x (with respect to the natural metric on the vertex set). Recall, that the growth function of Δ with respect to the vertex x is defined by $R_{\Delta, x}(\alpha)=\left|\Delta^{[\alpha]}(x)\right|$ for any non-negative real number α. The graph Δ has polynomial growth if, for $x \in V(\Delta)$, there exist non-negative integers c and d such that $R_{\Delta, x}(n) \leq$ $c \cdot n^{d}$ for all non-negative integers n. The graph Δ has near polynomial growth if, for $x \in V(\Delta)$, there exist non-negative integers c and d such that $R_{\Delta, x}\left(n_{i}\right) \leq c \cdot n_{i}^{d}$ for some sequence $n_{1}<n_{2}<\ldots$ of positive integers and any positive integer i.

Undirected connected vertex-symmetric (i.e., admitting a vertex-transitive group of automorphisms) graphs with polynomial growth were described in [1]. It was shown, in particular, that for any such graph Δ there exists an imprimitivity system σ of $\operatorname{Aut}(\Delta)$ on $V(\Delta)$ with finite blocks such that the group $\operatorname{Aut}(\Delta / \sigma)$ contains a finitely generated nilpotent subgroup of finite index. Note that for any undirected connected vertex-symmetric graph with polynomial growth Δ there exists a non-negative integer d, called the growth degree of Δ, such that $1 / c \cdot n^{d} \leq R_{\Delta, x}(n) \leq c \cdot n^{d}$ for $x \in V(\Delta)$, some positive integer c and all positive integers n (see [1]). The proof in [1] depends on [2]. Using [3] instead of [2] in the arguments from [1] it is possible to get a description of undirected connected vertex-symmetric graphs with near polynomial growth, which implies that any such graph has polynomial growth, see Theorem 1 below.

Directed graphs with vertex-transitive groups of automorphisms and polynomial growth are interesting for the theory of dynamical systems, see, for example, [4]. These graphs describe dynamics of generic points of integrable multivalued mappings. In fact a starting point for my investigation of such graphs was a question asked of me by A.P. Veselov (after my talk in
the Moscow State University in the beginning of 90s) on their structure in the case of coinciding in-degree and out-degree (in the other case the structure can be deduced from [5], see the Proposition below). Shortly after that the question was answered in [6]. It was proved that for any such graph Γ the underlying undirected graph $\bar{\Gamma}$ also has polynomial growth and is known by the above mentioned result from [1]. The proof was not published. In the present paper it is proved that the same conclusion holds under an a priori weaker hypothesis that Γ has near polynomial (instead of polynomial) growth, see Theorem 2 below. The complete determination of the structure of Γ is equivalent to the determination of orbitals of vertex- transitive groups of automorphisms of the graph $\bar{\Gamma}$.
2. Theorem 1. Let Δ be an undirected connected vertex-symmetric graph with near polynomial growth. Then Δ has polynomial growth, and (see $[1$, Theorem 1]) there exists an imprimitivity system σ of $\operatorname{Aut}(\Delta)$ on $V(\Delta)$ with finite blocks such that the group $\operatorname{Aut}(\Delta / \sigma)$ contains a finitely generated nilpotent subgroup of finite index and the stabilizer in $\operatorname{Aut}(\Delta / \sigma)$ of a vertex of the graph Δ / σ is finite.

Proof. Arguments from [3] for a locally finite Cayley graph of a group can be generalized to be applied to any connected vertex-symmetric locally finite graph Δ^{\prime} and to give an associated arcwise connected, locally connected homogeneous metric space $Y_{\Delta^{\prime}}$ on which the group $\operatorname{Aut}\left(\Delta^{\prime}\right)$ acts by isometries (see [7]). Moreover, in the case of near polynomial growth of Δ^{\prime} the arguments from [3, Section 6] can be easily generalized to prove that $Y_{\Delta^{\prime}}$ can be chosen locally compact and finite dimensional. Arguing as in [1, p. 414], we conclude (using the solution of Hilbert's fifth problem) that the group of isometries of $Y_{\Delta^{\prime}}$ is a Lie group with a finite number of connected components. For any element g from the kernel of the action of $\operatorname{Aut}\left(\Delta^{\prime}\right)$ on $Y_{\Delta^{\prime}}$ by isometries, there exists an increasing sequence $t_{1}<t_{2}<\ldots$ of positive integers such that for a fixed vertex x of Δ^{\prime}

$$
\max \left\{d_{\Delta^{\prime}}(y, g(y)) / t_{i}: y \in\left(\Delta^{\prime}\right)^{t_{i}}(x)\right\} \rightarrow 0 \text { as } i \rightarrow \infty
$$

(where $d_{\Delta^{\prime}}(.,$.$) is the usual metric on V\left(\Delta^{\prime}\right)$).
Now Theorem 1 can be proved by a rather direct generalization of arguments from [1], excluding arguments from $[1, \S 5]$ which should be replaced by the arguments given above.
3. The following terminology concerning a directed graph Γ will be used.

A sequence $\left(x_{0}, \ldots, x_{s}\right)$ of vertices of Γ is a path of Γ if either $s=0$ or $s>0$ and, for each $0 \leq i<s,\left(x_{i}, x_{i+1}\right) \in E(\Gamma)$ or $\left(x_{i+1}, x_{i}\right) \in E(\Gamma)$. A path $\left(x_{0}, \ldots, x_{s}\right)$ of Γ is a directed path if either $s=0$ or $s>0$ and, for each $0 \leq i<s,\left(x_{i}, x_{i+1}\right) \in E(\Gamma)$.

Let $X=\left(x_{0}, \ldots, x_{s}\right)$ be a path of Γ. Then s is the length of X. Denote by X^{-1} the path $\left(x_{s}, \ldots, x_{0}\right)$. For a path $Y=\left(y_{0}, \ldots, y_{t}\right)$ of Γ with $x_{s}=y_{0}$, $X Y$ is the path $\left(x_{0}, \ldots, x_{s}=y_{0}, \ldots, y_{t}\right)$. Any path of Γ can be written as $X_{1} Y_{1} \ldots X_{k} Y_{k}$ where $X_{1}, Y_{1}^{-1}, \ldots, X_{k}, Y_{k}^{-1}$ are directed paths of Γ.

For $G \leq \operatorname{Aut}(\Gamma)$ and $x \in V(\Gamma)$, denote by G_{x} the stabilizer of x in G.
The graph Γ is vertex-symmetric if $\operatorname{Aut}(\Gamma)$ is vertex-transitive.
Denote by T the directed graph such that, firstly, $\overline{\mathrm{T}}$ is the tree with one vertex v of degree 2 and all other vertices of degree 3 , and, secondly, the out-degree of every vertex of T is equal to 2 . The graph Γ is out-hyperbolic with respect to a vertex x if there exist an injection $\varphi: V(\mathrm{~T}) \rightarrow V(\Gamma)$ with $\varphi(v)=x$ and a positive integer t such that for any edge $\left(v^{\prime}, v^{\prime \prime}\right)$ of T there exists a directed path of Γ from $\varphi\left(v^{\prime}\right)$ to $\varphi\left(v^{\prime \prime}\right)$ of length not greater than t. The graph Γ is in-hyperbolic with respect to a vertex x if the graph obtained from Γ by the inversion of the direction is out-hyperbolic with respect to the vertex x. If the graph Γ is out-hyperbolic with respect to a vertex x, then, obviously, Γ is not a graph with near polynomial growth with respect to the vertex x.

At last, if the graph Γ is vertex-symmetric and out-hyperbolic (inhyperbolic) with respect to some vertex, then it is out-hyperbolic (respectively, in-hyperbolic) with respect to any vertex and is called simply outhyperbolic (respectively, in-hyperbolic).

Proposition. Let Γ be a directed graph for which the graph $\bar{\Gamma}$ is connected and locally finite, and G be a vertex-transitive group of automorphisms of Γ. Then:
(1) If $\left|\left\{g(y): g \in G_{x}\right\}\right|>\left|\left\{g(x): g \in G_{y}\right\}\right|$ for some vertices x, y of Γ such that there exists a direct path of Γ from x to y (from y to x), then Γ is out-hyperbolic (respectively, in-hyperbolic).
(2) If $\left|\Gamma^{n}(x)\right|>\left|\Gamma^{-n}(x)\right|$ for a vertex x of Γ and an integer n, then Γ is outhyperbolic in the case $n>0$, and Γ is in-hyperbolic in the case $n<0$.
(3) If Γ is not out-hyperbolic and $\left|\Gamma^{n}(x)\right| \neq\left|\Gamma^{-n}(x)\right|$ for a vertex x of Γ and an integer n, then (Γ is in-hyperbolic by (2) and) $\left|\Gamma^{n^{\prime}}\left(x^{\prime}\right)\right|<\left|\Gamma^{-n^{\prime}}\left(x^{\prime}\right)\right|$ for any vertex x^{\prime} of Γ and any positive integer n^{\prime}.

Proof. A proof of (1) can be derived from the proof of Theorem 2 in [5]. To prove (2) and (3), we need some properties of paired orbits. Recall that for any vertex x of Γ and any G_{x}-orbit X on $V(\Gamma)$ the paired G_{x}-orbit on $V(\Gamma)$, denoted by X^{*}, is defined by $X^{*}=\{y: g(y)=x$ and $g(x) \in$ X for some $g \in G\}$. The map $X \mapsto X^{*}$ is a bijection on the set of $G_{x^{-}}$-orbits on $V(\Gamma)$, and $\left(X^{*}\right)^{*}=X$ for any G_{x}-orbit. For an integer n, if X is a G_{x}-orbit on $\Gamma^{n}(x)$ (note that the set $\Gamma^{n}(x)$ is G_{x}-invariant), then, obviously, X^{*} is contained in $\Gamma^{-n}(x)$. Now 1) can be reformulated in the following way. If x is a vertex of Γ, n is a positive integer, and X is a G_{x}-orbit on $\Gamma^{n}(x)$ such that $|X|>\left|X^{*}\right|$ (such that $|X|<\left|X^{*}\right|$), then Γ is out-hyperbolic (respectively, in-hyperbolic). Finally, suppose that there exists a G_{x}-orbit on $V(\Gamma)$ such that $|X| \neq\left|X^{*}\right|$. Then, by $[5$, Theorem 1], the closure \bar{G} of G in the group $A u t(\Gamma)$ equipped with the natural compact-open topology is not unimodular. Since, by the connectedness of $\bar{\Gamma}$, the group \bar{G} is generated by the compact subgroup \bar{G}_{x} and all elements of \bar{G} mapping the vertex x to vertices from $\bar{\Gamma}^{1}(x)$, it follows that the value of the modular function of \bar{G} on some element of \bar{G} mapping the vertex x to some vertex $y \in \bar{\Gamma}^{1}(x)$ differs from 1. Since G_{x}-orbits and \bar{G}_{x}-orbits on $V(\Gamma)$ coinside, we get $|Y| \neq\left|Y^{*}\right|$ where Y is the G_{x}-orbit containing y.

Now to prove (2) note that $\left|\Gamma^{n}(x)\right|>\left|\Gamma^{-n}(x)\right|$ for a vertex x of Γ and
 follows by the above.

Turning to (3), note that, since Γ is not out-hyperbolic, the above implies $|X| \leq\left|X^{*}\right|$ for any G_{x}-orbit X on $\Gamma^{n^{\prime}}(x)$ where n^{\prime} is an arbitrary positive integer. Now $\left|\Gamma^{n}(x)\right| \neq\left|\Gamma^{-n}(x)\right|$ implies that $|X|<\left|X^{*}\right|$ for some
 for some G_{x}-orbit Y on $\Gamma^{1}(x)$. Thus $\left|\Gamma^{n^{\prime}}(x)\right|<\left|\Gamma^{-n^{\prime}}(x)\right|$ for any positive integer n^{\prime}, and (3) follows by vertex-transitivity of G.
4. Theorem 2. Let Γ be a directed vertex-symmetric graph with near polynomial growth. Suppose the graph $\bar{\Gamma}$ is connected, and $\left|\Gamma^{1}(x)\right|=\left|\Gamma^{-1}(x)\right|$ for $x \in V(\Gamma)$. Then the graph $\bar{\Gamma}$ has polynomial growth, and (see Theorem 1) there exists an imprimitivity system τ of $A u t(\Gamma)$ on $V(\Gamma)$ with finite blocks such that the group $A u t(\Gamma / \tau)$ contains a finitely generated nilpotent subgroup of finite index and the stabilizer in $\operatorname{Aut}(\Gamma / \tau)$ of a vertex of the graph Γ / τ is finite.

Proof. Since the graph Γ is vertex-symmetric, the growth function $R_{\Gamma, x}$ is independent of $x \in V(\Gamma)$. We denote it by R. By hypothesis and Proposi-
tion, there exist positive integers c and d such that

$$
R\left(n_{i}\right)=\left|\Gamma^{n_{i}}(x)\right|=\left|\Gamma^{-n_{i}}(x)\right| \leq c \cdot n_{i}^{d}
$$

for some sequence $n_{1}<n_{2}<\ldots$ of positive integers and any positive integer i. By Theorem 1, to prove Theorem 2 it is sufficient to show that there exist positive integers c^{\prime} and d^{\prime} such that

$$
\left|\bar{\Gamma}^{n_{i}^{\prime}}(x)\right| \leq c^{\prime} \cdot n_{i}^{\prime d^{\prime}}
$$

for some sequence $n_{1}^{\prime}<n_{2}^{\prime}<\ldots$ of positive integers and any positive integer i.

Following arguments are very close to ones from [8] (where, however, they are formulated in other terms).

Fix a real number λ and a positive integer a such that

$$
\begin{equation*}
1<\lambda<\min \left\{2^{1 / d}, 3 / 2\right\} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
a \geq\left(\log _{\lambda} 2+2+4 \log _{\lambda} 1 /(\lambda-1)\right)\left(\log _{\lambda} 2-d\right)^{-1} \tag{2}
\end{equation*}
$$

(note that $a>1$), and put

$$
\begin{equation*}
b=a \cdot d+\log _{\lambda} 2+1+4 \log _{\lambda} 1 /(\lambda-1) \tag{3}
\end{equation*}
$$

Without loss of generality we will suppose that

$$
n_{1} \geq 2^{a}
$$

For each positive integer j, put

$$
\begin{gathered}
m_{j}=n_{j}^{1 / a} \geq 2 \\
E_{j}=\left\{i \in\left\{1,2, \ldots,\left[b \cdot \log _{2} m_{j}\right]\right\}: R\left(\lambda^{i+1}\right)>2 R\left(\lambda^{i}\right)\right\} \\
F_{j}=\left\{\left[\log _{\lambda}\left(m_{j}\right)\right],\left[\log _{\lambda}\left(m_{j}\right)\right]+1, \ldots,\left[b \cdot \log _{2} m_{j}\right]\right\} \backslash E_{j}
\end{gathered}
$$

Then

$$
R\left(\lambda^{\left[b \cdot \log _{2} m_{j}\right]+1}\right) \geq 2^{\left|E_{j}\right|}
$$

and, by $(1)-(3)$,

$$
\begin{equation*}
\lambda^{\left[b \cdot \log _{2} m_{j}\right]+1} \leq n_{j}=m_{j}^{a} \tag{4}
\end{equation*}
$$

Thus

$$
c \cdot m_{j}^{a \cdot d} \geq 2^{\left|E_{j}\right|}
$$

Now

$$
\begin{aligned}
& \left|F_{j}\right| \geq\left[b \cdot \log _{2} m_{j}\right]-\left[\log _{\lambda} m_{j}\right]-\left|E_{j}\right| \\
& \geq\left[b \cdot \log _{2} m_{j}\right]-\left[\log _{\lambda} m_{j}\right]-\log _{2} c-a \cdot d \cdot \log _{2} m_{j} \\
& \geq \log _{2} m_{j}\left(b-\log _{\lambda} 2-a \cdot d-\left(\log _{2} c+1\right)\left(\log _{2} m_{j}\right)^{-1}\right)
\end{aligned}
$$

By (3), this implies that, for all sufficiently large j, say for all $j \geq j^{\prime}$,

$$
\left|F_{j}\right|>4 \log _{\lambda} 1 /(\lambda-1) \log _{2} m_{j} .
$$

Thus, for each $j \geq j^{\prime}$ and for $q_{j}=\left[\log _{2} m_{j}\right]+1$, there exists a subset $K_{j}=\left\{k(j, 1), \ldots, k\left(j, 2 q_{j}\right)\right\}$ of F_{j} such that

$$
k(j, 1)>\log _{\lambda} m_{j}+\log _{\lambda} 1 /(\lambda-1)
$$

and

$$
k(j, r+1)-k(j, r)>\log _{\lambda} 1 /(\lambda-1)
$$

for all $1 \leq r<2 q_{j}$. Put, in addition,

$$
k(j, 0)=\log _{\lambda} m_{j}
$$

for each $j \geq j^{\prime}$.
We show that, for any $j \geq j^{\prime}$ and $0 \leq r \leq 2 q_{j}-2$, if $X_{1} Y_{1} X_{2} Y_{2}$ is a path of Γ such that $X_{1}, Y_{1}^{-1}, X_{2}, Y_{2}^{-1}$ are directed paths of Γ of length not greater than $\lambda^{k(j, r)}$, then there exists a path $X Y$ of Γ with the same initial and terminal vertices as $X_{1} Y_{1} X_{2} Y_{2}$ and such that X, Y^{-1} are directed paths of Γ of length not greater than $\lambda^{k(j, r+2)}$. Let $x^{\prime}, y, x^{\prime \prime}$ be the terminal vertices of X_{1}, Y_{1}, X_{2}, respectively. If

$$
\Gamma^{\left[\lambda^{k(j, r+1)}\right]}\left(x^{\prime}\right) \cap \Gamma^{\left[\lambda^{k(j, r+1)}\right]}\left(x^{\prime \prime}\right)=\emptyset
$$

then

$$
\Gamma^{\left[\lambda^{k(j, r+1)}\right]}\left(x^{\prime}\right) \cup \Gamma^{\left[\lambda^{k(j, r+1)}\right]}\left(x^{\prime \prime}\right) \subseteq \Gamma^{\left[\lambda^{k(j, r+1)}+\lambda^{k(j, r)}\right]}(y)
$$

implies

$$
R\left(\lambda^{k(j, r+1)+1}\right) / R\left(\lambda^{k(j, r+1)}\right)>R\left(\lambda^{k(j, r+1)}+\lambda^{k(j, r)}\right) / R\left(\lambda^{k(j, r+1)}\right) \geq 2,
$$

a contradiction. Thus there exist a path $Z_{1} Z_{2}$ of Γ such that Z_{1} is a directed path of Γ with the initial vertex x^{\prime} and of the length not greater than $\lambda^{k(j, r+1)}$, and Z_{2}^{-1} is a directed path of Γ with the initial vertex $x^{\prime \prime}$ and of the length not greater than $\lambda^{k(j, r+1)}$. Put $X=X_{1} Z_{1}, Y=Z_{2} Y_{2}$. Then the path $X Y$ of Γ has the same initial and terminal vertices as the path $X_{1} Y_{1} X_{2} Y_{2}$, and X, Y^{-1} are directed paths of Γ of length not greater than

$$
\lambda^{k(j, r+1)}+\lambda^{k(j, r)}<\lambda^{k(j, r+1)+1}<\lambda^{k(j, r+2)} .
$$

Thus $X Y$ is the required path.
As a consequence we have that, for any $j \geq j^{\prime}$ and $0 \leq r \leq 2 q_{j}-2$, if $X_{1} Y_{1} \ldots X_{2 k} Y_{2 k}$ is a path of Γ such that $X_{1}, Y_{1}^{-1}, \ldots, X_{2 k}, Y_{2 k}^{-1}$ are directed paths of length not greater than $\lambda^{k(j, r)}$, then there exists a path $X_{1}^{\prime} Y_{1}^{\prime} \ldots X_{k}^{\prime} Y_{k}^{\prime}$ of Γ with the same initial and terminal vertices as $X_{1} Y_{1} \ldots X_{2 k} Y_{2 k}$ and such that $X_{1}^{\prime}, Y_{1}^{\prime-1}, \ldots, X_{k}^{\prime}, Y_{k}^{\prime-1}$ are directed paths of Γ of length not greater than $\lambda^{k(j, r+2)}$.

Thus, for any $j \geq j^{\prime}$, if $X_{1} Y_{1} \ldots X_{s} Y_{s}$, where $s=2^{q_{j}}$, is a path of Γ such that $X_{1}, Y_{1}^{-1}, \ldots, X_{s}, Y_{s}^{-1}$ are directed paths of length not greater than $\lambda^{k(j, 0)}=m_{j}$, then there exists a path $X^{\prime} Y^{\prime}$ of Γ with the same initial and terminal vertices as $X_{1} Y_{1} \ldots X_{s} Y_{s}$ and such that $X_{1}^{\prime}, Y_{1}^{\prime-1}$ are directed paths of Γ of length not greater than $\lambda^{k\left(j, 2 q_{j}\right)}<n_{j}$ (see (4)). Since any path of Γ of length not greater than $m_{j}=\lambda^{k(j, 0)}$ can be written as $X_{1} Y_{1} \ldots X_{s} Y_{s}$, where $s=2^{q_{j}}>m_{j}$ and $X_{1}, Y_{1}^{-1}, \ldots, X_{s}, Y_{s}^{-1}$ are directed paths of length not greater than $\lambda^{k(j, 0)}=m_{j}$, it follows

$$
\bar{\Gamma}^{m_{j}}(x) \subseteq \cup_{y \in \Gamma^{n_{j}}(x)} \Gamma^{-n_{j}}(y)
$$

for all $j \geq j^{\prime}$. Thus

$$
\left|\bar{\Gamma}^{m_{j}}(x)\right| \leq R\left(n_{j}\right)^{2} \leq c^{2} \cdot n_{j}^{2 d}=c^{2} \cdot m_{j}^{2 d \cdot a}
$$

for all $j \geq j^{\prime}$. As it was noted in the beginning of the proof, the theorem follows.

Remark 1. Let Γ be a directed vertex-symmetric graph with near polynomial growth, which is not in-hyperbolic. Then $\left|\Gamma^{1}(x)\right|=\left|\Gamma^{-1}(x)\right|$ for $x \in V(\Gamma)$ by the Proposition. Thus Theorem 2 can be applied to components of Γ (which are isomorphic).

Remark 2. It can be deduced from Theorem 2 (modifying, for example, arguments from [8]) that if d is the growth degree of the graph $\bar{\Gamma}$ from

Theorem 2, then there exists a positive integer c_{1} such that $1 / c_{1} \cdot n^{d} \leq$ $\left|\Gamma^{n}(x)\right|=\left|\Gamma^{-n}(x)\right| \leq c_{1} \cdot n^{d}$ for all positive integers n.

Remark 3. In [8], it was proved that a finitely generated semigroup with cancellations has polynomial growth if and only if its group of all left quotients (exists and) contains a nilpotent subgroup of finite index. A modification of arguments from [8] (compare the proof of Theorem 2 above) and using [3] instead of [2] implies that here "polynomial growth" can be replaced by "near polynomial growth". (In notation from [8], S has near polynomial growth if there exist positive integers c and d such that $\gamma\left(n_{i}\right) \leq c \cdot n_{i}^{d}$ for some sequence $n_{1}<n_{2}<\ldots$ of positive integers and any positive integer i.)

Remark 4. Obviously, Theorem 1 follows from Theorem 2 (applied to the directed graph $\vec{\Delta}$ with the vertex set $V(\vec{\Delta})=V(\Delta)$ and the edge set $\left.E(\vec{\Delta})=\left\{\left(y^{\prime}, y^{\prime \prime}\right):\left\{y^{\prime}, y^{\prime \prime}\right\} \in E(\Delta)\right\}\right)$. But Theorem 1 was used in the proof of Theorem 2.

References

[1] V. Trofimov, Graphs with polynomial growth, Math. USSR Sb. 51 (1985) 405-417.
[2] M. Gromov, Groups of polynomial growth and expanding maps, Publ. Math. IHES 53 (1981) 53-78.
[3] L. van den Dries and A. Wilkie, Gromov's theorem on groups of polynomial growth and elementary logic, J. Algebra 89 (1984) 349-374.
[4] A. Veselov, Integrable mapping, Russian Math. Surveys 46 (1991) (5) 1-51.
[5] V. Trofimov, Automorphism groups of graphs as topological groups, Math. Notes 38 (1985) 717-720.
[6] V. Trofimov, Directed graphs with polynomial growth, in: III Internat. Conf. Algebra (Krasnoyarsk, 1993), Abstracts of Reports, Krasnoyarsk State Univ. and Inst. Math. Siberian Branch Russian Acad. Sci. (Krasnoyarsk, 1993) 334-335 (in Russian).
[7] V. Trofimov, Certain asymptotic characteristics of groups, Math. Notes 46 (1989) 945-951.
[8] R. Grigorchuk, Semigroups with cancellations of degree growth, Math. Notes 43 (1988) 175-183.

Received 1 October 2001
Revised 15 February 2002

